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Abstract—This paper investigates a system with two strategic
sources, both being able to update a given information process at
the receiver’s end, but doing so independently and unbeknownst
to each other, and also being aware that they incur a local cost
for each update. Thus, the sources should independently make
a periodic decision on whether to update or not, weighing the
global benefit of decreasing the receiver’s age of information
versus their individual cost paid. This scenario is analyzed from
a game theoretic perspective, showing the existence of three Nash
equilibria, with different overall efficiencies. Interestingly, for a
wide range of update costs, the efficient equilibria are the ones
with most unbalance between the updates from either source. In
other words, making use of both sources does not result in an
efficient equilibrium. This further enables the evaluation of the
Price of Anarchy, quantifying the worst-case scenario inefficiency
of selfish management of the sources, under different values of
the updating cost.

Index Terms—Age of Information; Game theory; Remote
sensing; Price of Anarchy.

I. INTRODUCTION

Many modern implementations of communication networks
can be related to the Internet of things (IoT), i.e., an in-
terconnected system of physical objects with the abilities
of sensing the environment, analyze and compute data, and
communicate with other devices over the Internet, which is
expected to be beneficial for many applications in the everyday
life [1], [2]. For many reasons, including scalability and ease
of implementation in simple devices, these pervasive systems
are supposed to employ a distributed management with low
complexity algorithms [3]. Hence, the development of solution
based on game theory is becoming increasingly popular in
such a context [4], [5].

Moreover, it is argued by a relatively recent line of research
[6], [7] that in these scenarios, especially in those involving
remote sensing, freshness of information is more relevant than
the sheer amount of raw data exchanged. Hence, the so-
called Age of Information (AoI) may be a performance metric
that is interesting to characterize, even more than considering
throughput or latency as usually done.

Despite being slightly more complex than other standard
metrics, AoI can be quantified analytically (also with closed-
form expressions in the simplest cases); thus, it can be included
in game theoretic models under proper assumptions. At the
same time, it may be interesting to evaluate such a metric from
the perspective of distributed devices, independently owned,
that therefore act following selfish objectives, as is typical of
game theoretic scenarios [8]–[10].

In light of these motivations, the contribution of the present
paper is to investigate a scenario consisting of two independent
sources, tracking the same underlying process of interest for
a receiver, to which they are sending periodic updates with
a given probability and incurring an individual cost when
doing so. Both sources are equally capable to send an update
that refreshes the information at the receiver, but they are
also aware that sending two updates at the same time just
increases the costs without adding any benefit. This causes
them to interact according to a scenario framed as a static game
of complete information, where the sources are the players
seeking to minimize a combination of the overall AoI achieved
by the system, which remains their primary objective, but at
the same time also including their individual transmission cost.

To this end, an analytical model is presented for the eval-
uation of AoI under an uncoordinated but synchronized (over
multiple time slots) exchange of updates, where we account
for a discrete time axis [6], [11]. This model is employed
inside the aforementioned game theoretic scenario so as to
identify possible Nash equilibria (NEs), i.e., mutual strategic
choices that are taken in a distributed manner but turn out to
be unilaterally satisfactory for both players at the same time.
This further allows the evaluation of global metric such as
the Price of Anarchy (PoA) and the Price of Stability (PoS),
namely, the ratio between the global utility of both sources
in the best possible scenario versus the worst and best NEs,
respectively [12], [13].

From the analysis for one source only, which is immediate
to optimize, an extension to the case of two players show
that three NEs exist for this game, which consist of: (i) a
perfectly balanced update frequency between the two sources,
and (ii) leaving the burden of the update to only either
source (depending on which it is, two different equilibria are
achieved). However, the last NEs are actually found to be more
efficient than the balanced solution, at least for a wide range of
cost parameters. This implies that, from the individual sources’
perspective, it would be better if only either of them sends
updates, and the other just stays silent, with possible swapping
of the roles every now and then.

