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Abstract—The age of information is a performance metric
describing the freshness of updates, and is of particular interest
for remote sensing scenarios involving high number of nodes, as
is expected to happen, e.g., in emergency scenarios or industrial
applications of the Internet of Things. Only recently, this metric
received a rigorous treatment in the context of modern random
access techniques that are realistic for this kind of systems. In
this paper, we extend these investigations from the perspective
of game theory, to discuss the role of individual strategic choices
on the resulting system performance. We highlight how the
introduction and fine-tuning of some parameters, specifically a
cost for transmission from the nodes, can regulate the overall
performance and achieve system-wide efficient allocations that
are also equilibria for the selfish needs of the individual users.

Index Terms—Age of Information; Game theory; Irregular
repetition slotted ALOHA; Internet of Things.

I. INTRODUCTION

In many communication systems involving remote sensing
and distributed monitoring, it is important to assess the fresh-
ness of information that the system can gain through sporadic
updates. This is captured by the age of information (AoI) [1],
which is gaining increasing prominence in many analytical
frameworks besides standard performance indicators such as
throughput or delay.

Especially, AoI can be more relevant than these traditional
metrics whenever the sensing nodes act without centralized
coordination to send a limited amount of data, often through
short packets, which are required to be kept up-to-date more
than being transmitted in heaps. We argue that many scenarios
in the industrial Internet of Things (IoT), such as remote
estimation or mission-critical communications [2], and most
of the commercial solutions and standards for IoT systems
relate to this kind of applications [3], [4]. We also remark that
in these contexts, random-based multiple access techniques are
commonly used, which essentially amount to variations of the
well-known ALOHA protocol [5].

Indeed, such scenarios are characterized by a high number
of nodes, which are often heterogeneous in nature and have
severe constraints in terms of power and computational capa-
bilities. This would make their centralized control impractical,
and justifies the need for distributed approaches, often built
on random access techniques [6]. Moreover, an appealing
theoretical tool that is often proposed in these cases, for both
purposes of characterizing the system performance and even

devising practical solutions is that of game theory, i.e., the
study of multi-agent multi-objective decision problems [7], [8].
This implies that nodes are assumed to follow a selfish and
sometimes opportunistic behavior, since they only care about
their individual goals and can exploit particular circumstances
taking place in the system to their own advantage [9]. Despite
these objectives being sometimes at odds with the purpose
of achieving a global system-wide efficiency, much more
practical solutions can be obtained, toward which nodes are
incentivized as they reflect their own goals.

It can be argued that the rationale behind random access
techniques is related to this characteristic of game theory,
which is also confirmed by the development of many game
theoretic investigations of their performance [10]–[14]. How-
ever, virtually all of these investigations consider the individual
player objectives as solely related to throughput, thereby ig-
noring the extensions to scenarios where AoI is more relevant.

At the same time, previous recent contributions discussed
and gave precise evaluations of AoI in the context of a large
number of nodes accessing a shared channel to maintain
up-to-date information at their destinations [15]–[18]. How-
ever, most of the theoretical investigations usually consider
either scheduling for collision-free transmissions or classic
random-based medium access control protocols such as slotted
ALOHA; only very recently in [19] modern access techniques
more appropriate for large-scale IoT systems such as irregular
repetition slotted ALOHA (IRSA) [20] were examined.

The goal of the present contribution is to combine all of
these aspects in a novel way, to derive a game theoretic anal-
ysis of multiple nodes contending for access following modern
random access, most specifically IRSA, and primarily aiming
at minimizing the AoI of their data. The actual individual
objective of the nodes is set as a linear combination of the
AoI and a transmission cost, which is shown to be necessary
to mitigate aggressive transmissions that would happen in a
cost-free scenario. On the other hand, this can also be seen as
a parameter that is further tuned by the system management
to achieve an efficient operating point for the network.

The rest of this paper is organized as follows. In Section
II, we review related contributions, also highlighting how our
present contribution fills a gap in the recent literature. In
Section III, we discuss, based on previous existing results, the
foundations for our game theoretic analysis of IRSA, which is



further developed in Section IV. Numerical results are shown
in Section V and finally Section VI concludes the paper.

