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Abstract—We study a jamming problem in a wireless sce-
nario, where a legitimate receiver and a jammer compete in
a zero-sum game with the value to maximize/minimize being
the channel capacity at the receiver’s side. Classic approaches
consider stationary nodes. Instead, we investigate what happens
when they can move along a linear geometry, which requires
expanding the game into a dynamic setup. Even though the
strategy space becomes huge, we can (i) provide some analytical
criteria to identify good strategies, and (ii) explore efficient
strategies leading to equilibrium outcomes using reinforcement
learning techniques. We analyze different scenarios of sequential
and simultaneous dynamic moves, as well as perfect versus
imperfect information about the position of the adversary. Our
numerical evaluations show the consistency of our findings in all
the considered scenarios.

Index Terms—Wireless communications; Jamming; AWGN;
Game theory; Zero-sum games; Reinforcement learning.

I. INTRODUCTION

A classic scenario of application for game theory to wireless
communications is that of jamming [1], [2]. This can be
formalized as a zero-sum game played by two agents, i.e.,
a regular user, acting as a maximizing player, and a jammer
being the minimizer, where the value of the game can be for
example the channel capacity, or, equivalently, the signal to
noise plus jamming ratio (SNJR) in the case of additive white
Gaussian noise (AWGN) channels.

More precisely, a suitable scenario to explore considers a
legitimate receiver R, placed in the vicinity of a base station
(BS), the latter being stationary and non-strategic, i.e., not
a player in the game. R wants to use the available wireless
channels most efficiently, that is, receive communication from
the BS with the highest possible rate. At the same time, a
jammer J is present in the area to disrupt the communication,
so that R obtains the lowest possible communication rate
instead. To achieve this, J simply raises the noise floor of
the ongoing communication by causing extra AWGN in the
form of a jamming component to R’s reception.

Overall, such a two-player interaction is appealing from
a game-theoretic point of view, since it can be framed as
a zero-sum game [3]. Notably, the usual interpretation of a
mixed strategy Nash equilibrium (NE) in probabilistic terms,
which is often troublesome in many contexts, is perfectly valid
here if regarded as a random access probability. The setup
also allows for additional theoretical considerations such as
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imperfect information about the role of the players [4], their
channel conditions [5], or their physical location [6], which
all lead to different versions of a Bayesian game analysis.
In the end, whatever the theoretic framework used, strategic
countermeasures are derived to be adopted against jamming.

In the literature, there are also variations on the technical
premises of the communication scenario. For example, J may
be assumed to possess more advanced jamming capabilities
to disrupt R’s communications, such as eavesdropping or
spoofing [7]. Also, a reverse situation happens in the case
of friendly jamming, where J is a legitimate network agent
that wants to disturb a malicious communication by R such as
stealing data or communicating in a forbidden area [8], [9].

However, it seems that the element of node mobility is
rarely addressed in the literature. Up to the authors’ best
knowledge, most approaches for adversarial jamming focus
on resource allocation or power control [1], [7], [10], whereas
there seem to be no contributions discussing wireless nodes,
either the jammer or the intended receiver, which are mobile;
sometimes the nodes can choose their position, but this is never
changed afterwards and kept as a static move or a Bayesian
type [11], without any sort of dynamic update. This is kind
of surprising since next-generation wireless networks strongly
support mobility of the terminals also in extreme situations,
not to mention that the overall performance of the wireless
channel capacity is strongly affected by mobility [12]–[14].
Also, moving away from a noise source, or more in general
changing location whenever the channel quality is bad, is
a quite logical reaction and the “poor man’s solution” to
interference in wireless communications [15]. In fact, [16]
proposes a game theoretic scenario for this kind of interaction,
but only involving the receiving nodes as moving away from
an area where jamming is present, but the jamming nodes are
not strategic and do not react to that.

