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Abstract—Age of information (AoI) is a key performance met-1

ric for the Internet of things (IoT). Timely status updates are2

essential for many IoT applications; however, they often suffer3

from harsh energy constraints and the unreliability of under-4

lying information sources. To overcome these unpredictabilities,5

one can employ multiple sources that track the same process of6

interest, but with different energy costs and reliabilities. We con-7

sider an energy-harvesting (EH) monitoring node equipped with8

a finite-size battery and collecting status updates from multiple9

heterogeneous information sources. We investigate the policies10

that minimize the average AoI, formulating a Markov decision11

process (MDP) to choose the optimal actions of either updating12

from one of the sources or remaining idle, based on the current13

energy level and the AoI at the monitoring node. We analyze14

the structure of the optimal solution for different cost/AoI dis-15

tribution combinations, and compare its performance with an16

aggressive policy that transmits whenever possible.17

Index Terms—Age of information, energy harvesting, hetero-18

geneous systems, Internet of Things, Markov decision process.19

I. INTRODUCTION20

INTERNET OF THINGS (IoT) systems are increasingly21

being exploited for a variety of applications that encompass22

every aspect of our lives [2]. In many of these applications23

freshness of the monitored information can play an impor-24

tant role for the system performance. Age of information25

(AoI) is a key performance indicator in mission-critical and26

time-sensitive applications, including smart transportation,27

healthcare, remote surgery, robotics cooperation, public safety,28

industrial process automation, to count a few. AoI quantifies29

the freshness of knowledge about the status of the system30

being monitored [3], [4]. For instance, in autonomous driving,31

timely collection of traffic information and vehicle-generated32
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data is essential for the safety of all road users. Another impor- 33

tant example is factory automation, where real-time control of 34

production also requires timely delivery of status updates [5]. 35

One limitation against frequent updates is the energy sup- 36

ply of the sensor. Since sensing devices are typically wireless, 37

and often placed in remote areas, it would be impractical to 38

power them through cables. If the device is powered only 39

through batteries, a significant downtime would hinder the 40

provision of reliable and up-to-date information. In these situa- 41

tions, broad autonomy for reliable IoT systems can be obtained 42

through energy harvesting (EH) combined with rechargeable 43

batteries. This, however, would further require a smart sens- 44

ing and communication strategy [6]. Indeed, the integration 45

of energy harvesters reduces the maintenance cost of IoT and 46

increases the energy self-sustainability, but comes at a price 47

of not guaranteeing uninterrupted operation of the device. 48

We focus on an EH monitoring node, whose goal is to 49

track the underlying process as closely as possible, i.e., with 50

the minimum average AoI, within the constraints of stochas- 51

tic energy arrivals from ambient sources of energy and a 52

finite battery capacity. Also, we consider the role of multiple 53

information sources that monitor the same underlying pro- 54

cess of interest called information source diversity, where each 55

source provides a different trade-off between the cost of sens- 56

ing and the freshness of the provided status update. Hence, the 57

policy governing the operation of the system does not simply 58

make a binary choice between providing a new status update 59

or not, but must also include the optimal choice of the specific 60

information source to be used. To clarify, the policy might also 61

choose to wait, instead of updating immediately in a myopic 62

fashion, in order to accumulate energy so as to be able to use 63

a more reliable information source in the future. 64

We compare the performance of the optimal policy with 65

a greedy “aggressive” update policy in terms of average 66

AoI, highlighting the situations where optimization is really 67

needed as opposed to the simple implementation of an “update 68

whenever needed” strategy. We also quantify the additional 69

gains in the minimal long-term average AoI due to multiple 70

information sources, as well as how the quality of these 71

sources affects the outcome. Finally, we compute the power 72

expenditure of these policies, and discuss how the added 73

dimensionality of the problem affects the system performance. 74

A. Background 75

Several papers study the average AoI minimization with 76

a single energy-harvesting source [7]–[19], whereas very 77
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Fig. 1.AQ4 System model consisting of n information sources.