II. RELATED WORK

Many papers in the recent literature focus on the AoI metric,
especially using it to capture the performance of remote
sensing in IoT systems. This is also reminiscent of investiga-
tions of service availability or survivability in mission-critical
application [21]. Already the seminal paper [1] considers
slotted ALOHA as one of the reference scenarios; IRSA [20]
can be considered as a generalization of this technique. Other
recent investigations have characterized AoI in ALOHA-like
systems and how to improve that metric [22], [23].

A detailed analysis of AoI for IRSA systems is presented
in [19]. The derivations of that paper put the AoI in close
relationship with the system throughput, so that performance
metrics with different meanings are nevertheless found to be
interconnected. Hence, our present contributions also relates to
those papers discussing the throughput performance of IRSA,
such as [24] where the protocol is characterized for low system
loads, and [25] doing so for high loads instead.

There are also papers exploiting game theory to analyze the
distributed exchange of data in IoT systems. Their approaches
mostly relate to explicitly adversarial setups (for issues such as
protection against denial-of-service, jamming, or other security
aspects [9], [14]), which explains their resorting to game
theory. In case of medium access evaluations, there are classic
references considering ALOHA-like access protocols, such as
[11]–[13], but they mostly revolve around the objectives of
the players being to maximize their throughput. One general
insight that can be gained is that selfish players tend to get
inefficient equilibria in terms of throughput as opposed to
globally optimal operating points [10]. One can expect this
condition to extend to AoI, since for both metrics collisions
must be kept to a minimum to get an efficient operating
point. Moreover, the description of the medium access in these
papers is often a generic characterization where collisions are
to be avoided, and they do not consider modern random based
access procedures such as IRSA.

Given the relatively recent spread of papers investigating
AoI as the key metric [1], there are relatively fewer papers
concerning games of AoI minimization; we can mention [18]
where a ultra-dense IoT system is analyzed through mean-field
games. Here, a generic carrier-sense multiple access is con-
sidered, for which the nodes switch through idle, waiting, or
transmitting states. Also [26] considers nodes competing over
a shared resource to get low AoI, but the access protocol is
once again modeled as a plain collision-based model. Finally,
[27] considers instead a game between two transmitter/receiver
pairs but the shared medium is an interference channel, so
the analysis refers to the physical layer and the achievable
capacity, and not the medium access control.

III. REVISITING IRSA THROUGH GAME THEORY

In this section, we summarize the most important findings
of [19], and we explain how those conclusions can be extended

to a game theoretic framework, which is the main focus
of the present contribution. Throughout our discussion, we
assume a population of n terminals that share a common
channel. Time is divided in slots of equal duration, tuned to
allow transmission of a data packet, and nodes are assumed
to be synchronized to such pattern. At each slot, terminal i
becomes active with probability ρi (referred to as activation
or transmission probability), generating a time-stamped update
addressed to a common sink. Without loss of generality, nodes
will be modeled as a single-packet buffers, so that at any time
each device either has the latest generated packet to transmit,
or does not have data to send.

Access to the medium is regulated by IRSA. Accordingly,
time is organized into frames of m slots each, and the first
transmission opportunity for a newly generated packet is at
the start of the successive frame. Each user with data to send
accesses the channel by sending ` replicas of its data unit,
uniformly placed at random across the slots of a frame. The
number of copies is drawn from a probability distribution
{Λ`}, common to all terminals. At the receiver side, decoding
starts once the whole frame has been retrieved, and relies on
successive interference cancellation. In particular, assuming a
simple collision channel model, a packet sent over a collision-
free slot can be decoded, and the interference contribution
of its twin replicas can be removed from the corresponding
slots, possibly leading to other singleton and thus decodeable
time units. The procedure continues until either all users have
been decoded, or no more singleton slots are available over
the frame. For a more detailed description of the protocol,
the interested reader is referred to [20]. We note that, for
the system model under consideration, a node accesses the
channel at the start of a frame if it has become active at
least once over the previous m slots, i.e., with probability
1− (1− ρ)m. Accordingly, the channel load G, defined as the
average number of users accessing the channel per slot is