A possible reason for this lack of contributions lies in that,
when mobile nodes are considered, the formulation transits to
a dynamic game and the size of the problem rapidly explodes,
since the number of involved strategies becomes prohibitive
to be analyzed in closed form. Yet, we argue that a way to
approach such an issue is the use of reinforcement learning
(RL), which is commonly adopted [17] for the combination
of game theory with explorations of the equilibria based on
machine learning. Thus, we propose an RL methodology to
solve different dynamic games resulting from the ability of
nodes to move [18].



In more detail, in this paper we focus on a linear topology.
As discussed in the following, this allows for a simpler
analytical formulation, while still keeping into account all the
relevant aspects of any two-dimensional geometry, since in the
end the computations of the SNJR can be related to physical
distance between the terminals. Indeed, R wants to be as close
as possible to the BS while at the same time escaping J, which
can instead be considered as chasing R [19].

In this context, we study three different scenarios of dy-
namic games. In the first one, nodes move by dynamically
changing their position, which is done sequentially with
perfect information about each other’s positions; individual
payoffs are cumulated after each player’s move. In the second
formulation, we iterate simultaneous changes of positions by
both players, once again with perfect information. Finally, we
consider a third and last game, where each player has imperfect
information about the opponent’s placement, it just observes
the channel capacity changing as a consequence of the other
player’s position.

For all these games, the complexity of the strategies makes
it prohibitive to derive a closed-form solution of the game.
However, we are still able to identify some general prin-
ciples of strictly dominant strategies, especially for what
concerns the jammer J. Shortly put, this agent can play an
efficient strategy which is to always move in R’s direction.
Also, we adopt an adversarial RL approach to determine the
NE strategies through a Q-learning with greedy exploration-
exploitation [20]. Finally, we derive numerical results that
confirm a good matching with the theoretical principles, and
also hint at possible further investigations.

The rest of this paper is organized as follows. In Section II
we present the location scenario and the mobility model that
the nodes use to play. Section III details the game-theoretic
analysis and its solution via reinforcement learning. Section IV
presents the performance evaluation and, finally, Section V
concludes the paper.

II. PHYSICAL ENVIRONMENT AND GAME SCENARIOS

We begin our analysis by making some assumptions on
the physical geometry of the environment where the nodes
are placed and move. If we assume R and J to be terrestrial
devices we can limit their positions onto a two-dimensional
surface. The extension to drones or devices capable of mov-
ing alongside a third vertical coordinate is left for future
investigations. R and J’s positions can be represented in polar
coordinates (ρ, ϑ) with the origin in the location of the BS. It
is immediate to remark that, while the distance from the BS ρ
really influences the SNJR perceived by the devices, the angle
ϑ just implies a rotational symmetry of the positions.

Motivated by this reasoning, in this paper we limit the
investigations to a linear geometry, which means that all
nodes can occupy positions on a positive coordinate ρ, taken
as the only parameter of interest. This model, which would
be perfectly appropriate for nodes placed alongside a road
[14], still allows for a descriptive setup that contains all of
the characteristics that are relevant to our analysis, namely

Fig. 1. Graphical representation of the considered game, with the access point
located at the origin. In the depicted case, J is in position y = 2, and R in
x = 4; the players can move in both directions between L = 1 and M = 5.

the ability for the players to change position, and do so
dynamically.

While using a single coordinate offers the advantage of
notation simplicity, we will see that the resulting setup already
offers a challenging complexity. Naturally, our findings can
be expanded to more general topologies (e.g., with more
directions available). Such an extension could for example
explore the choice of an angle ϑ alongside the value of ρ for
both players. Even though this is not reported here for space
limitations, this would actually be a straightforward extension,
as will be clear from the following analysis.

Thus, we consider a half-line starting from an origin ρ = 0,
where three devices are placed. The first one is a transmitter,
which can be thought of as a BS, which is stationary and not
controlled by any player of the game. This BS is placed in
the origin, i.e., position ρ = 0, which is in turn forbidden for
the other nodes to take. The second and third nodes in the
geometric placements are a receiver R and a jammer J, each
of them controlled by a player that determines the position,
denoted as ρR = x and ρJ = y, for R and J, respectively.

