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Abstract—Resource sharing is an issue for different fields
of applications, giving rise to the so-called “Tragedy of the
commons.” This is particularly important in reference to the
upcoming Internet of Things, where selfish behaviors from
individual users jeopardize system cooperation, on which most
network functions rely. We analyze two ways of splitting resources
in the context of channel allocation for wireless systems. We
describe the outcomes of the different strategies and we identify
criteria for the emergence of selfish behaviors in such games.
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I. INTRODUCTION

T
HE CHALLENGE of sharing resources among different

users is a topic of growing interest in many fields,

also outside engineering. Most of the times, a tragedy of

the commons is encountered [1]–[3], which happens when

independent agents share a resource in a selfish manner. A

game theoretic formulation predicts an excessive, and therefore

inefficient, usage of the resource, hence the name “tragedy.”

The increasing number of interconnected devices in the

Internet of Things (IoT) [4], especially in pervasive scenarios

such as the Industrial IoT [5] or the Internet of medical

things [6], causes this phenomenon to be even more dramatic,

as it relates to efficient provision of critical services. A

reliable wireless transmission requires a communication free

of interference, an objective that conflicts with the desire of

multiple device to use the same medium [7]. We consider that

the available resource for the communication is a frequency

spectrum, for the sake of simplicity divided into disjoint

channels, i.e., atomic resources where the received signal

reaches an acceptable quality of communication [8].

Whatever the procedure used to generate the channels,

either frequency, time, or space division, the basic assignment

scheme would be a fixed channel allocation (FCA) scheme that

permanently assigns channels to users [9]. However, it would

be more efficient to perform a dynamic channel allocation

(DCA), i.e., place all the channels in a pool and assign

them whenever needed [10]. Approaches of spectrum sharing

[11]–[13] can be also incorporated in such a context. In this

paper, we push the DCA approach further by allowing a game

theoretic choice of the channels [14].
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The use of game theory in wireless networks is strongly mo-

tivated by the need for cost-efficient, distributed, and scalable

solutions, and the desire to keep into account user selfishness.

The fragility of resulting equilibrium can be controlled via

pricing in 5G networks [1], whereas the problem is acute in

the IoT that is expected to combine different technologies and

network ownerships [2], [4]. As a result, game theoretic ap-

proaches have received interest in the literature. For example,

a game theoretic protocol was designed to perform channel

assignment in the context of wireless sensor networks in [15].

The algorithm leverages both network topology and routing

information and finds the channel allocation minimizing the

interference inside the network through a game among the

Parent-Children Sets (PCS) [16].

In [17], a game theoretic scheme for channel allocation

is used, where agents know about the payoff values and

strategies of each other. The same problem is solved in [18]

by matching theory through the Gale-Shapley algorithm. In

[7], game theory is employed to improve the throughput while

solving the channel allocation problem considering co-channel

interference. A non-cooperative game for channel allocation,

also based on spectrum clustering is proposed in [19], whereas

[20] improves coordination through a Stackelberg game. In

[21], models for bandwidth auctions, which can be seen as

applications of game theory, are proposed. Other possible

related approaches include evolutionary games [22] or bar-

gaining theory [23] applied to channel assignment, which is

further extended in [24] to a reference integrative bargaining.

All of these approaches assume that the network parameters

are perfectly known to the users (i.e., the players of the game).

To better characterize the selfish actions of the users, one must

also account for the inherent uncertainty of many network

aspects. Generally, this is done in game theory by employing

the instrument of Bayesian games [25]; up to our knowledge,

this contribution is still missing in the literature of channel

allocation. Thus, we consider a Bayesian channel allocation

game and we use it to analyze resulting individualistic behav-

ior in resource sharing.

We find out that selfish Nash Equilibria (NEs) are favored

by uncertainty, which, if overcomes a certain threshold, en-

courages the players to stop cooperating and start acting only

in their own interests. We also compare the selfish choices

of the players with a Pareto optimal solution and calculate

the price of anarchy. Finally, we implemented MATLAB

simulations to draw some general conclusions. This kind of

investigations appears to be promising in light of the proposals

for a paradigm shift in resource allocation over next generation

networks including distributed intelligence [1], [2], [18], [20].
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The rest of this paper is organized as follows. In section

II we discuss the system model. Section III reports some

numerical results. Finally, IV concludes the paper.

