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Abstract—We consider a wireless jamming game played by
a receiver and a malicious interferer that wants to disrupt
communication. The outcome of the game depends on the
characteristics of the wireless medium with distance-dependent
path loss. The players can leverage this by changing their physical
location. We consider both a static scenario where a position is
kept forever by the players, and a dynamic one where players
can change it over subsequent steps. We also include an optional
feature for the receiver to catch the jammer when it is too close,
which nullifies its jamming. The conclusion is that, in a mobile
scenario, losing players see an improvement of their payoffs (or
better, they cut their losses). As a result, we characterize the
Price of Mobility, i.e., the benefit obtained thanks to the ability
of changing position.

Index Terms—Wireless communications; Jamming; AWGN;
Game theory; Adversarial games; Zero-sum games.

I. INTRODUCTION

THE SCENARIO of adversarial jamming [1] is a typical
context where game theory is applied to wireless network

communications [2]. As a sample reification of this idea, one
can consider a legitimate receiver, which in the following will
be referred to as the user (U). Its purpose is to receive data
from a nearby wireless access point (AP), which we will
consider to be non-controllable and stationary. The agent U
is contrasted by an adversary called the jammer (J), acting to
disrupt the wireless communication by increasing the noise,
thereby lowering U’s perceived signal-to-noise ratio (SNR)
and, in turn, the achieved channel capacity.

In the present paper, we apply this rationale to the case of
a “dumb” jammer guided by the sole goal of disturbing the
communication between U and the AP [3]. This is reflected in
an overall adversarial structure that just includes two players
and defines their payoffs to obtain a zero-sum game [4] since
the contrasting objectives of U and J are to maximize or
minimize the communication capacity, respectively.

It is worthwhile noting that more sophisticated setups exist
in the literature, where J may also be assumed to be equipped
with more advanced capabilities and/or follows some stronger
malicious intent [5]. For example, J can be interested in
eavesdropping on the communication produced by the AP
and/or be able to spoof it, either in the data or in some control
information such as the global positioning [6]. For the sake
of simplicity, we do not consider these security issues and

just assume that J is only capable of raising the noise floor of
U’s intended communication. At the same time, player U is
also assumed not to exploit any adaptive cognitive system; we
remark that this would not solve the problem entirely but rather
it would open the door to a more complex analysis within the
same context, where the adversary J is also able to exploit the
vulnerability of reconfigurable cognitive radios [7]. Finally,
a different but related scenario is that of friendly jamming,
which operates under the premises that U is a malicious user
that wants to engage in some illegitimate communications and
J is instead a network agent that is authorized and supported
by the network to disrupt U’s activity [8], [9].

Since jamming problems are usually limited to two agents,
they are appealing from a modeling standpoint, and the
literature is rich in game-theoretic investigations on this mat-
ter. Beyond the aforementioned references, we can also cite
[10], which uses Bayesian games to analyze a type-uncertain
situation about the role of the players, and [11], where we
used a similar incomplete-information setup but to investigate
the uncertainties related to the positions of the transmitters.
Notably, one main difference between this last paper and the
present contribution is that we have positions as a choice made
by mobile players and not a trait captured as a randomly-
determined type. Another recent trend of research, exemplified
by [12], [13], involves the combination of game-theoretic
models with explorations of the equilibria based on machine
learning, which relates to our contribution since we use a
Q-learning methodology to solve the dynamic games [14],
[15].

Despite all these pre-existing contributions, we found out
that the issue of mobility is scarcely addressed in the literature
related to game theory and wireless jamming. Yet, the mobility
of the nodes constitutes a fundamental aspect of wireless
communications. Inspired by this motivation, we discuss the
relatively unexplored scenario of an adversarial jamming game
where nodes are mobile, and their position is chosen from
a set of discrete locations over a grid. The channel additive
white Gaussian noise (AWGN) and the jammer simply raise
the noise floor depending on its proximity to the receiver.
We investigate this system under both a static and a dynamic
scenario, to imply just a choice of location that is kept forever
in the former case, and an iterative update of position due to
a mobility pattern, intentionally chosen by the node according



to their selfish objectives in the latter.
Moreover, we consider two variations of the game. The first

is a “pure jamming” in which the closer the nodes, the better
for the jammer. However, we also consider a case where U
can spot the jammer if they choose the same position. This
results in the receiver getting a high utility; being aware of J’s
presence, U can be assumed to physically intervene against
J, or simply avoid its interference. This gives an interesting
twist on the problem since it may be convenient for U to try
“catching” J instead of fleeing from it.