For tractability reasons, most games consider a discrete state
space [21]; we take a similar approach, and we assume that N
positions are available to the mobile nodes, within extremes
ρ = L (closest to the BS) and ρ = M (furthest), all equally
spaced. Thus, the positions are quantized with a step

∆ =
M − L+ 1

N
.

In the numerical evaluations of Section IV we will take the
following simplifying choices: L = ∆ = 1, M = N = 5,
which implies 25 possible position pairs of the mobile nodes.
However, it is evident that these choices can be extended to
more states and a finer granularity, with just increased com-
plexity but little additional insight. A graphical representation
of the resulting physical environment is depicted in Fig. 1.

Another related assumption that we exploit in the dynamic
game relates to the mobility of the nodes since we assume
that, at each round, they can only move to adjacent positions,
or stay still. In other words, from position ρ at time t, both
players can only move to ρ′ ∈ {ρ−∆, ρ, ρ+∆} at time t+1.



We assume a narrowband AWGN wireless channel between
the BS and R, with bandwidth B. The role of the jammer
is to cause additional noise at the receiver’s end. Thus, R
experiences a data rate quantified through Shannon’s capacity
as C = B log2(1 + Γ) where Γ is the SNJR computed as

Γ =
gRPtx

ν0 + gJPJ
(1)

with terms Ptx and PJ being the powers transmitted by the BS
and the jammer, respectively, while gR and gJ are gain terms
between the BS and R, and the jammer and R, respectively,
and ν0 is a noise term.

We apply this physical setup to different games where the
sets of players always consist of R and J, treated as having
contrasting objectives, which is captured by all the games
being zero-sum [1], [3]: the value of the game is defined as the
channel capacity, so that player R has utility uR = C, while J
has utility uJ = −uR = −C. This means that R tries to obtain
a position pair (x, y) that maximizes the channel capacity C,
while J wants to minimize it.

If this happens, we can simplify the equations related to the
telecommunication scenario by observing that, in game theory,
utility functions just represent the preferences of the users
but have no strict specific physical meaning in themselves.
Thus, certain monotonic rescaling would leave the preferences
unaltered since they still respect the principle that the higher
the utility, the more preferred the outcome. Especially, if the
utility transformation is a linear rescaling, also the set of mixed
NEs found is the same in the transformed utilities [21].

Thus, in the following, we make these assumptions. First,
we neglect the noise by setting ν0 = 0, which is reasonable
as the jamming effect is expected to be preponderant. At
this point, we can also ignore the bandwidth B, which only
causes a proportional rescaling of capacity; in other words, we
can set a unit value for B and just treat the capacity as the
spectral efficiency of the resulting AWGN channel between the
BS and R. Moreover, we can ignore the differences between
the transmitted powers (either assuming them comparable or
remarking that they cause another linear rescaling anyways)
and set Ptx = PJ = 1.

Since we are left with a value that is a logarithmic function
of log2(1 + Γ), under the above assumptions, we can exploit
the equivalence log(1 + a) ∼ a for small a. After another
proportional rescaling due to the change of base for the
logarithms, we ultimately obtain that value of the game just
depends on the ratio between gR and gJ. Finally, if we assume
that the channel gain just contain a path loss term, we can
ultimately connect the value of the game to the positions x
and y as

value = uR = −uJ =
|x− y|α

xα
(2)

where α is the path loss exponent, that is, the channel gain is
proportional to d−α where d is the geometric distance.