G =
n
(
1− (1− ρ)m

)
m

. (1)

In this setting, we are interested in the average AoI for a
node, defined as [1]

∆ := lim
T→∞

1

T

∫ T

0

(
t− σ(t)

)
dt (2)

where σ(t) denotes the time stamp of the last update success-
fully received at the sink for the node of interest. In [19], it was
shown that the this quantity can be computed in closed-form
when IRSA is employed, and the overall formula contains
terms that can be relevant in a game theoretic analysis, the
most important of which relates to the total throughput of the
system, denoted as S. Specifically, the main finding can be
summarized stating that the average AoI for an IRSA system
with n users and operating over frames of size m slots reduces
to [19, Eq. (21)]

∆irsa '
1

2
+
n

S
+m. (3)
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Fig. 1. Throughput and average AoI vs. transmission probability ρ. Results
derived following the analytical approximations in [19]. In both cases, n =
2000, m = 200 [slots].

Eq. (3) is a very tight approximation in practical IoT
settings, characterized by large values of n and sufficiently
low transmission probability ρ of each individual user, and is
especially useful for the present discussion. We note, however,
that an exact closed-form expression is also available for any
set of parameters [19] and could be employed without altering
our main conclusions. In practice, the consequence of (3)
is that the individual choices of the users only affect the
throughput, and in turn reflect on the AoI. In this spirit, the
main insight is that the more often the random access users
succeed in their transmission without colliding, the higher the
throughput and similarly the lower the AoI. Such a conclusion
generalizes the findings already known for simpler random
access protocols such as slotted ALOHA [1].

While an exact characterization of S is still elusive, a
good analytical approximation can be obtained combining
two different results [24], [25], which provide the packet
success probability Psucc of IRSA for low and high loads,
respectively. Such operation regimes are also called the error
floor and the waterfall regions. Leaning on these expressions,
the throughput can be easily evaluated as S = G · Psucc(G),
where the success probability follows a different trend de-
pending on whether the IRSA system operates in the error
floor or the waterfall regime [19]. Ultimately, this implies
that the throughput relates to the combined choices of all the
nodes, and more specifically on their decision about whether
to transmit or not, represented by the transmission probability
ρ. In particular, while G is rapidly increasing in ρ (see (1)),
Psucc is not, which leads to the conclusion that the value
of ρ maximizing S is between 0 and 1.1 For reference, the
trends obtained for throughput and average AoI following
the presented approach are reported in Fig. 1 for the case
of n = 2000 terminals and m = 200 slots. For additional
insights, please refer to [19].

In the present paper, we give a different twist to these
derivations by highlighting that the aforementioned scenario

1Incidentally, we note that, for the specific case of a slotted ALOHA,
obtained for m = 1, it is well known that such a value is ρ = 1/n.

describes a quintessential game theoretic situation, where
individual combined choices, collected together, result in a
global system outcome that is nevertheless perceived by the
players as consistent with their own benefit. In other words, we
just need to highlight the individual choices of one single user,
as opposed to the others. In particular, we focus on a specific
node i of the IRSA system, and we consider its transmission
probability ρi as its individual choice. Remarkably, we can
characterize the transmission probability of all other nodes
j 6= i with a similar approach, but symmetry considerations
immediately lead us to conclude that every reasonable system
outcome will have the same transmission probability for any
other node, hence we denote it as ρ−i.2 Quite logically, the
same reasonings also imply that also ρi = ρ−i must hold, at
least if an equilibrium condition is reached. Yet, we keep these
notations separate as denoting the actions of different players.

Consequently, (1) can be rewritten as

G(ρi, ρ−i) =
1− (1− ρi)m + (n− 1)

(
1− (1− ρ−i)m

)
m

(4)
where we split the action of player i from those of the other
players. Thus, the system throughput can be derived as

S(ρi, ρ−i) = Psucc(ρi, ρ−i)G(ρi, ρ−i) (5)

where Psucc(ρi, ρ−i) depends on the operation regime and can
be derived as per [19].