The static scenario is analyzed from the point of view of a
Nash equilibrium (NE). The dynamic scenario is considered
in both a complete information context, for which we provide
the subgame-perfect equilibrium (SPE), and an incomplete
information one, where we discuss Q-learning strategies [14]
and evaluate their effectiveness in achieving the SPEs. We will
argue how the “pure jamming” scenario results in J following
U as close as possible, while in the “catching” game U will
take advantage of its best position.

By comparing the results, we are also able to evaluate
the impact of mobility, meant as the option for the players
to change their location over time. Mobility is found out
to benefit the losing player, which is because, in the pure
jamming game, U can benefit from being sometimes as close
as possible to the AP, even if it is closely followed by J; on
the other hand, in the catching game, J can choose its best
location based on U’s best one. We also provide a quantitative
assessment of the “Price of Mobility,” i.e., the ratio of U’s
payoffs between the dynamic and the static scenario, which
can be seen as U’s gain when players are allowed to change
their positions, i.e., how much U is willing to pay for mobility.

The rest of this paper is organized as follows. In Section II
we present the model for node placement and communication
used in all the games. The different formulations of the game
played between players J and U are discussed in III, first with
a static setup that is subsequently extended to a dynamic game.
In Section IV we show the numerical results, highlighting the
Price of Mobility. Section V concludes the paper.

II. COMMUNICATION MODEL AND SETUP

A. Spatial setup

We use a general wireless communication setting, not focus-
ing on any particular modulation or technology. This means
that we consider a plain AWGN channel between the involved
communication parties. The communication system consists
of three nodes: the first one is an AP, which is stationary and
not controlled by a rational agent, it just passively transmits
to the intended receiver. Then, we consider a receiver U and a
jammer J, whose objectives are contrasting. The former wants
to maximize the communication capacity over the AWGN
channel, while the latter just causes a noise increase in the
effort of choking the channel; in other words, J wants to
minimize what U wants to maximize. Both U and J can choose
their physical position as the action in a game.

For the sake of analytical tractability, the nodes are placed
over the 3× 3 square grid of Fig. 1. Nodes placed in a given
square cell are assumed to be located in the middle. The
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Fig. 1. 3× 3 grid used for the proposed games.

AP is positioned in cell 5 and both J and U are forbidden
to enter this cell, while they are free to choose any other
one in {1, . . . , 4, 6, . . . , 9}. Even though this small grid may
appear limited, it makes sense to restrict the choice of available
positions to the ones close to the AP, since both players would
be most interested in them: U to get the best possible signal
from the AP, and J since being close to U allows for causing
stronger interference. While the size of the grid is of relative
importance since the system can be scaled, in the numerical
evaluations we consider each square cell to be 10 m.

B. Communication model and payoffs

We relate the payoff of the players to Shannon’s channel
capacity achieved on the wireless channel. This in turn de-
pends on the positions of the players and the AP. Without any
jammer, the channel capacity depends on the SNR between the
AP and U, as per the well-known relationships of the capacity
of an AWGN channel. Thus, we can compute the SNR Γ as

Γ =
PT

a(dT )N0B
(1)

where PT is the transmitted power, N0B is a noise term and
a(dT ) is the attenuation factor with respect to the distance
between transmitter and receiver. We assume that a(dT ) fol-
lows a power law with positive exponent α. Typically α is
chosen between 2 and 4, or even wider, with 2 representing
the free-space path loss. Formally,

adT = K0

(
dT
d0

)α
(2)

where K0 is the attenuation experienced at reference dis-
tance d0. In the following, we set d0 to 1 m to simplify
the formula. When a jammer is present, the noise term is
increased by a jamming term, and the SNR translates to a
signal-to-noise-plus-jamming ratio (SJNR) that we still denote
as Γ. This can be computed by adding a term PJ/a(dJ) to
N0B in (1). Once again, there is a dependence on the distance,
in this case, the one between the jammer and the receiver, that
we denote as dJ , thereby obtaining the following equation:

Γ =
PT

a(dT )[N0B + PJ/a(dJ)]
(3)

The attenuation factor a(dJ) follows the same relation de-
scribed in (2) but with a different value of dJ . As a result, the
SNR in the presence of a jammer can be written as

Γ(dT , dJ) =
[
dαT (K1 +K2d

−α
J )

]−1
(4)

expressing the dependence on both distances dT and dJ . The
terms K1 and K2 are suitable constants as found in [11].