few papers are focused on the average AoI with multiple78

information sources. In [20], [21], authors consider a system79

where independent sources send status updates through a80

shared first-come-first-serve M/M/1 queue to a monitor, and81

find the region of feasible average status ages for two and82

multiple sources. Similarly, in [22], a system with n sources83

is considered to provide status updates to multiple servers via84

a common queue. The authors formulate an AoI minimization85

problem and propose online scheduling policies. In [23], a86

single source node transmits status updates of two types to87

multiple receivers. The authors determine the optimal stop-88

ping thresholds to individually and jointly optimize the average89

age of two-type updates at the receiver nodes. In [24], a90

multi-objective formulation is proposed for scheduling trans-91

missions in a system with multiple information sources that92

monitor different processes. The objective is to balance the93

AoI of these different processes. Similarly, in [25], the AoI94

minimization problem is also formulated for a system with95

multiple information sources that monitor different processes,96

and a monitoring node that communicates with the information97

sources through orthogonal channels. The authors propose the98

policy that converts the scheduling problem into a bipartite99

matching problem between the sets of channels and sensors.100

In [26], the authors study the scenario where a base station101

updates many network users. New information is randomly102

generated, and the base station can serve at most one user for103

each transmission. A structural MDP scheduling algorithm and104

an index scheduling algorithms were introduced.105

One of the main challenges of deriving age-optimal trans-106

mission policies using MDP-based formulation is the large107

size of the state space of the system. This problem has been108

extensively studied for single-source systems. One of the ways109

to tackle this challenge is by demonstrating the optimality110

of a threshold-policy. In [27], the authors study a real-time111

IoT-enabled monitoring system in which a source node is112

responsible for maintaining the freshness of information status113

at a destination node. The source node is powered by wire-114

less energy transfer. The authors adopt an MDP approach and115

characterize the throughput-optimal policy. In [15], the authors116

study the average AoI in EH cognitive radio communications,117

where the secondary user, i.e., EH sensor, performs spectrum118

sensing and status updates in a way that minimizes the aver-119

age AoI based on its energy availability and the availability120

of the primary spectrum. The problem is formulated as a par-121

tially observable Markov decision process, and the optimal122

sensing and updating policies are shown to have threshold123

structure. The structural properties of the optimal policy for a124

single IoT device, where an IoT device updates the destina- 125

tion node via the wireless channel, are analysed in [28]. The 126

authors consider a scenario where joint status sampling and 127

updating process is designed to minimize the average AoI at 128

the destination. The problem is formulated as an infinite hori- 129

zon average cost constrained MDP that is transformed into an 130

unconstrained MDP using a Lagrangian method. For the single 131

IoT device, the optimal policy is shown to be of threshold type. 132

Similar scenario is considered in [29], where an IoT device 133

is classified as a secondary user that exploits the spectrum 134

opportunities of the licensed band and updates the destination 135

node. 136

Instead, the dimensionality problem in multi-source systems 137

is tackled in [30], where the authors consider a multi-source 138

RF-powered communication system and propose a reinforce- 139

ment learning framework for optimizing the AoI. 140

B. Our Contributions 141

In this work, we consider a specific kind of multi-source 142

system, where the status updates are generated upon request by 143

an energy-harvesting monitoring node using multiple hetero- 144

geneous information sources that monitor the same underlying 145

process. These different sources may capture different phys- 146

ical phenomena from an abstract perspective. For example, 147

there may be multiple sensors monitoring the same process 148

of interest using distinct technologies for the transducers, thus 149

resulting in different accuracies and costs. Alternatively, the 150

heterogeneity of the sources may stem from different channels 151

that may convey the information (i.e., by means of different 152

technologies, routes, communication links, or all of the above). 153

Thus, each of the sources offers its own tradeoff of energy vs. 154

age, resulting in information source diversity, and the moni- 155

toring node may seek to optimize the resulting AoI over time. 156

This ought to take into account a constrained energy budget 157

and the characteristics of all the information sources. In our 158

model, each source may have available updates with different 159

ages, due to its sampling of the underlying process at possibly 160

diverse rates. 161

A sample scenario is crowdsensing, in which AoI can 162

play an important role when choosing the source of updates. 163

In crowdsensing, a monitor and some users are connected 164

via the cloud [31]. The monitor sends the sensing task 165

description to the users, and receives sensing plans, based on 166

which to perform user selection. The AoI received from each 167

information source depends on multiple factors such as sam- 168

pling frequency, continuity of energy arrivals to the source 169

nodes (assuming that the source nodes are powered by the 170

ambient energy sources [32]), channel state, delay, and, in 171

general, the robustness of a node. 172

Our first contribution is to analyze different heterogeneous 173

information sources, and study how the combinations of cost 174

and age distribution affect the resulting average AoI. We inves- 175

tigate the behavior of the optimal solution, which depends 176

on the configuration of the information sources, through 177

numerical analysis. In contrast to previous results in the lit- 178

erature [27]–[29], [33], we show through examples that the 179

optimal policy exhibits a threshold behavior only versus the 180
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AoI but in general not when the energy increases, since some-181