II. SYSTEM MODEL

We start from a static game of complete information that

will serve as a reference result. Consider a two-player game,

where two channels are available. Both players, denoted as “Pl

1” and “Pl 2” can choose whether they want to transmit on

channel 1 or 2 (“ch 1” or “ch 2,” respectively), therefore they

both have two possible actions. If channel 1 provides a better

gain to both players, they both achieve a higher payoff (10)

if they transmit on such a channel. But if they both transmit

on the same channel, they cause interference to each other

and both get payoff 0. The game can be represented by the

normal form shown in Table I. We remark that these choices of

utility functions are relatively arbitrary as they just represent

the preferences of the players as an ordinal ranking [7], [20].

Table I
STATIC GAME OF COMPLETE INFO, 2 CHANNELS

P
P
P
P
PP

Pl 1
Pl 2

ch 1 ch 2

ch 1 0,0 10,1

ch 2 1,10 0,0

This game presents two pure NEs, (ch1, ch2) and (ch2,

ch1). In both of them, the two players prefer to choose a

worse channel rather than colliding and the result is that they

transmit on two different channels. Therefore, all the available

resources are used. If we consider the same game, but with

different preferences for the two players, the payoffs are:

– player 1 has a better gain on channel 1, therefore his payoff

is 10 when transmitting alone on channel 1

– player 2 has a better gain on channel 2, therefore his payoff

is 10 when transmitting alone on channel 2

This game can be represented in normal form, see Table II.

Table II
STATIC GAME OF COMPLETE INFO, 2 CHANNELS

P
P
P
P

PP
Pl 1

Pl 2
ch 1 ch 2

ch 1 0,0 10,10

ch 2 1,1 0,0

In this case, the situation is very similar to the one in Table

I. The game presents the same two NEs, (ch1, ch2) and (ch2,

ch1). However, in this case the one of the two NEs, (ch1,

ch2), represents the social optimum. Therefore, the available

resource is still completely used and collisions are prevented.

We now consider a game with a similar setup, but with a

higher number of channels. We considered the case in which

two players have to choose two channels to transmit upon, out

of 4 possible channels. The payoffs when transmitting on the

four different channels are distributed as follows:

– channel 1 has the highest gain for both players, therefore

when transmitting alone on this channel they both achieve a

payoff of 100

– channels 2 and 3 have a worse gain than channel 1, but

better than channel 4, the payoff for the two players when

transmitting alone on those channels is 50

– channel 4 has the worst channel gain, their payoffs when

transmitting alone on this channel is 10

– as before, if they transmit on the same channel, they cause

interference to each other, thereby achieving zero payoff.

The final payoff for the two players is the sum of the payoffs

that they achieve in the two channels they decide to transmit

on. This can be represented by the matrix in Table III.

Table III
STATIC GAME OF COMPLETE INFO, 4 CHANNELS

ch 12 ch 13 ch 14 ch 23 ch 24 ch 34

ch 12 0,0 50,50 50,10 100,50 100,10 150,60

ch 13 50,50 0,0 50,10 100,50 150,60 100,10

ch 14 10,50 10,50 0,0 110,100 100,50 100,50

ch 23 50,100 50,100 100,110 0,0 50,10 50,10

ch 24 10,100 60,150 50,100 10,50 0,0 50,50

ch 34 60,150 10,100 50,100 10,50 50,50 0,0

We see that there are 6 pure NEs: (ch 12, ch 34), (ch 13,

ch 24), (ch 14, ch 23), (ch 34, ch 12), (ch 24, ch 13), (ch 23,

ch 14). The NEs represent all the possible ways in which the

two players can divide the two channels. Both players prefer

to transmit on worse channels than colliding in one or more

channels. Our conclusion reprises classical contributions in the

field [8], [15], and tells that, when the players are completely

informed on the game setup, they are induced to cooperate in

order to use all the available resource.

However, these conclusions change considerably if we con-

sider a Bayesian setup for this game, to take uncertainty of

the channel evaluations into account [25]. We analyzed the

same game proposed in Table I and II in a Bayesian setup.

We considered the case in which both players can have two

different types:

– type A players have a higher channel gain (and therefore a

higher payoff) when transmitting on channel 1

– type B players have a higher channel gain when transmitting

on channel 2

In this setup, there are 4 different possible payoff tables,

where the situation becomes equivalent to either Table I or

Table II. Since the players have 2 types and 2 possible actions,

there are 4 possible strategies for each player: each player

needs to choose what action to play depending on its type

being A or B.