In a sense, this finding is unfavorable for distributed archi-
tectures aimed at remote sensing, where multiple sources work
independently. Even with the only inefficiencies coming from
lack of coordination among multiple sources, the system is
working at a more desirable equilibrium, at least from the
sources’ own point of view, if only either of them sends



updates. However, some remarks mitigate this conclusion. First
of all, the update probability for the balanced solution is found
to be very close to the optimal value, especially for increasing
costs. Also, the AoI achieved at the balanced equilibrium is
better than when only one source is active, so the system
manager might try to push the system toward this operating
point, which is more efficient from the receiver’s perspective.
Moreover, this may prompt further investigations for low-
cost signaling exchange among the sources that would allow
to harmonize their updates and therefore avoid inefficiencies
from the lack of coordination.

The rest of this paper is organized as follows. Section II
reviews related work in the area. Section III presents the
game theoretic model and develops the analysis. Section IV
shows some numerical results. Finally, Section V gives the
conclusions.

II. RELATED WORK AND CONTRIBUTION OF THE PAPER

In the literature, there are several approaches framing the
network exchange of data coming from independent multiple
sources as a game. The general idea is to use game theory
to characterize a distributed management of such sources, and
possibly evaluate its efficiency [5], [11], [14]. In these papers,
the objective of the nodes is generally assessed in terms of
data amount and/or quality versus their cost of transmission.

Also, a relevant point is whether to consider a homogeneous
network structure, consisting of many nodes acting in identical
but uncoordinated fashion, or just a limited number of them
(usually two). The former methodology would be more con-
sistent with the pervasive nature of IoT systems, but requires
specific approaches such as mean-field games or minority
games, as argued in [15]. In reality, one contribution of the
present paper is to highlight the potential inefficiencies (or at
least the lack of interest for some nodes in participating in an
equilibrium outcome that is inefficient for them) of symmet-
rical solutions. In order to keep the investigation simple and
allow for a fully analytical derivation, the analysis considers
two sources as players in a standard game, although one can
argue that the main conclusions can promptly be extended, at
least in principle, to a higher number of sources.

Notably, the most common application of game theory to
data exchange in IoT systems is possibly that of security [4],
[16], [17], also sometimes framed as a jamming problem [18]–
[21], with an adversarial setup between the legitimate network
nodes and some attackers. This is also a very relevant aspect of
IoT scenarios, and is possibly easy to integrate as something
akin to a zero-sum game [12]. However, the analysis of the
present paper just considers a uniform structure of the network
with the same objective for all the nodes, and the end goal is to
achieve an efficient coordination, which all the sources would
be interested in.

Instead, in this paper the specific focus is on the AoI as the
performance metric; given the relatively recent idea of using
information freshness as an important performance metric in
remote sensing [6], there are only a handful of papers using
a similar objective. For example, [8] considers AoI but for

a ultra-dense IoT system, which prompts the game theoretic
analysis through mean-field games, as opposed to considering
the detailed behavior (but just for a pair of sources) as done
here.

Another relevant paper is [9], where multiple nodes are
interested in tracking different processes and compete over
a shared channel to get the lowest AoI. A related game is
considered in [10], where two transmitter/receiver pairs are
trying to exchange updates over a wireless channel but they
cause interference to each other, which degrades the quality
of the update. These papers are more similar to the analysis
presented here, but in all these cases multiple sources are con-
sidered to be competitive and tracking different processes. Up
to the author’s knowledge, this is the first paper attempting at
characterizing sources that are neither explicitly collaborating
nor competing, they just share the same global objective of
sending timely updates but with a selfish interest (as is typical
of game theory) in saving their individual cost.

Thus, the present paper presents an original contribution in
that a game theoretic evaluation of AoI, already itself rarely
addressed aside from the most recent literature, is framed in
the management of individual sources that try to minimize
the same AoI, with the only selfish component of their utility
being their individual cost.