Thus, we can compute the channel capacity C using the
Shannon capacity formula for an AWGN channel

C = B log2(1 + Γ) (5)



where B is the available bandwidth and Γ is the previously
computed SNR. If we take the spectral efficiency C/B of the
channel in bit/s/Hz, we can cancel out the bandwidth and just
consider a logarithmic dependence on Γ.

In the numerical evaluations, we consider PT = PJ and
define K1 and K2 so that a user located at 10 m from the AP
experiences an SNR of 40 dB and when the user stays in the
previously described position and a jammer is present at 1 m
distance from the user, the SNR drops to 20 dB.

III. ADVERSARIAL JAMMING GAMES

To frame the interaction between U and J as a game, we
make use of the following assumptions. U and J are players
choosing a position in the grid, therefore their set of available
actions is AU = AJ = {1, . . . , 4, 6, . . . , 9}. Each interaction
(i.e., a combined choice of positions for both U and J) results
in a utility of player U, denoted as uU as the spectral efficiency
achieved, according to (5), which depends on the SJNR and
therefore the combined action of both players. Given the
adversarial nature of jamming in this context, we assume
that J achieves utility uJ with the same absolute value of
uU but with the opposite sign; in other words, uJ = −uU .
This is a standard assumption in similar problems [4], [11]
that allows representing the players as driven by contrasting
objectives: U would like to maximize the overall achieved
capacity, while J simply desires to minimize it, which would
imply that maximum damage to the communication is caused.

Moreover, we consider two variations, as follows:
Pure jamming game: in this case, the rules apply as described
above. It is worth noting that the best position for the jammer
is always to choose the same chosen by U.
Catching game: in certain scenarios, it may not be sensible
that U is oblivious to the presence of a jammer in the very
same position. Possibly, U can physically see the jammer and
at least avoid receiving (therefore saving energy) or even adopt
some counteraction such as materially stop J from disrupting
the communication. As a result, we consider also a scenario
in which, whenever J chooses the same position as U, the
jamming term is zero (as opposed to causing the maximum
damage as per the pure jamming case).

A. Static scenario

We start from a static game of complete information G =
{AU ,AJ ;uU , uJ}. This is a game where the aforementioned
interaction between U and J happens only once. Both players
decide their position simultaneously and unbeknownst to each
other, and their payoffs are evaluated. Formally speaking,
players U and J have the same set of strategies coinciding
with the choice of action. This game can be represented in
normal form via an 8× 8 bi-matrix.

Given the zero-sum trait of this game, we exploit standard
game-theoretic results, such as the Nash theorem or the
minimax theorem [2] to prove that the game must have a NE.

Remark 1: The game is a discoordination game [11],
meaning that, beyond being zero-sum, it does not have a pure
strategy that is strictly dominant for any player. Thus, its NEs
must be in mixed strategies.

We also observe that this remark holds for both versions of
a pure jamming and a catching game. Some considerations
can also be derived from the symmetry of the payoff matrix.
Intuitively, corner positions in the grid (i.e., odd-numbered
cells such as 1, 3, 7, 9) have the same role for U, and so do
side cells (i.e., even-numbered ones). Since even-numbered
positions are closer to the AP, U may prefer them. In a pure
jamming game, J also follows U. On the other hand, we expect
that the NE of the catching game is less intuitive, since J would
prefer to stay afar and there is an incentive for U to play the
position where J is suspected to be.

B. Dynamic scenario
The dynamic scenario corresponds to the evolution of the

static game described previously over time. Loosely speaking,
we can consider it as a multi-stage repetition of the previously
defined static interaction. However, for the sake of analytical
tractability, we applied the following modifications.