If the type distribution is uniform for both players, the

normal form of the game is shown in Table IV.

Table IV
BAYESIAN GAME, 2 CHANNELS

P
P
P
P
P
P

Pl 1
Pl 2

11 12 21 22

11 0,0 1

4
(11,10) 1

4
(11,2) 1

4
(22,22)

12 1

4
(20,11) 1

4
(20,20) 1

4
(20,2) 1

4
(20,12)

21 1

4
(2,11) 1

4
(2,20) 1

4
(2,2) 1

4
(2,12)

22 1

4
(22,22) 1

4
(11,20) 1

4
(11,2) (0,0)

The payoffs are obtained taking the expected value over

all the possible outcomes for the two considered strategies

considering all the type distribution for the two players. For

example, player 1’s payoff for (12, 11) is 20/4 = 5, as he gets

payoff 0 in two cases out of 4, and 10 in the other two cases.
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Figure 1. Stackelberg formulation for game in Tab I

In this formulation, there are 3 Bayesian NE (BNEs):

– (11,22) and (22,11) are the equivalent of the previous games

NEs. The players agree of transmitting on one channel and

they cooperate to use all the achievable resource, even if this

means that the allocation is not the most favorable one (still,

players prefer to avoid collisions)

– (12,12) a selfish BNE. Since there is uncertainty in the game,

the two players are induced to transmit on their preferred

channel, no matter what the other player does

We implemented the Bayesian game described above using

MATLAB and analyzed what happens with different type

distributions and a higher number of channels. Then, we

calculate the price of anarchy (PoA) in this game, considering

the selfish BNE as the worst case scenario. For the social opti-

mum scenario, instead, we consider a Stackelberg formulation,

where players move in order: the one moving first always

picks its best channel, the player moving second will choose

the best channel among the remaining ones. For example, for

the Stackelberg formulation of game in Table I (Fig. 1), the

only subgame-perfect NE of the game is (ch1, ch2). For the

Bayesian game described in Table IV, if player 1 is always

first to choose, he will get a payoff equal to 10, no matter

what type is player 2. Player 2, instead, will get a payoff of

10 when his type is different from player 1’s type and a payoff

of 1 when their preferred channel is the same one. The average

outcome of the game is 1

4
(40, 22) and therefore

PoA =
total payoff social optimum

total payoff worst case NE
=

40 + 22

20 + 20
= 1.55 (1)

III. RESULTS

Consider the case with two players contending two

channels. Here, each player has a preferred choice, which

gives a better payoff. Each player can also be of two different

types, specifying what is the preferred kind of channel. We

introduced two parameters to evaluate the outcomes of our

simulations, what we call Type distribution parameter (TDP),

i.e., the ratio between the probabilities of being of the first

versus the second type. This means that for TDP = 1, the

players have probability 0.5 to be of type 1. We let this
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Figure 2. Price of anarchy vs. Type distribution parameter

parameter vary in the interval [1, 11].

TDP =
P [Pl.type = 1]

P [Pl.type = 2]
∈ [1, 11] (2)

The second parameter is the Payoff parameter (PP) defined as

the ratio between the payoff obtained by players when they

transmit alone in their preferred channel and the payoff when

they transmit alone on the worse channel. We used the same

range of values for this parameter and the TDP.

PP =
PayoffBetter

PayoffWorse

∈ [1, 11] (3)

In Fig. 2 we show the behavior of the PoA as a function

of the TDP parameter. All the curves grow almost linearly

in the first part of the graph, then there is a vertical drop in

the PoA value, after which the value remains almost equal

to 1. The first part of the curve is explained with the fact

that if the type probability grows and both players transmit

on their preferred channel, more collisions occur. Therefore,

when the TDP parameter grows, the social optimum solution

becomes more and more convenient. The reason for this drop

in the PoA can be found in the fact that the selfish BNE is

no longer a solution for the game. If the probabilities are too

high, there is not enough uncertainty left in the game and the

players prefer to cooperate, like in the static game. For higher

values of TDP, the only two BNEs are the ones in which the

two players agree on transmitting on two different channels;

therefore, the total payoff is equal to the social optimum and

the PoA is 1.