In this spirit, the conclusions reached by the analysis, where
it is found that it might be more convenient in some cases
for the sources to be inactive and leave only one of them
to update, are detrimental to the overall goal of network
collaboration. As a consequence, for the sake of a more
efficient distributed management, some form of coordination,
even through elementary signaling, ought to be introduced. On
the other hand, the AoI value clearly benefits from a balanced
usage of both sources, so that the network manager and/or
the receiver might be interested in promoting this specific
outcome, possibly compensating the individual sources for
their efforts.

III. SYSTEM MODEL

A system with two sources S1 and S2 and one receiver R
is considered. Both sources are tracking an underlying process
of interest for R, and they are capable to send updates about
it. The receiver is interested in getting an information status
about the process that is as fresh as possible. This is quantified
through the AoI metric δ, defined as the difference between
the current time value and the last update from either source
[9], [22].

For the analysis, a discrete time axis divided into slots of
same duration, also referred to in the following as update
epochs, is considered; the resulting AoI at each time instant
is computed as an integer value. For example, we assume that
δ = 0 for any epoch where an update from either source is
received. More in general, if s1 and s2 provide their respective
updates at time slots τ 1 = {. . . , τ (1)1 , τ

(2)
1 , . . . , τ

(n)
1 , . . . } and

τ 2 = {. . . , τ (1)2 , τ
(2)
2 , . . . , τ

(n)
2 , . . . }, the value of δ at time

slot t is

δ(t) = t−max
(
{τ ≤ t} ∩ (τ 1 ∪ τ 2)

)
. (1)



TABLE I
OUTCOME OF THE INTERACTIONS AT EACH UPDATE EPOCHS

source S2

update idle

source S1

update δ(t)← 0 δ(t)← 0
S1&S2 pay c S1 pays c

idle δ(t)← 0 δ(t)← δ(t−1)+1
S2 pays c no cost paid

At each time slot, the sources decide, in a random fashion
and independent of each other, whether to access the resource
and therefore perform an update, or stay idle. If a source
decides to update the information at the receiver, it is also
requested to pay a cost term, denoted as c. For each of the
possible four outcomes, we are able to determine the evolution
of δ(t) from the previous value δ(t−1), and the associated
updating costs paid by the sources. A schematic representation
is given in Table I. Notably, the information at R is updated
in 3 cases out of 4, the only exception being when neither
source decides to update, in which case δ(t) increases by one
but no cost is paid. While the table is hinting at a normal
form representation of a game [12], [13], in this specific case
the strategic choices are better modeled as continuous values,
namely, the probabilities of performing an update.

For the sake of simplicity, it is assumed that there is no
signaling from R to the sources, so S1 and S2 just choose
by themselves to update with an independent and identically
distributed (i.i.d.) probability value, denoted as p1 and p2,
respectively, over different time slots. This is consistent with
a sensing scenario in which there is no way to adopt more
sophisticated strategies, which would make sense if R is
capable of actively sending requests to the sources; in which
case, for example, R can push for an update with higher
probability, e.g., if the AoI is becoming very large. However,
our scenario allows for a fully analytical development that is
consistent with other similar investigations [6], [23]. Moreover,
whenever a source decides to update, its sent data are always
received successfully. This means that updates never fail; it
would be possible to extend this analysis to the case of non-
guaranteed decoding of the update, as per [22], or unreliable
feedback from the sources [24], or even potential collisions
and interferences among the sources [10], but all of these
extensions would only marginally affect the essence of the
analysis, and are therefore left for future work.

As pointed out in the previous section, one major difference
with the existing literature is that we consider two independent
sources that are just lacking coordination but are not them-
selves competing. Indeed, they just try to update the same
receiver, so it would make sense for them to obtain a lower
AoI as part of their objectives. On the other hand, they are also
aware of the inherent inefficiency of their lack of information
exchange, which can sometimes lead to sending two updates
at the same time.

For this reason, the introduction of a cost term does not
only make sense in order to correctly characterize the physical
nature of the devices (according to this aspect, c can be related
to energy consumption or data processing costs to obtain
and transmit an update information packet) but also as an
externality introduced to somehow limit aggressive updates
from the sources at every single epoch [13]. In particular, as
will be clearer from the subsequent analytical formalization,
c ≥ 1 must be imposed for the problem to be physically
sensible; otherwise, both sources will consider the updating
cost not to be enough of a burden to refrain from always
updating.