First of all, players start the game in a given position, which
is randomly determined with uniform probability among the
eight possibilities. Then, players compute their stage payoffs
and have the option to update their position with three avail-
able moves: (i) to move clock-wise; (ii) to move counterclock-
wise; (iii) to remain in the same location.

If we consider a complete-information dynamic game with
infinite horizon, we can discuss more elaborate strategies of
the players that characterize the gameplay by defining the
action to play over multiple stages [2]. We can also exploit
the concept of SPE, which expands over the idea of NE as a
joint strategy choice of the players that result in a NE for all
possible subgames.

For both pure jamming and catching games, it is possible
to identify some effective strategies that lead to an SPE, as
discussed in the following. Generally speaking, the trend is
that one player is supposed to chase the other, depending on
who is the winner if the two players meet in the same cell.
As a result, J goes after U in the pure jamming case, while
the opposite may happen in the catching game, depending on
the value of the path loss exponent α. We can also formalize
the following remarks

Remark 2: For the pure jamming game, the only SPE is
found as U always moving away from the jammer, which in
turn gives chase. Depending on the possible combinations of
mutual positions, this ends up in both players moving around
the AP clock-wise or counterclock-wise. Also, the two players
can be in adjacent cells or with one empty cell in the middle.

Remark 3: For the catching game, a possible SPE implies
that U chases J (which justifies the name) if J is close.
Depending on the value of α, three possible SPE can be
observed: i) the players go around the AP by keeping a
distance of two cells; ii) U stops at one of the even cells, with
J leaving one cell between U and itself, so that it is not caught;
iii) U stops at an even cell, and J can choose one of the closest
corners. The three cases happen for increasing α; specifically,
the latter case happens when it is disadvantageous for U to
transmit from an odd cell (i.e., a corner) even in absence of
the jammer, because of the high impact of the distance from
the AP.



A detailed analysis of these games, also proving the overall
criteria for subgame-perfectness of these equilibria is out of the
scope for the present paper and left as a further contribution.
However, we also employed reinforcement learning (RL) to
assess the performance of the described games in the case of
incomplete information.

Indeed, the previously described dynamic game with com-
plete information seems a bit unrealistic in that the players are
aware at any time of their mutual positions. We may wonder
what happens if the players just know of each other existence
and also are informed about the propagation scenario and its
parameters, but are ultimately in the dark about each other’s
position. At any rate, they can try to infer the position by the
partial results of dynamic interaction, i.e., trying to estimate
whether the opponent is located.

To this end, we consider a dynamic game with incomplete
information, where players are aware of their position only
(but not of the opponent’s) and we use a RL framework is
used to evaluate the average payoff obtained in such a context.
Specifically, both players are aware of the AP position and
the movement criteria described above. Also, for tractability
reasons we consider a finite horizon, i.e., the game ends when
the players find themselves in the same grid box. Both the
pure jamming and the catching games are considered.

The used RL framework is based on a tabular version of the
Q-learning algorithm (see, e.g., [14]), which aims at learning
the value of taking action at ∈ A while in state st ∈ S ,
observing the environment’s responses. This is done via the
recursive Bellman update

Q(at, st) = (1− ρ) Q (at, st)+ρ
(
r + γmax

a
Q (a, s)

)
, (6)

where ρ ∈ [0, 1] weighs the importance of the most recent
environment observations, γ ∈ [0, 1] is the discount factor
accounting for the relevance of the future, and r is the
game’s payoff in the current stage (also called reward). During
execution, each players’ (agent in the RL jargon) best policy
is to decide for

at+1 = argmax
a

Q(a, s), (7)

i.e., taking the action which maximizes the future discounted
expected payoff. However, at the beginning the players must
explore the environment’s responses to their action to learn
which is the actual optimal one in any given context. There-
fore, the exploration-exploitation ε-greedy policy is added,
selecting a random action with probability ε and the optimal
one given by (7) otherwise [14]. The probability ε is chosen
to be exponentially decaying in time, so that the exploration
behavior is mostly concentrated at the beginning.