A larger PoA is reached if the payoff on the preferred

channel is much higher than the other (high PP). Hence, we

calculated the PoA as a function of the PP parameter, see

Fig. 3. In this plot, the curves remain almost equal to 1 for

low values of the PP parameter, then they increase vertically

and finally, for higher values of PP they stay constant. This

behavior is again motivated by the fact that for very low values

of the PP parameter, the selfish BNE is not a solution of the

game. When the selfish BNE becomes available, the price of

anarchy grows and then stabilizes to a fixed value. A higher



4

1 2 3 4 5 6 7 8 9 10 11

PP: Payoff
best

 / Payoff
worst

1

1.5

2

2.5

3

3.5

P
ri
c
e

 o
f 

A
n

a
rc

h
y

Price of Anarchy vs PP, n=2, m=1

TDP=1

TDP=1.5

TDP=2

TDP=4

TDP=9

Figure 3. Price of anarchy vs. Payoff parameter
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Figure 4. Price of anarchy vs TDP and PP with n = 2, m = 2

PoA value is reached when the TDP parameter is higher, but in

this cases the selfish BNE arises only for higher values of the

PP parameter. This can be explained with the fact that if the

uncertainty in the game is low, only a large payoff advantage

encourages the player to play selfishly.

We noticed that there is a threshold value for the selfish BNE

to become a solution for the game, this threshold is reached

when the PP parameter value is almost equal to the TDP one:

PPthreshold ≈ TDP (4)

It is possible to notice this threshold behavior in the 3D plot

showing the PoA behavior as a funcition both of the TDP

parameter and the PP parameter (Fig. 4).

We also investigate the system behavior when the number

of the available channels and/or the users is increased. Specif-

ically, in Figs. 5 and 6, we consider a scenario with n = 6,

m = 2 (just increasing the number of available channels)

and a case with n = 6, m = 3 where the whole system is

scaled proportionally, respectively. The respective PoA is also

displayed in 2D graphs in Figs. 7 and 8.
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Figure 5. Price of anarchy vs TDP and PP with n = 6,m = 2
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Figure 6. Price of anarchy vs TDP and PP with n = 6,m = 3

Overall, these results show that the system behavior main-

tains similar trends, therefore suggesting that the proposed

analysis scales well. Clearly, further extensions can be devoted

to scenarios where the number of channels and users is

increased to much larger sizes, as typical of IoT scenarios

[4], and this can be subject of future work. But the results

presently available seem to be encouraging in this sense.

More specifically, Fig. 6 shows that the PoA stays basically

the same when expanding the system from n = 4 channels and

m = 2 users to n = 6, m = 3, thereby maintaining the same

ratio of available resources. For the case with n = 6, m = 2,

which is reported in Fig. 5, the qualitative behavior of the plots

is similar, but the values reached for the PoA are lower (the

maximum value reached is less than 2). Indeed, more channels

are available and 2 channels remain free, therefore it is more

difficult for the transmissions to collide. This is also better

visible by comparing the 2D graphs of Figs. 7 and 8. While

for m = 6, n = 3 the trend is substantially preserved, when

m = 6 and n = 2 the growth of the PoA is no longer linear,

but shows a sub-linear increase, implying that the lower PoA

is also less sensitive to unbalances in the payoffs.
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Figure 7. Price of anarchy vs TDP with n = 6,m = 2
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Figure 8. Price of anarchy vs TDP with n = 6,m = 3

IV. CONCLUSIONS

We proposed a game theoretic analysis to characterize wire-

less communications over multiple channels in the IoT. We

designed a Bayesian game to keep into account the uncertain

estimates of the resource quality from the perspective of other

users, and we seek cases where the players are encouraged to

play selfishly, depending on their perceived information.

The results show that player behaviors depend on the

uncertainty in the game. A selfish BNE arises when there

is sufficient uncertainty about the preferences of the other

players, and the ratio between the payoffs on the preferred

vs. the not preferred channels is high enough.

These conclusions are quite general, and the proposed

evaluated criteria also enable guidelines for the use in practical

IoT contexts [5], [6]. Future work may explore larger setups

as typical of IoT scenarios with significantly higher number

of nodes, also employing stochastic tools, and the extension

of the Bayesian games in a dynamic setup, to see whether

cooperation can be established over time [8], [17].
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