Some remarks are now in order. First of all, more complex
propagation models can be employed, but this would just make
the analysis more complicated (especially in the learning part),
while the meaning of the communication performance would

still be valid on average. Moreover, the dependence on α
is also marginal, since it will not alter the ordinal meaning
of the utilities. Other results [6], [11] in the field of games
with variable position of the users hint at this principle by
confirming it numerically. For the sake of choosing a value,
in the following, we will consider α = 2, which would
correspond to a free-space propagation, but as we argued
the obtained results are general. Finally, we point out that
the eventual formulation of (2) implies a zero-sum game
on the unit square with polynomial utilities. According to
[22], this is an overall tractable scenario, for which some
analytical conclusions can be drawn in the static case. Still,
we complicate it by introducing a dynamic evolution of the
players’ moves due to their mobility.

III. GAME ANALYSIS

First of all, we study a static version of the game, where
R and J just choose, independently and unbeknownst to each
other, a location in L,L + ∆, . . . ,M and stay there forever.
This game does not involve any mobility, but the free choice
of the location might shed light on how R and J are supposed
to behave in a dynamic game. It is immediate to prove that
this game cannot have a NE in pure strategies [23], since all of
R’s choices of a specific location with probability 1 trigger J’s
best response of choosing the same location. It turns out that
the best strategy for R is to choose a mixed strategy with a
combination of locations L and M , to which the best response
by J is to place itself in a specific position (even though, as a
result of the quantization, the actual strategy played by J is a
mixture of the two values surrounding that position). The exact
details of this solution are omitted here for brevity, but they
are not difficult to derive. However, it is also evident that such
a mixed strategy for R is impractical in a dynamic context,
due to our assumption that nodes can only move to adjacent
positions, instead of teleporting at each round on either side
of the road. As we will see, this gives a significant advantage
to J in the dynamic version.

This reasoning strongly supports the need for our analysis
and possibly casts some doubt over the validity of most of the
literature where game-theoretic approaches are just considered
in a static context, whereas (as discussed above) dynamic
games develop very differently.

As a matter of fact, when we investigate a dynamic setup,
we can obtain several different formulations of the game,
especially revolving around the order of move of the players,
which can be either sequential or simultaneous, and the
information about the opponent position. Thus, we formalize
the following three dynamic games.

Game G1: players move sequentially, i.e., taking turns
with alternating moves. They start from a uniformly random
position and the first player to move is also chosen at random.
After each move, the player collects its payoff for that round.
Players are always informed of each other positions, so the
state of the game (x, y) can be seen as a common type of the
players [21].

Game G2: similar to the previous case in that the positions
are known to both players and they start from a position chosen



at random. However, moves are now simultaneous, which can
be alternatively seen as the information set of each player i
at time t comprising the positions of both players up to time
t − 1, but only that of player i at time t, while the current
position of the opponent −i is not distinguishable. After each
move, both players collect their payoff for that round.

Game G3: the players have no information on the position
of the opponent at any past, present, or future time. Even
though the order of moves is kind of irrelevant here, just to set
the ideas we assume that they play simultaneously as per G2.
Importantly, while the position of the opponent is not known,
the fact that there is an opponent and must be in a specific
position between L and M , and it can move one step at a
time, and propagation effects are as described in Section II are
all common knowledge among the players. From the point of
view of the following analysis, this scenario is configured as
a partially-observable system [14].

While these games have an excessively high computational
complexity to be analyzed precisely, we can formalize some
general principles, formalized by Remarks 1 and 2 below.

Remark 1. Moving towards R’s position is a strictly dominant
strategy for player J.

Proof: It is intuitive to realize that J should follow (and
possibly catch) R [19]. Actually, whenever J is in the same
position as R, the value of the game goes to 0. Since for any
other choice of position, the value is positive, as per (2), J
always has an incentive to move towards R.

Remark 2. If J chooses to stay around ρ = L, this guarantees
to attain an upper bound on the value of the game, regardless
of R’s actual position.

Proof: If J is located at position ρ = L, R is forced to
stay sufficiently far, and move towards M . Indeed, moving
further away causes the value of the game to approach 1,
which is still better than moving towards L where the value
would be 0. Notably, this can be a useful building block for a
practical strategy to play in the case of imperfect information.
However, in such a case it may also be convenient for J to
keep exploring, to further locally reduce the value.