times it may be convenient to refrain from updating and instead182

cumulating energy for a later update from a more expensive183

source.184

As another contribution, we compare the performance of the185

optimal and aggressive policies, and find the threshold of the186

EH rate in which it is reasonable to apply the aggressive policy.187

We evaluate the effect of an increase in the average system cost188

on the performance. Finally, we assess if an increase in the189

number of information sources affects the overall performance.190

C. Organization of the Paper191

The rest of this paper is organized as follows. In Section II,192

the system description, problem formulation, and solution193

approaches are introduced. Numerical results are presented in194

Section III, providing a comparison with an aggressive policy.195

The paper is concluded in Section IV, where possible further196

developments are also outlined.197

II. SYSTEM MODEL AND PROBLEM FORMULATION198

We focus on a communication system formed by a sin-199

gle energy-harvesting monitoring node and n heterogeneous200

information sources, all capable of measuring the status of201

an underlying process. The monitoring node can query any202

of these information sources to receive an update on the sta-203

tus of the underlying process. For example, these information204

sources may model sensors with different technologies mea-205

suring the same process. In this paper, we consider such a206

general scenario, that could be further detailed to a multi-207

sensor, multi-radio, or multi-transducer scenarios [34], [35].208

Time is divided into slots of equal length, and we assume that209

the monitoring node can query from only one of the sources in210

each time slot. The received status update becomes available211

at the beginning of the next time slot. We highlight two impor-212

tant dynamics at the monitoring node: 1) energy fluctuations213

and 2) the AoI. The objective is to minimize the average AoI214

at the monitoring node taking into account the time-varying215

energy budget.216

We assume that the monitoring node is equipped with a217

rechargeable battery of finite capacity B, and can harvest218

energy from ambient sources. Fluctuations in the battery of the219

monitoring node are defined by two processes: 1) harvested220

energy in each time slot and 2) the energy consumption caused221

by the queries for a status update. Energy harvested over time222

is represented as an independent and identically distributed223

(i.i.d.) binary random process {e(t)}∞t=1. At each time slot t224

the monitoring node receives e(t) ∈ {0, ē} energy units, such225

that P(e(t) = ē) = λ.226

The energy cost of requesting an update from source i,227

i ∈ [n] ! {1, 2, . . . ,n}, is denoted by ci , a collective value228

that reflects the energy consumption of the monitoring node229

to acquire an update from source i. This may include the cost230

of sending a request and receiving an update if the sources231

are remote sensors, or simply the cost of operating that sen-232

sor if they are local. For simplicity, we consider ci ∈ Z+
233

corresponding to integer multiples of a unit of energy.234

The AoI at time t, denoted by δ(t), refers to the age 235

of the most recent status update available at the monitor- 236

ing node [36]. If a more recent update is not received, 237

δ(t) is increased by 1 at each time slot. We assume that 238

δ(t) ∈ [0, 1, . . . , δmax], as any AoI beyond δmax has the same 239

utility for the system, which reduces the dimensionality of the 240

problem. 241

The status updates provided by the information sources are 242