Tabular Q-learning is provably convergent to the optimal
policy, given that a sufficient amount of time is provided to
the agents for learning, and that the game can be modeled
as a stationary Markov decision process (MDP). Stationarity
does not hold in the considered scenario, as two players
are learning their respective policies contemporarily [16]. A
possible solution is to modify rule iii) augmenting the state
dimension with some opponent’s information, as done, for

instance, in [15]. The addition of the opponent’s position as a
piece of state information is investigated in this work.

C. The Price of Mobility

In line with theoretical contributions in the field of game
theory [5], the proposed setup and the comparison between
the static and dynamic scenario allows us to define a metric
that we call the Price of Mobility. It is defined as the ratio
between the equilibrium payoff of player U in the dynamic
and the static case. We remark that, since the game is zero-
sum, such a payoff also represents the value of the game [2].

We expect that this Price of Mobility is a quantity greater
than 1 in the pure jamming game, and lower than 1 in
the catching one, since allowing the players for a position
change is advantageous for the looser ones. Regarding the pure
jamming game, although J can follow U closely, as discussed
in Section III-B, U can benefit from being half of the time in
the even cells, close to the AP, while never being prevented
from transmitting, unlike what happens in the static scenario.
On the other hand, in the catching game, U finds itself in
a leading position, and J must be more conservative. With
mobility, U is allowed to reach its favorite position, i.e., one
of the even cells, but J can decide, even reactively, which is
its best strategy knowing U’s position.

IV. NUMERICAL RESULTS

We now present some numerical sample results. The NEs of
the static game are computed through Gambit, a free software
designed to numerically solve games. The evaluation of the
SPEs in the dynamic game with complete information follows
the same approach, adapted with a combinatorial evaluation
of the different strategies as discussed previously.

For the incomplete information scenario, we developed a
customized Q-learning framework in Python, with the follow-
ing specifications. The updating coefficient ρ = 0.9 is set to
a high value to favor the most recent observations since the
environment is non-stationary. The discount factor is set to
γ = 0.99, and 10 simulations are run and averaged to obtain
the results. Each simulation lasts 5000 steps, and the last
1000 are considered for evaluation, with a residual exploration
probability of ε = 0.01. Out of the 10 simulations, the ones
with the highest and lowest user’s average payoff are discarded
as outliers.

From these evaluations, we collect the value of the game
(i.e., the utility of player U, since J’s utility is just the opposite)
for the three scenarios of static, dynamic with complete
information, dynamic with incomplete information, and we
plot it for the two scenarios of pure jamming and catching
games, in Figs. 2 and 3, respectively. Both figures consider the
path loss exponent α as the independent value. As a general
result, all the curves exhibit a decreasing trend of U’s payoff
versus α, which is somehow to be expected given that the
propagation conditions become less favorable and therefore
the channel capacity is lower anyways. Also, the payoff in the
catching game is generally higher as the jammer is prevented
from moving too close to U.
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Fig. 2. User’s payoff for the pure jamming game.

A. Static game

In a static game, the results are consistent regardless of the
value of α. In particular, the NE mixed strategy combines all
available actions by the players, at least as long as α < 4.
When α reaches value 4 (or higher), player U starts playing
only the even-numbered cells. This is because the path loss
becomes so strong that it is not convenient for U to choose
the corner cells that are further from the AP. Consequently,
in the pure jamming game, the jammer tries to follow U and
chooses the same cells, which results in only one NE where J
just copies U’s preferences. The case of the catching game is
slightly more involuted, since J randomizes over all available
cells even in the case of α = 4 (since its goal is to be close
to U but not in the same cell). From the theoretical point of
view, we find four different NEs in this case, but this is just
due to geometrical symmetry, as all these equilibria achieve
the same payoff.

B. Dynamic game

The dynamic game is considered under both cases of
complete and incomplete information.