Beyond these findings, for tractability reasons it may be
convenient to take an alternative approach beyond that of
purely analytical computations to assess how the system
behaves in dynamic cases. Especially, we resort to rein-
forcement learning (RL) [18]. We investigate an adversarial
scenario involving players R and J as the learning agents. We
assume the two agents learn their policy concurrently, and
three different cases G1–G3, are considered. Q-learning with
ε-greedy exploration-exploitation policy is used to train the
agents’ policies online. Specifically, the algorithm relies on
the Bellman recursive update of the so-called state-action value
function

Q(at, st) = (1−`)Q(at, st) + `
(
r+γmax

a
Q(a, st+1)

)
(3)

where s ∈ S and a ∈ A are the observed state of the system
and the action chosen by the agent, whereas t refers to the time

index, ` is the learning rate, and γ the discount factor account-
ing for the relevance of the future. Both players, hence, keep a
table where they update this function, which corresponds to the
expected long term reward of taking action at while in state st.
Note that, besides the divergence between simultaneous and
sequential moves, the three analyzed cases differ also because
of the input state information. In games G1 and G2 the state
for each agent is the tuple (x, y) (perfect information), while
the input in game G3 (imperfect information) is represented
by either element of the position pair, the one corresponding
to the position of the moving player.

Since the general goal of the players is to maximize
their own payoff, their best policy is to choose the action
maximizing the Q-function in a certain state, i.e.,

a∗t = argmaxQ(a, st). (4)

Motivated by this, one can define the state value function,
which corresponds to the average long-term reward obtained
following the best policy in a given state, i.e.,

V (st) = max
a

Q(a, st). (5)

Rule (4) is named greedy policy. However, because the agent
must also explore the environment’s responses, it is convenient
to add a certain amount of random behavior. Hence, an
ε-greedy policy uses (4) to select the action with probability
1-ε, and picks a random action otherwise (prob. ε). Possibly,
the value ε is decayed during the time, as it is more important
to explore the environment at the beginning.

The considered task is made challenging by the presence of
an opponent which modifies the environment’s response in a
non-stationary way, as it concurrently learns its policy. While
several works, exploiting both traditional and deep RL, have
shown that Q-learning can be outperformed by more complex
algorithms in adversarial contexts modeled through Markov
games [20], [24], we chose it for its simplicity, providing
evidence, in Section IV-B, that it is good enough for reaching
convergence in a proof-of-concept scenario.

IV. NUMERICAL RESULTS

A. Simulation settings

The considered scenario is analogous to the static case
discussed previously, also making use of a discretized version
of the positions in the range [L,M ] = [1, 5]. Specifically, we
take 5 positions in {1, 2, . . . , 5} and step ∆ = 1. Under these
numerical assumptions, there are N2 = 25 possible states
when players act in the joint space (namely, G1 and G2), and
N = 5 states for G3. Moreover, there are 3 available actions
for ρ ∈ {L + ∆, . . . ,M −∆}, i.e., stay still, move left, and
move right, while only 2 if ρ ∈ {L,M}. This means that
each player has to explore 65 values in the joint space, and 13
values, instead, in the case G3 with imperfect information. The
simulation environment is run for 750 × 103 iterations, with
learning rate ` = 0.01, and discount factor γ = 0.99. The first
100 × 103 iterations are performed with a pure exploration
policy (ε = 1), while for the remaining part ε is decayed
exponentially up to 0.01. The last 104 plays are used for
evaluation, with a residual ε = 0.01.
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Fig. 2. Receiver’s average reward of the tabular Q-learning in the three cases.
The result is filtered with a moving average of width W = 5000 samples.