not necessarily fresh, i.e., with zero age. Due to various fac- 243

tors, such as the sensing technology or the processing of the 244

measurements, we assume that the status updates may have 245

different ages when they arrive at the monitoring node. We 246

consider probabilistic AoI for the updates received from each 247

information source; that is, we assume that the source nodes 248

provide status updates with ages within the interval [α, β] 249

(α<β), where α is the most fresh status update while β is 250

the most stale one, typically with different distributions. We 251

assume that α ≥ 1, in order to incorporate the transmission 252

time of the status update. 253

To model the different AoI distributions from each source, 254

denote by γi ,j the probability of receiving a status update of 255

age j from source i, where j ∈ [α,β] and i ∈ [n]. 256

It is reasonable to assume that the sources with higher prob- 257

ability to deliver a fresh status update have a higher energy 258

cost. Otherwise, a source which is both more costly and pro- 259

vides more stale state updates would never be used, and can 260

safely be removed from the system model. 261

A. Markov Decision Process (MDP) Formulation 262

We aim to determine the policy that minimizes the average 263

AoI at the monitoring node. To achieve this, the monitoring 264

node optimally chooses the action to take at each time slot. 265

Possible actions include requesting an update from one of the 266

information sources at the beginning of each time slot, or stay- 267

ing idle. This choice is made taking into account the battery 268

level and the age of the most recent status update available at 269

the monitoring node. This problem can be formulated as an 270

MDP, consisting of a tuple <S,A,P ,R>, where: 271

• S is the state space where the process evolves; 272

• A is the set of actions to control the state dynamics; 273

• P denotes the state transition probability function; 274

• R is the reward function defined on state transitions. 275

The action taken by the monitoring node at time t is 276

denoted by a(t), chosen from a finite action space A = 277

{a0, a1, a2, . . . , an}, where ai corresponds to querying source 278

i for an update, i∈[n], while a0 corresponds to remaining idle. 279

The system state is described by the pair of variables s(t) = 280

(b(t), δ(t)), δ(t) ∈ [δmax] and b(t) ∈ #B$ ! {0, 1, . . . ,B}. 281

We denote by δ̄(t) the age of the status update received at 282

time t. Note that δ̄(t) is a random variable depending on action 283

a(t). We set δ̄(t) = δmax if a(t) = a0. Moreover, if δ̄(t) hap- 284

pens to be larger than the age of the already available status 285

information, δ(t − 1) + 1, the current value is kept and no 286

update is performed. Thus, the AoI is updated as: 287

δ(t) = min
{
δ(t − 1) + 1, δ̄(t), δmax

}
. (1) 288

The energy level in the battery b(t) at time t evolves according 289

to the cost of an action taken and the harvested energy within 290
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that time slot:291

b(t) = min

{
b(t − 1)−

n∑

i=1

ci · 1(a(t) = ai ) + e(t),B

}
,292

(2)293

where 1(x ) is the indicator function: 1(x ) = 1 when x294

holds, and 1(x ) = 0 otherwise. Action ai is not allowed if295

b(t)<ci , i ∈ [n]. We have a finite state space of dimension296

δmax · (B + 1).297

The transition probabilities are given below for ai ∈298

{a1, a2, . . . , an}, and ¯δ(t) ∈ {α,α+ 1, . . . ,β}.299






P [s(t + 1) = (min{b + ē − ci ,B},min{j , δ + 1, δmax})
|s(t) = (b, δ), a(t) = ai ] = λγi ,j for b ≥ ci , j ∈ [α,β],
P [s(t + 1) = (b − ci ,min{j , δ + 1, δmax}})
|s(t) = (b, δ), a(t) = ai ] = (1− λ)γi ,j
for b ≥ ci , j ∈ [α,β],