Finally, we assume that the individual node i incurs a cost
for transmission that is proportional to probability ρi through
a constant c [10]. Since, according to the discussion above,
the transmission probabilities are expected to be in the same
order of magnitude as 1/n, it may also be convenient to denote
c̃ = c/n. As a result, we can define the utility of node i as

ui(ρi, ρ−i) = −∆irsa − cρi = − n

S(ρi, ρ−i)
− cρi +K (6)

where K is a fixed term that is meant to collect all constants
in (3); a similar equation can also be written for player −i. In
game theory, utilities represent the individual objectives that
players want to maximize, hence the reason for the negative
sign in the above equation [8]. It is also worth mentioning that
constant biases of the utilities such as the term K = 1

2 + m
do not influence the outcome as they give the same order of
preferences for the players, the same equilibria, and so on.
In the following, we will neglect the value of K, since even
imposing K = 0 in the definition of the utilities does not
change what follows.

The reason for introducing the cost term is twofold. On the
one hand, terminals may indeed be assumed to incur a cost,
e.g., related to power consumption, for every transmission.
Thus, the insertion of that term is sensible and having it in the
utility function of each player is in line with similar studies
[11], [12], [14]. On the other hand, the introduction of the
cost is required from a mathematical standpoint to have the

2It is customary in game theory to use the notation “−i” to denote the
choices of all other players except for player i, so that the scenario is reduced
to a 2-player game between i and −i.



system working on a desirable equilibrium. As will be shown
in the following, if transmissions are cost-free, nodes have an
incentive towards persistent transmission with ρ = 1, which
undermines the system efficiency; a cost term can limit such
a behavior. Such a conclusion is also valid for the standard
investigations of ALOHA-like systems where the utilities are
related to the throughput achieved by the node, and not its AoI.
Still, using AoI-based utilities as those in (6) has a different
impact on the resulting equilibrium and the subsequent system
performance, as detailed in the next section.

IV. GAME THEORETIC ANALYSIS

The setup considered in the previous section can be used
to formulate an n-player static game of complete information
among the nodes of the IRSA network. For the aforementioned
symmetry reasons, we can consider each player i to choose
its own transmission probability ρi ∈ [0, 1] independently
and without coordination with the others, with the goal of
maximizing its own utility ui(ρi, ρ−i) captured by (6). The
game is considered to be static since fully rational players are
immediately able to derive the consequences of their chosen
ρi and are also aware that the other nodes will do the same.
The assumption of complete information, instead, corresponds
to assuming that all nodes are aware of this setup and that the
other nodes follow (6) as well.

In this context, we look for a possible Nash equilibrium
(NE), which is generally the instrument of choice in game
theory to identify the operating point of the system, as it
describes a strategic choice of the players where no one has
an incentive to deviate from [7]. Given that the game uses
continuous valued strategies of the player in [0, 1] and also
the utilities are continuous and once derivable in ρi, the NE
can promptly found by imposing the condition

dui
dρi

= 0 for every i. (7)

Actually, since ρi is chosen within the interval [0, 1], also
the extreme values 0 and 1 should be checked for possible
maxima, and their role will be discussed in what follows.

We remark that imposing (7) is actually quite different from
the system-wide minimization of the AoI (or maximization
of the throiughput) discussed in the previous section, which
corresponds to finding the correct trade-off in the product
GPsucc as depending on ρ, and where the two factors follow
contrasting trends in ρ. In the game theoretic formalization,
the maximization of the utilities (7) translates into

dS(ρi, ρ−i)

dρi
· n(

S(ρi, ρ−i)
)2 = c . (8)