B. Stability convergence

In Fig. 2, the receiver’s instantaneous reward is plotted as a
function of time (iterations) for the three cases, starting from
when the exploitation policy is gradually enabled (iteration
100× 103). The plot shows post-processed values after a mov-
ing average (MA) filtering, using a window of size W = 5000.
As stated before, the three curves stabilize, which provides ev-
idence of convergence towards a stable solution: this happens
at around mid simulation for perfect information games, while
more time is required under imperfect information.

Notably, among the three cases, the one with imperfect
information is the most advantageous for R, as J does not
know R’s position, and is therefore prevented from following
it closely, see Remark 1. On the other hand, the simultaneous
game with perfect information is advantageous for J, because it
knows R’s position and can forecast its moves, keeping always
close to it. The sequential game places itself in the middle: J
observes R’s position and action, but can only react to it as
soon as possible, allowing thus a slight improvement in terms
of average payoff for R.

It is also worth noting that, while the perfect information
games show a monotonic convergence, if the opponent’s
position is unknown, the jammer is the first player finding a
near-optimal policy, while the receiver learns its best response
as a consequence. Therefore, a minimum is observable at
around iteration 250× 103.

C. Players policies in the three dynamic games

The logarithmic heatmaps of Figs. 3 and 4 show, on the
left, the joint probability of finding R and J in positions
x and y, respectively, and, on the right, R’s state value
function (5), for the perfect information games with sequential
(G1) and simultaneous moves (G2), respectively. The sequential
game G1 presents a simple equilibrium: R “bounces” between
positions 1 and 2, while J can only follow it reactively, see
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Fig. 3. Game G1, sequential game with perfect information. Joint probability
for R and J to find themselves in position (x, y) (left). State value function
of R, i.e., expected long-term reward starting from state (x, y) (right).
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Fig. 4. Game G2, simultaneous game with perfect information. Joint probabil-
ity for R and J to find themselves in position (x, y) (left). State value function
of R, i.e., expected long-term reward starting from state (x, y) (right).

Fig. 3. This means that 50% of the times, R will be prevented
from transmitting (when it is caught by J), but the remaining
50% of the times it is allowed to transmit close to the BS
(positions 1 or 2). This translates into a payoff of 5/16 for R.

Interestingly, in this case, the learned state value function
is almost flat concerning x, and only changes as a function
of y. Now, we consider G2, where, instead, the players move
simultaneously. As can be seen from the state value function
of Fig. 4, R’s favorite states are the ones where it is far
from J, and possibly also close to the BS, i.e., near to L.
However, since J knows R’s position, it forces R to visit
the complementary states to its favorites (figure on the left).
This confirms the very low average payoff reached by R in
these conditions: concerning the sequential game analyzed
previously, the payoff is halved (Fig. 2).

Finally, in Fig. 5, the game G3 with simultaneous moves
and imperfect information is considered. The long-term value
of a state cannot be represented anymore, because the game
is not intended for a joint space, and the Q value is only
a function of x, and not of y. Therefore, together with the
joint probability of the position pair (x, y), the expected
instantaneous reward is plotted, i.e., R’s payoff in state x
while J is in state y, weighted by the probability that R is
indeed in x. Since J does not know R’s position, it more often
chooses to be close to the BS, to prevent R from being there
too, coherently with Remark 2. As visible from the heatmap
on the left, J lingers around position 1, visiting positions 2-4
with low probability. Consequently, R learns that it must stay
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Fig. 5. Game G3, simultaneous game with imperfect information. Joint
probability for R and J to find themselves in position (x, y) (left). Expected
instantaneous reward, weighted by the joint position probability (right).

away from J, going toward the opposite side of the geometry.
Actually, it positions itself on positions 4 and 5, which give a
very similar payoff, with almost equal probablity. As visible
from the heatmap on the right, the states where R and J are
very far apart are responsible for the vast majority of R’s
payoff. The average value for the joint positions (4, 1) and
(5, 1) is approximately 0.6, which is the convergence point
observable in Fig. 2.

V. CONCLUSIONS AND FUTURE WORK

We discussed a jamming scenario where we allow for the
mobility of the involved nodes over subsequent rounds. This
represents an original extension over the existing literature
which may lead to interesting findings.