300

(3)301

When the node stays idle, i.e., a(t) = a0, the transition302

probabilities take the following form:303

P [s(t + 1) = (b,min{δ + 1, δmax})304

|s(t) = (b, δ), a(t) = a0] = 1− λ b < B305

P [s(t + 1) = (min{b + ē,B},min{δ + 1, δmax})306

|s(t) = (b, δ), a(t) = a0] = λ b < B307

P [s(t + 1) = (B ,min{δ + 1, δmax})308

|s(t) = (B , δ), a(t) = a0] = 1 (4)309

Note that when the monitoring node chooses to stay idle and310

its energy storage is full (i.e., B = b), the state transition only311

involves the increase in the AoI since no more energy can be312

stored in the battery, therefore this transition is deterministic.313

The reward received at time t depends on the action chosen314

and the age of the update received at the monitoring node:315

R(s(t + 1)|s(t), a(t) = ai ) = δ(t + 1). (5)316

The problem is framed as a first-order Markovian dynamics317

as the next state depends only on the current state s(t) and the318

current action a(t).319

The deterministic stationary policy π : S → A defines an320

action a(t) at each time slot depending on the current state. A321

stationary policy π means that πi = π for all t = 1, 2, . . . ,;322

we let δπt denote the sequence of AoI caused by policy π. The323

infinite-horizon time-average AoI, when policy π is employed,324

starting from initial state s0, is defined as [36]:325

V π(s0) = lim sup
T→∞

1

T
E

[
T∑

t=0

δπ(t)|s(0) = s0

]
. (6)326

A policy is optimal if it minimizes the infinite-horizon327

average AoI - V π(s):328

V (s) = min
π

V π(s). (7)329

To solve this optimization, we can use the offline dynamic330

programming approach, which is a quite common methodol-331

ogy successfully used in other problems related to efficient332

exploitation of harvested energy [37] and can be solved via333

Algorithm 1 Relative VI Algorithm

set v0(s) = 0 ∀s ∈ S
set n = 1, ε > 0
set V 0(s) = 0 ∀s ∈ S
repeat

n ← n + 1
for all s ∈ S do

vn (s) = min
a∈A

∑

s′∈S
P(s ′|s, a)

[
δ(s ′|s, a) + V n−1(s ′)

]

V n (s) = vn (s)− vn (s0)

where s0 is a fixed state chosen arbitrarily
end for

until sp(V n − V n−1)<ε
return argminV (s)

standard techniques such as Value Iteration [38]. In the offline 334

approach, we model the state transition function based on the 335

prior knowledge of the age statistics of the updates received 336

from different sources, γi ,j , and the environmental character- 337

istics, λ. The solution represents the map of actions to be 338

chosen in different states. 339

III. PERFORMANCE EVALUATION 340

We compare the effect of different cost combinations and 341

cost-reliability dependencies on the performance of differ- 342

ent policies. We consider the cost distribution of information 343

sources, the age distribution of updates received from different 344

sources, and the parameter of the EH process, λ. 345

To validate the optimal approach, we compare its 346

performance with that of the aggressive policy, which requests 347

a status update at each time slot from the most costly 348

information source that its current battery state affords. The 349

optimal solution is obtained via the value iteration (VI) algo- 350

rithm described in [38], which we also provide in Algorithm 1 351

for completeness. The optimal stationary deterministic policy 352

obtained by Algorithm 1 specifies the decision rules that maps 353

the current energy level and AoI to deterministic actions. 354

In Algorithm 1, sp(V n −V n−1)<ε is a stopping criterion, 355

where sp(V ) ! maxs∈S V (s) − mins∈S V (s). We run the 356

relative VI algorithm until the stopping criterion holds. At 357

that moment the policy π achieves an average-cost AoI that is 358

within ε · 100% of optimal. 359

A. Impact of Different Cost Functions 360

Since our model and formulation are fairly general, the 361

cost of requesting an update may result from very different 362

reasons (sampling, processing and/or communication costs). 363

Therefore, it is difficult to provide precise cost values and 364

their relation across sources. We assume that the energy cost 365

of any source takes values between cmin and cmax, where 366

0 < cmin < cmax < B . In this way, we guarantee that all the 367

sources are available to the monitoring node to query a status 368

update as long as there is sufficient energy in the battery. In 369

particular, we set the values of cmin = 0.05B , cmax = 0.95B . 370

To evaluate the effect of different cost combinations of the 371

sources, we consider three cases, as per Fig. 2, each with the 372
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Fig. 2. Rank-cost dependencies.