First, a scenario with only one source is considered. From
the analytical framing of this case, it will be easy to derive
the game structure when two sources exist as players in a
game. If a source sends random updates with probability p,
the expected AoI of the receiver can be computed as [22]

E[δj ](p) =
1

p
− 1 (2)

and if a cost term for sending an update is considered, propor-
tional to p through a cost coefficient c, the total expenditure
of the source is promptly derived as

K(p) =
1

p
− 1 + cp . (3)

Now, the cost-optimal solution for the source is to always
send updates at each slot if c ≤ 1, in which case the AoI is
constantly 0. The problem becomes more interesting if c > 1,
since in this case we can find the optimal update probability as
p∗ =

√
1/c. Note that this value does not optimize the AoI per

se, but rather the linear combination of (3) where the update
cost is also considered, so it is optimal from the perspective of
the source. This is important since a game theoretic approach
further extends this situation to the case of two sources, each
one of them being interested in selfishly maximizing its own
individual objective.

For two sources, we can represent the problem by defin-
ing a static game of complete information [12], denoted as
G = (N ,A,U) as follows. The set of players N is set as
N = {S1, S2}; being passive and not sending any feedback
whatsoever, R is not a player in the game. The action set
A is defined for both players as their update probability
(denoted as p1 and p2, respectively) taking values in [0, 1].
In other words, the sources decide, independently of each
other, the probability to which their own updates are sent.
Finally, the payoff functions in set U , also called utilities, are
symmetrically defined along the lines of (3), with the following
differences: (i) the utilities are functions of both p1 and p2, as
is meaningful in any game-theoretic interaction; (ii) equation
(3) represents cost values to be minimized; in game theory,
it is more common to seek for utilities to be maximized,
which be achieved by taking u(p1, p2) = −K(p1, p2). Thus,
by remarking that the expected AoI is now a function of both
strategic choices of S1 and S2 and can be computed as

E[δj ](p1, p2) =
1

p1 + p2 − p1p2
− 1 (4)



we can define

u1(p1, p2)=−K1(p1, p2)=−
1

p1+p2−p1p2
+ 1− cp1

u2(p1, p2)=−K2(p1, p2)=−
1

p1+p2−p1p2
+ 1− cp2

. (5)

The term p1p2 in the denominator reflects the inefficiency of
the two uncoordinated sources: if S1 and S2 were able to avoid
overlapping updates, e.g., by signalling a preemption request
to each other, the overall system utility would be higher, and
could be computed as

umax(p1, p2)=−
1

p1 + p2
+ 1− c(p1 + p2) . (6)

Note that in this case it would be indifferent how the total
update probability p1 + p2 is split into the contributions from
either source. A balanced solution to (6), where p1 = p2, could
simply be derived by substituting p with 2p in (3), thereby
achieving an update probability p∗∗ = 0.5 for 1 ≤ c ≤ 2 and
p∗∗ = (2c)−1/2 when c ≥ 2.

Also, further conditions are imposed in that the details of
the scenario and the utility functions followed by each player
are common knowledge among them. In such a game, the
players look for playing a best response to their beliefs on the
other player’s move and NEs are computed as the strategical
choices where these conditions met, i.e., both players play a
best response to each other [12].

Theorem 1. Game G = (N ,A,U) as defined above, has only
one NE where the two players choose their actions such that
0 < p1, p2 < 1, and in this case p1 = p2.

Proof. The theorem can be directly proven by setting the first
order derivatives du1/dp1 and du2/dp2 as 0. This result in
the following condition on p1 for S1, if p2 is assumed given:

p1 =

√
1− p2
c
− p2

1− p2
(7)

and similarly for S2 with a reversal of p1 and p2. Notably,
(7) implies that with p2 = 0 the solution for p1 is the same
as when only one source is present. By imposing the same
conditions of (7) on p1 and p2 it is immediate to derive that it
must hold p1 = p2 = pb, and pb can be found as the only real
solution that falls within [0, 1] of the fourth degree equation

1− p− c(2p− p2)2 = 0 , (8)

which can be easily computed by numerical means.