Moreover, it is reasonable to assume that, for large n,
Psucc is unaffected by small variations of ρi as long as
ρ−i is kept constant. The reason is that the expressions for
Psucc in [19] mostly depend on the regime determined by the
system-wide choice of the transmission probabilities of all the
terminals, and a small variation of the individual behavior of

one node does not significantly change that value. Hence, we
can combine (5) and (8) to obtain

dS(ρi, ρ−i)

dρi
≈ Psucc(ρi, ρ−i) (9)

and the NE condition translates into

S(ρi, ρ−i) · G(ρi, ρ−i) =
n

c
= c̃−1 for every i. (10)

Clearly, such a condition cannot be met if c = 0. Thus,
we conclude from (10) that a cost-free transmission implies
the push for every node i to always increase its transmission
probability towards ρi = 1. This conclusion is analogous to
what can be found in other studies of random access games
when considering utilities related to throughput [11], [12].
Indeed, whenever the transmission probabilities of all other
players ρ−i are set, it is always convenient for player i to
unilaterally deviate and choose a value of ρi higher than the
others, since it will obtain a better throughput and a lower AoI.
Eventually, symmetry considerations lead to the conclusion
that the only NE is obtained when ρi = ρ−i = 1, where no
player can get an advantage to deviate from. However, this is
also a bad operating point for the system as it corresponds to
a vanishing throughput or diverging AoI.

As discussed, this justifies the role of a cost term c > 0
as both a sensible extension to account for practical aspects
and a way to regulate the behavior of the individual user.
One may argue whether the dimensioning of c should relate
to either of these aspects, and in general the numerical
setup may not be immediate. Depending on the expression
of S(ρi, ρ−i)G(ρi, ρ−i), one can get a non-degenerate NE
whenever this product equals c̃. Actually, there are always two
intersection points, but only the left-most of them is found to
be a maximum for the individual player utility, the other being
a minimum and an unstable operating point, which is in line
with classical investigations of ALOHA-like protocols [10].

We also highlight an important advantage of our anal-
ysis where the individual objectives of the players relate
to minimizing the AoI, as opposed to the more standard
throughput maximization. If their objectives were connected
to throughput, the inefficiency of the NE would be stronger as
this implies a NE condition where the first derivative of the
throughput equals c, which reflects on the success probability,
as per (9). Such a condition implies that the range of practical
cost values is limited (it must be equal to a legitimate value
for Psucc). Instead, (10) is easier to solve for a non-degenerate
NE; intuitively, this may be explained by the remark that
a low AoI can be achieved with relatively fewer successful
updates than what needed for a high throughput. Especially, if
the network manager wants to set an AoI-optimal NE, it can
simply compute the optimal throughput value S∗ of the IRSA
network minimizing the AoI, and its associated value of G∗,
and set a cost c̃ =

(
S∗G∗

)−1
.

This equilibrium condition (10) can be seen as caused by
the balance between higher throughput and the increase in the
individual cost paid. While the latter is always constantly equal
to c, the former saturates as ρi grows, and the NE is reached
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Fig. 2. Transmission probability ρi at the NE vs. normalized cost c̃. Different
lines denote different values of n. In all cases, m = 200 [slots].

at their meeting point. A similar reasoning holds true from the
perspective of global efficiency, where if we gradually increase
the transmission probability for all nodes jointly, the best
operating point is found when the incremental system benefit
equals c; yet, the NE differs from a network-wide optimization
in that a higher usage harms the individual users as 1/n of
what happens if the whole system is considered, see also (4).
As a result, even when the cost term is effective in limiting
the usage, the NE still corresponds to a higher transmission
probability than what would get the optimal sum utility, i.e.,
a suboptimal global performance. This principle, known in
the economic literature as the tragedy of the commons [28],
that users driven by selfish interests tend to overuse the
resource, is by no means exclusive to wireless networks and
has applications in many game theoretic contexts.

V. NUMERICAL EVALUATIONS

To illustrate some of the key trends highlighted in Sec. IV,
we focus on an IoT-inspired setup in which a large number n
of terminals contend for the same channel relying on IRSA.
In all cases, the protocol is operated over frames of duration
m = 200 [slots], and a regular degree distribution Λ(x) = x3

is employed, i.e., each active terminal transmits three copies
of its packet uniformly distributed over the frame. We regard
a study of the impact of different distributions as well as of
different frame sizes as relevant part of our future work.