Fig. 3. Cost-age distribution dependency for the sublinear cost scenario.

same average cost value: superlinear, linear and sublinear. In373

Fig. 2, term ‘Rank’ corresponds to the index of source i, such374

that a source with a higher index has a higher rank and higher375

cost, respectively. The aforementioned dependencies do not376

carry any special “physical meaning”, they are simply chosen377

to investigate the impact of cost values on the average AoI.378

Indeed, other functions can also be used. Obviously, changing379

the average cost will affect the average AoI, but the effect of380

concavity on the target metric is not obvious. Thus, we focus381

on these trends to analyse the effect of “concavity” on the382

average AoI and also for easier reproducibility of our results.383

B. Impact of Different Cost-Reliability Dependencies384

Further, we evaluate the impact of different functions385

describing the cost-reliability dependencies. Similar with the386

cost function, in order to be able to perform a comparison we387

limit our attention to a specific class of age distributions from388

the sources. In particular, in our numerical analysis we assume389

that, for each i, γi ,j follows a geometric distribution with a390

different parameter pi , as illustrated in Fig. 4. This model391

also allows us to parametrize the distributions with a single392

parameter. Hence, the distribution of the age of the received393

status update, when the i-th information source is chosen, is394

given by:395

γi ,j = Pr
(
δ̄(t) = j

)
= (1− pi )

j−1pi ,396

j = 1, 2, 3, . . . ,β − 1 (8)397

Since we consider that packets with age higher than δmax398

have the same utility, we limit the geometric distribution to399

δmax. Additionally, γi ,β = Pr(δ̄(t) = β) = 1 −
∑β−1

j=1 (1 −400

pi )
j−1pi for every i. As stated earlier, we expect to receive401

more fresh status updates from a more costly source, at least on402

Fig. 4. Geometric distribution of status updates for different pi parameters,
where δ̄(t) ∈ [1, 20].

TABLE I
DEFAULT SYSTEM PARAMETERS

average. To quantify such a relation, we consider the following 403

general functional choices to relate pi ∈ [0, 1] with ci (Fig. 3): 404

Sublinear: pi = ksub · c2i , (9) 405

Linear: pi = klin · ci , (10) 406

Superlinear: pi = ksup · log2 ci , (11) 407

where ksub , klin , and ksup are chosen such that the average 408

system parameters of age distribution (p = γi ) is the same, i.e., 409

1
n

∑n
i=1 pi is equal for the sublinear, linear and superlinear 410

scenarios. 411

Once again, we would like to emphasize that our model and 412

solution tools apply to arbitrary cost and age distributions, and 413

these choices are made just to be able to observe the impact 414

of three possible dependencies on the performance. 415

C. Results 416

Default system parameters common to all the simula- 417

tions are presented in Table I. The efficiency of the optimal 418

and aggressive policies is verified via simulation runs over 419

T = 5000 time slots, averaged over M = 1000 simulations. 420

To demonstrate the results we plot the AoI averaged over all 421

times t = 1,T . 422

The optimal solutions for different values of EH rates 423

and cost-age distribution combinations are presented in 424

Figs. 5 and 6. Both figures show the 9 possible combina- 425

tions of cost and age distribution each taking values denoted 426

by superlinear, linear, sublinear as in (9)–(11), see also 427

Figs. 2 and 3. 428

We set λ = 0.2 in Fig. 5 and λ = 0.6 in Fig. 6. Each of 429

the 9 subfigures shows the optimal policy depending on the 430

system state. In both cases, n = 8 sources are considered, so 431

the optimal policy chooses among 9 possible actions including 432

“no update” (i.e., to stay idle). 433
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Fig. 5. Illustration of the optimal policy for different energy cost/ age distribution combinations for EH rate λ = 0.2.