We considered a dynamic setup with three possible varia-
tions related to the timing of the moves of the players and
the information available to them. We found out that all
the dynamic games obtain interesting results that differ, for
the most, from the characterization with a static approach.
Nevertheless, some general principles can be formulated and
they happen to be well verified and confirmed by our results.

Our results possibly just scratch the surface of an ele-
phantine problem, since it is likely that the approaches to
reinforcement learning adopted here can be improved. For
example, [25] proposed a federated RL for the similar problem
of avoiding jamming, but without involving mobility, and
therefore an extension alongside these lines can be interesting.
More in general, even though our approach based on Q-
learning with greedy exploration-exploitation has proven itself
as effective, we conjecture that some original developments are
possible for a dedicated technique for this specific problem.

Especially, we remark that the reinforcement learning ap-
proach of the scenario with imperfect information just tries
to estimate the optimal policy by blind iterations. However,
mutual assumptions of the rationality of the players would
suggest that some strategic choices can be anticipated, and also
a joint estimate of multiple environmental parameters (despite
the tremendous growth in the search space) would be more
effective to reach the equilibrium. At the same time, different
mobility scenarios and patterns can also be adopted. All of
these extensions appear to be interesting for future work in
this line of research.
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[12] R. Agüero, B.-L. Wenning, Y. Zaki, and A. Timm-Giel, “Architectures,
protocols and algorithms for 5G wireless networks,” Mobile Netw. Appl.,
vol. 23, no. 3, pp. 518–520, 2018.

[13] R. F. El Khatib, N. Zorba, and H. S. Hassanein, “Rapid sensing-based
emergency detection: A sequential approach,” Comp. Commun., vol.
159, pp. 222–230, 2020.

[14] M. Hussain, M. Scalabrin, M. Rossi, and N. Michelusi, “Mobility
and blockage-aware communications in millimeter-wave vehicular net-
works,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 072–13 086,
2020.

[15] W. Xu, W. Trappe, and Y. Zhang, “Channel surfing: defending wireless
sensor networks from interference,” in Proc. IPSN, 2007, pp. 499–508.

[16] S. Misra, A. Mondal, P. Bhavathankar, and M.-S. Alouini, “M-jaw:
Mobility-based jamming avoidance in wireless sensor networks,” IEEE
Trans. Veh. Technol., vol. 69, no. 5, pp. 5381–5390, 2020.

[17] Y. Arjoune, F. Salahdine, M. S. Islam, E. Ghribi, and N. Kaabouch, “A
novel jamming attacks detection approach based on machine learning for
wireless communication,” in Proc. IEEE ICOIN, 2020, pp. 459–464.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[19] G. Perin, A. Buratto, N. Anselmi, S. Wagle, and L. Badia, “Adversarial
jamming and catching games over AWGN channels with mobile play-
ers,” in Proc. WiMob, 2021.

[20] W. Uther and M. Veloso. (2003) Adversarial reinforcement
learning. [Online]. Available: http://www.cs.cmu.edu/∼mmv/papers/
03TR-advRL.pdf

[21] S. Tadelis, Game Theory: An Introduction. Princeton University Press,
October 2012.

[22] I. Glicksberg and O. Gross, “Notes on games over the square,” in
Contributions to the Theory of Games (AM-28), Volume II. Princeton
University Press, 2016, ch. 9, pp. 173–182.

[23] T. Parthasarathy, “On games over the unit square,” SIAM Journal on
Applied Mathematics, vol. 19, no. 2, pp. 473–476, 1970.

[24] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2017, pp.
2817–2826.

[25] N. I. Mowla, N. H. Tran, I. Doh, and K. Chae, “Afrl: Adaptive federated
reinforcement learning for intelligent jamming defense in fanet,” J.
Commun. Netw., vol. 22, no. 3, pp. 244–258, 2020.