Theorem 2. Game G = (N ,A,U) also has two further NEs,
consisting of the choice of update probability 0 by either
source, while the other chooses it according to the single-
source scenario.

Proof. This follows from the previous theorem as, beyond the
maximal points inside [0, 1], also the extreme values must
be considered, and (p1, p2) being chosen as (0, c−1/2) or
(c−1/2, 0) give maximum conditions according to (7).
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Fig. 1. Update probability p as a function of the transmission cost c, chosen
according to different NEs or with a globally optimal choice.

To sum up, the game has three NEs, two of which can be
dubbed as lazy NEs, since they just correspond to using only
one source, while the other never updates, and one is instead
a balanced NE, where both sources update independently
with the same probability pb. Surprisingly, the overall system
efficiency computed as u1(p1, p2) + u2(p1, p2) is superior
at the two lazy NEs than the balanced NE if the condition
c < γ holds, where γ ≈ 10.67 (found via numerical means).
It is important to notice that this does not mean a lower
AoI for the lazy NEs, since the sources’ utilities are also
computed including the cost term. However, it implies that
a distributed management, where individual nodes are solely
acting following their individual utilities, can achieve a better
efficiency if some of the sources do not send any update.

For comparison purposes, in the following section we will
evaluate the PoA and PoS, whose respective definitions are

PoA =
umax(p

∗∗, p∗∗)

min
(
u1(pb, pb)+u2(pb, pb), u1(p∗, 0)+u2(p∗, 0)

)
PoS =

umax(p
∗∗, p∗∗)

max
(
u1(pb, pb)+u2(pb, pb), u1(p∗, 0)+u2(p∗, 0)

) ,
(9)

where the optimal allocation at the numerator is compared
versus the worst (respectively, best) NE at the denominator,
with the possible choices for the NE being the symmetrical
NE or either of the lazy NEs that give the same total utility.

IV. NUMERICAL EVALUATIONS

We present some evaluations to better visualize in numerical
terms the conclusions of the previous section. To this end, we
consider a system with two sources S1 and S2 sending updates
to a receiver R with probability p1 and p2, respectively. The
sources have a cost c for sending an update, and their utility is
the global AoI achieved, also accounting for the updates from
the other source, plus their individual update cost as per (5).
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Fig. 2. Resulting utility of each source, as a function of the transmission cost
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The compared scenarios in the results are: (i) the case with
only one source, making its update decision so as to minimize
its global cost according to (3), i.e., p∗ = c−1/2; incidentally,
this also works for the lazy NEs, where one of the two sources
never sends updates, so it chooses an update probability equal
to 0, and consequently the other one also plays according to
(3) as though it was the only source in the system; (ii) the
symmetrical NE of two sources, both choosing a balanced
probability value p1 = p2 = pb according to (8); and finally
(iii) the best allocation with two sources, assuming they are
perfectly coordinated and therefore maximizing (6), as p∗∗.

Fig. 1 reports the update probability of the sources under
these different conditions, i.e., the three plots show p∗, pb,
and p∗∗. Notably, after a plateau of 0.5 for c ≤ 2, the values
of p∗∗ and pb become quite similar for higher costs, and are
basically indistinguishable for c > 5. This follows from the
update probability being decreasing in c, so that the absence of
the product p1p2 in the denominator of (6) does not change the
maximizing value. However, the two probability values being
comparable does not lead to the same total utility, as will be
shown in the following results.

Fig. 2 compares the utilities of the individual sources. For
the balanced NE, both S1 and S2 get the same utility. In
the lazy NEs, they obtain different values, with the value of
the source never sending updates displayed as “lazy source,”
also being the highest curve, since it benefits from the other
source’s updating but pays no cost, whereas the other source
gets the same utility as the only player in the scenario with
one source.