Fig. 5 shows that when the EH rate is low, i.e., λ = 0.2,434

the monitoring node requests a status update only from the435

cheapest sources, i.e., sources 1, 2. Notably, the result is sim-436

ilar for all the combinations of cost and age distributions. In437

particular, the activity region, i.e., the set of states in which438

the monitoring node is actively requesting updates, remains439

the same. The activity region requires that both battery level440

and AoI are high enough to request an update.441

For low values of AoI, the monitoring node never requests a442

status update, since the information is still fresh. Also, for low443

values of the battery level a status update cannot be afforded.444

However, differently from the aggressive approach, where an445

update is always requested if there is enough energy in the446

battery, the optimal policy, in contrast, conserves energy if447

the AoI is sufficiently low. This leads to an energy saving448

region for δ(t) ∈ [0, δu (b(t))], where δu(b(t)) is the high-449

est AoI value for which no update is requested. The value450

of δu(b(t)) decreases with b(t), because at high battery lev-451

els the monitoring node can be more relaxed in status update452

requests. This trend applies for all cost-age distribution com-453

binations in the same way. The only difference appears when454

the dependency of the parameters of the age distribution is455

sublinear, due to the fact that the more expensive source 2456

is significantly more reliable, and therefore, worth using at457

higher energy levels. However, this also depends on the cost458

of source 2; if the cost dependence is also sublinear then459

source 2 is employed instead of source 1 for lower values 460

of b(t). 461

The common aspect of all the 9 subplots in Fig. 5 is that 462

only cheap sources are used when the energy arrivals are 463

scarce. In contrast, Fig. 6 shows more variations in the usage 464

of different sources for λ = 0.6. Here, similarly to Fig. 5, 465

the same 9 cases are considered in the respective subfigures. 466

For λ = 0.6, multiple sources are used depending not only 467

on the values of b(t) and δ(t), but also on the cost and age 468

distribution combinations. Even though the activity region is 469

approximately the same, it is split differently among multiple 470

sources, and not necessarily only the cheapest ones. In par- 471

ticular, the baseline case where cost and dependency of age 472

distribution parameters are both linear [Fig. 6(e)] demonstrates 473

that a wide array of sources from 1 to 5 (i.e., the 5 cheapest 474

ones) are usedThe higher b(t) and/or δ(t), the higher the index 475

of the source used for the update. 476

If we change the cost from superlinear to sublinear 477

[Figs. 6(b), 6(e), 6(h)], we see that, within the activity region, 478

source 1 is used more or less consistently in all the 3 cases, but 479

the patterns if other sources change, with intermediate sources 480

becoming more widely used if the cost is sublinear. This trend 481

is generally true if we read the subfigures from top to bottom. 482

Based on the structural difference of the optimal solutions, the 483

choice of the specific function is less important compared to 484

its characteristics in terms of concavity/convexity. 485
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Fig. 6. Illustration of the optimal policy for different energy cost/ age distribution combinations for EH rate λ = 0.6.