The dynamic game with incomplete information where
players do not know the opponent’s position shows that the
adopted Q-learning approach can recover a fair estimate of this
information over repetitions of the gameplay. Regarding the
pure jamming game in Fig. 2, it can be seen that there is a clear
advantage for the user in moving with the dynamic infinite
horizon game with complete information. This is because,
this time, the user can benefit from being closer to the AP as
an effect of mobility concerning the static solution. A slight
improvement holds also for the Q-learning solution, where the
lack of information and the problematic convergence of RL
frameworks in adversarial contexts, prevent U from taking full
advantage of mobility. There are residual occasions where the
RL policy of player J can find U, stopping its transmissions. As
mentioned before, the average spectral efficiency experienced
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Fig. 3. User’s payoff for the catching game.

by the user is generally higher in the catching game (Fig.
3). However, in this game, mobility produces a decrease in
U’s spectral efficiency, and the static solution represents in
this case an upper bound. This produces an advantage for J,
which is able, with its mobility, to react in the best way to
U’s best position choice. Specifically, in the case of complete
information and with the chosen parameters, U always finds
its best strategy in staying still in one of the even cells after
reaching it. Concerning J, instead, it can place itself next to
U as long as α ≥ 2, while it must leave an empty cell if
α = 1.5, for the reasons discussed in Section III-B. The
Q-learning solution is again slightly suboptimal: instead of
staying in its best position, U tries to catch the approaching J
reactively, losing spectral efficiency while departing from even
cells. Actually, the gap with the static solution increases with
increasing α, since the impact of the distance is higher.

The addition of the opponent’s position in the state informa-
tion for the Q-learning algorithm is investigated in this section.
A statistically significant difference in terms of the average
payoff is not observed. Despite this, the player’s behavior
is different, reflecting a higher degree of consciousness of
the process. Regarding the average episode length, i.e., the
time between the beginning and the event corresponding to
one of the players being caught by the other, it is expected
the catching game to last more, as J’s strategy is more
conservative. This is actually observed in both information
cases. However, when the opponent’s position is unknown,
both games last ∼ 100 epochs, with an increase of 8% for the
catching game. The magnitude order does not change for this
game if the players know each other’s position, but, with this
knowledge, the pure jamming game lasts ∼ 10 epochs only:
J, knowing U’s position, can find it rapidly, preventing it from
transmitting. Therefore, a 10× gain is observed regarding the
episode length.
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C. The Price of Mobility

We also report the Price of Mobility as defined previously.
This is depicted in Fig. 4. As argued previously, the option to
change position is generally found to be advantageous for the
losing players in the respective games. Accordingly, the Price
of Mobility is greater than 1 regarding the pure jamming game,
and smaller than 1 otherwise.

Especially, the pure jamming game shows an almost con-
stant Price of Mobility in α in the case of RL, with a gain of
approximately 5%. Considering complete information, instead,
the trend is increasing in α, as being close to the AP half of
the time gets more advantageous as the impact of the distance
increases. This is true except for α = 4, where a change of
static NE is observed. In the complete information case, the
gain for U can be up to 15%.

The catching game, instead, exhibits a decreasing Price of
Mobility in α for the incomplete information dynamic game,
since, as discussed above, U keeps trying to chase J even when
it is disadvantageous because of the increased distance from
the AP. When, instead, complete information is given to both
players, a minimum is observed for α = 2, which is the point
for which the SPE of the dynamic game changes. Beyond
this point, J will be attached to U, while U knows that this
is also its best possible condition. As expected, the Price of
Mobility is strictly smaller than 1 (and very close to the unit
for α = 3.5), producing thus an advantage for J.

V. CONCLUSIONS AND FUTURE WORK

We analyzed an adversarial game of receiver-versus-jammer,
allowing the players to be mobile and choose their position
according to different rules. We considered both a static and
a dynamic version of the game, and we also included two
different variants of “pure jamming” or “catching” games. We
evaluate the Price of Mobility, defined as the gain encountered
by the losing side when players are allowed to change their
position over time.

An immediate future extension is the theoretical investi-
gation of the structure of the SPEs in a dynamic context,
also considering different grids and movement options. The
study of possible mobility patterns defined a priori and their
comparison in terms of overall efficiency appears intriguing.

Other future extensions of the present analysis involve a
Bayesian investigation if the position of the nodes is uncertain.
In our opinion, it would be particularly interesting to discuss
how this can be ascertained, e.g., based on channel sensing
paradigms or simply by updating the Bayesian prior after
each iteration of the game. Another possible expansion of the
present analysis would be to include incomplete knowledge
about the actual presence of the jammer, or the extent of its
adversarial role - for example, a detected node may either be a
willing jammer or just an oblivious transmitter that is unaware
of causing interference.
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