From this figure one can appreciate the counterintuitive
result that the total utility in the case of a lazy NE (which
is the sum of the highest and lowest curves) is better than
twice the total utility in the balanced case, and closer to the
best achievable total utility under perfect coordination. In other
words, the welfare of a system with a lazy source is closer to
the optimum than a balanced one, albeit clearly less fair.
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Fig. 3. Price of Anarchy and Price of Stability, as functions of the transmission
cost c.

This is further confirmed by Fig. 3, where the PoA and PoS
are computed, according to (9). The PoS is around 1 for values
of c close to 1 since both the lazy NE (the best one in this
case) and the optimal choice of p correspond to updating at
every time slot, which gives an AoI close to 0 and the only
contribution to the utility being the cost paid to update.

Moreover, it is interesting to notice that, at low values of
c, the PoA, determined by the symmetrical NE versus the
optimal management, is significantly higher than 1 despite
the choices of the update probability in the two cases being
almost identical. Therefore, this is inherently due to the loss
of efficiency in the lack of coordination of the sources that
are sometimes sending redundant updates. Also, the figure
highlights that the PoS and the PoA become identical for
c = γ, after which the relationship between the NEs actually
is subverted, with the balanced NE becoming now the globally
efficient one.

Actually, this does not look like a very striking difference
in that for all values of c > 7 all the three NEs get a similar
performance, which is between 6% and 11% worse than the
optimally coordinated updates. Indeed, the symmetrical NE
becomes even more efficient as the cost increases beyond what
shown in the figure, but at the same time the AoI at the receiver
is very high as the update probability becomes very low.

Finally, Fig. 4 reports the AoI achieved by the different
source management techniques. It is especially highlighted that
the AoI is generally lower for the symmetrical NE, albeit the
lazy NE gets a lower AoI around 0 for values of the cost term
c close to 1. This means that, for higher cost values, the lazy
NEs do not outperform a balanced solution in terms of AoI.
However, since the ultimate objective of the individual sources
also include the cost for sending an update, the redundancy in
the overlapping updates cause the total utility to be lower as
shown in Fig. 2.

Still, from the perspective of a system manager, this can be
a point to favor the balanced NE over other allocations, due to
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its ability to achieve a lower AoI; as for the selfish perspective
of the individual sources, they are still reaching a NE anyways,
so even according to the game theoretic formulation, they do
not want to deviate from that choice.

V. CONCLUSIONS AND FUTURE WORK

A game theoretic analysis of a system with two sources
operating under AoI-based utilities, also including an indi-
vidual transmission cost term, was presented. It was shown
that the equilibria where the system makes an unbalanced use
of the sources (actually, limiting the updates to one source
only) might sometimes turn out to be more efficient than the
one where both sources are sending updates with the same
frequency. Notably, the efficiency is to be meant from the
sources perspective, since the AoI obtained by a balanced
equilibrium is still shown to be lower.

Nevertheless, this result is apparently limiting the usefulness
of having multiple distributed sources acting in an uncoordi-
nated fashion. Remarkably, this result was derived under the
condition that multiple source updating at the same time do
not cause any efficiency loss beyond their redundancy, for
example, multiple updates are always in agreement and/or
never collide at the physical layer, in which case the resulting
equilibrium will likely be even worse.

However, it must be reminded that in the analyzed system
there is no way for the sources to get any feedback or
additional information on the operation of the other source
and/or the receiver status. Clearly, this result can also be
interpreted as the need for some simpler coordination from
the involved parties, even in the form of exchanging short
messages, e.g., to update the sources, solicit an update, and/or
fairly share the burden of the updates as done in the optimal
scenario used for comparison.

To sum up, the results found justify the need for at least a
minimal cooperation among the nodes to achieve AoI-efficient
updating schemes from multiple sources. Not doing so would

result in a suboptimal management of the AoI, which, albeit
still limited in its inefficiency (the PoA is overall bounded)
does not justify the introduction of multiple sources as the
best NEs might often be achieved by only using one of them.
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