A first insight is offered by Fig. 2, which reports the
transmission probability leading to a NE when varying the
normalized cost c̃. In the plot, different lines denote the
results obtained for different user populations. As pointed
out in Sec. IV, too low costs lead to equilibria characterized
by ρi = ρ−i = 1, which are of no practical interest. We
therefore restrict our analysis to values of c̃ which intersect
the curve S(ρi, ρ−i)G(ρi, ρ−i) and offer non-degenerate NEs.
As expected, larger costs induce nodes to scatter the activation
pattern due to the higher penalty undergone with each trans-
mission. The effect becomes more pronounced as the network
population increases, as the more intense contention requires
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terminals to access the channel less frequently to maintain
reasonable throughput levels.

The utility function achieved by a terminal is in turn shown
in Fig. 3.3 In line with (6), the trend is dominated by the
average AoI, i.e., the term −∆irsa. Accordingly, sporadic
transmissions results in very low utilities, due to a too low
update rate. When terminals become aggressive and attempt
frequent delivery of status reports, channel congestion and
the role of collisions start to emerge. The resulting decay in
throughput and delivery rate drives the plummeting behavior
exhibited by the utility curves in the rightmost region of the
figure. Interestingly, the plot reveals the existence of a non-
trivial operating point where users can maximize their utility.

The fundamental question on whether this equilibrium can
be reached enjoying conditions that are optimal also from a
network standpoint is tackled in Fig. 4, where the average
AoI at the NE is reported against the normalized cost c̃.

3Without loss of generality, the reported results were obtained setting a
normalized cost that lead to a NE which is optimum from an AoI network-
wide perspective, see the discussion of Fig.4.



The horizontal lines denote the minimum average AoI that
can be obtained when the system operator can fully control
the transmission probability ρ of all the users, showing the
ideal working point for the system, i.e., the minimum of (3).
Remarkably, regardless of the number of terminals contending
for the channel, a proper choice of c̃ can lead selfish users to
operate in the desired way. It is also interesting that the optimal
value of c̃ (circle markers) does not change significantly with
n, suggesting a linear growth of the target cost with the number
of users in the system. Beyond the specific numerical values,
the presented trends pinpoint the importance and potential of
tailored pricing policies [29], for which our analysis offers
a preliminary yet useful design tool. This remark is further
buttressed when observing that the achieved network-wide
performance is rather sensitive to the value of c̃. This is better
highlighted in the subplot reported within Fig. 4, which zooms
in on the behavior of the average AoI for n = 2000 in the
proximity of its minimum, and reveals a stark increase of the
metric when c̃ is reduced. This effect stems from the fact that
the optimal AoI is reached for a NE that pushes the system
close to its peak throughput performance. In such conditions,
users respond to small reductions of the cost with an increase
in the transmission probability that has dire consequences,
leading to the well-known plummet in throughput and delivery
ratio exhibited by IRSA [20], see Fig. 1.

VI. CONCLUSIONS

We presented a game theoretic analysis of modern random
access for the Internet of Things, considering a network where
a high number of nodes communicate following the IRSA
protocol, with an individual objective related to minimizing
their AoI and also their transmission cost. Based on previous
analytical formulations of the AoI for IRSA system, we
showed that our framework is able to set an AoI-efficient
working point, doing so in a distributed fashion where nodes
act without coordination and driven by selfish objectives. In
practice, this translates the system-wide optimization to a more
practical approach based on individual actions of each nodes.

Future work may consider an expanded game theoretic
formulation where the strategic choices of the nodes are more
complex than just setting their transmission probability, pos-
sibly considering some sort of feedback from the receiver and
an overall planning ahead over multiple update epochs. Even
for these scenarios, game theory can be the proper instrument
to set a self-enforcing distributed management of nodes with
minimal supervision from the network manager, which appear
to be a desirable choice for future IoT implementations.
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