Conversely, if we change the dependency of age distribu-486

tion parameters [Figs, 6(d), 6(e), 6(f))], the cheaper sources487

are used more often, and their usage happens at lower bat-488

tery levels, i.e., their region shifts towards left. This trend489

is also generally true if we read the subfigures from left490

to right.491

D. Discussion492

In this section, we prove some structural property of the493

optimal policy, in particular, an existence of a threshold effect494

on the battery level b (but notably, not on δ).495

Theorem 1: If the AoI is unlimited (or, its maximum496

value is sufficiently high) then the optimal policy has an497

AoI-threshold-based behavior that holds for any value of b.498

This means that if we focus on a given b, the optimal policy499

depends on the AoI δ such that:500

• a given subset of k(b) sources is used, denoted by501

σ1(b),σ2(b), . . .σk(b)(b) ∈ [N ],502

• exactly k(b) threshold values for the AoI δ, denoted503

by ϑ1(b),ϑ2(b), . . . ,ϑk(b)(b) can be defined, in strictly504

increasing order (i.e., ϑj (b) < ϑj+1(b) for every j ∈505

[N −1]), so that source σj (b) is used only when ϑj (b) ≤506

δ < ϑj+1(b) for j ∈ [N − 1], and the last source σk(b)507

is used for δ ≥ ϑk(b)(b), while no update is attempted if508

δ < ϑ1(b).509

This threshold-based character of the optimal policy under510

the aforementioned conditions, can be proven through the511

following two lemmas.512

Lemma 1: A system with n ≥ 2 sources has an optimal 513

AoI-threshold-based activation ϑ1(b) for all values of e, mean- 514

ing the optimal policy is to stay idle (action a0) when δ < 515

ϑ1(b), and conversely action a0 is suboptimal if δ ≥ ϑ1(b). 516

Proof: The details are reported in Appendix A. 517

Following this Lemma, one can see that if δ ≥ ϑ1(b) 518

it is convenient to update but it is not knowns from which 519

source. We need to obtain a full AoI-threshold-based structure 520

as required by the theorem to show that, if a given b is con- 521

sidered and δ is increased from ϑ1(b), there are other turning 522

points ϑ2(b),ϑ3(b), . . . such that for δ ≥ ϑj (b) the optimal 523

action switches from sj (b) to sj+1(b) and never reverts back 524

to sj (b) after that point. This is shown through this last 525

Lemma. 526

Lemma 2: Consider a given value of b and two different 527

sources i and j, whose associated update actions are ai and 528

aj , respectively. If ai is preferable over aj when the battery 529

level is b and the AoI value is δ1, where δ1 ≥ v1(b), and the 530

reverse happens (i.e., aj is preferable over ai ) for battery level 531

b and AoI equal to δ2 > δ1, then aj is necessarily better than 532

ai for battery level b and all AoI values δ > δ2. 533

The proof is provided in Appendix B. We remark that 534

the theorem proves an AoI-threshold-based behavior, but in 535

general we do not have a similar behavior in the battery level 536

b, as discussed in the following counterexample. 537

Counterexample: Consider a scenario with two information 538

sources, where δmax = 1, and α = 0 β = 1. The two 539
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Fig. 7. Optimal solution (p2 = 1, p1 = 0.1, λ = 0.9).

Fig. 8. Optimal solution: N = 1, p2 = 0.99, c1 = 5, c2 = 11, λ = 0.9,
ē = 5.

information sources 1 and 2 have the following characteristics:540

0 < c1 < c2 < B , p2 ( p1.541

Compare the time-average AoI for T = 2 for the following542

sequences of actions performed by the monitoring node:543

Sequence 1: (use 1; use 1), resulting in δ̄ = 1−p1+
(1−p1)2

2 .544

Sequence 2: (do not transmit; use 2), resulting in δ̄ = 1 +545
1−p2
2 .546

If p2 > 4p1 − p21 , then sequence 2 is preferrable over547

sequence 1. However, sequence 2 may not be available if548

using source 2 is too expensive for the current battery state. In549

other words, depending on the current energy state and energy550

arrivals, it may be more convenient to just use the cheap source551

or to wait in order to enable the expensive source in the subse-552

quent time slot. Formally, this happens if b(0)−c1+λh > c2.553

Hence, we proved that with an increase in the state of the bat-554

tery at time 0, the minimization of AoI can imply to use a555

cheaper source at time 1 (in this specific example, no source556

at all), which contradicts the monotonicity of the source index557

in the battery level.558

In Fig. 8, we demonstrate the effect of limiting N on the559

structure of the optimal solution. We considered a system560

with two sources with p1 = 0.2, p2 = 0.99, c1 = 5,561

c2 = 11. The AoI distribution is kept geometric in range562

[α,β] = [0, 20]. The energy-harvesting process is given with563

parameters λ = 0.9, ē = 5. We observe the energy sav-564

ing region that occurs under this particular combination of565

parameters.566

Another visual counterexample is also graphically presented567

in Fig. 7, where we adopt the default settings from Table I,568

and consider two sources such that p2 ( p1, λ = 0.9. We569

also increased the value of parameter ē so that the energy570

buffer can recover fast. The costs of sources are set as follows571

c1 = 1, c2 = 16. The distribution of AoI is preserved as572

geometric in range [α,β] = [1, 20]. In this setup, the optimal573

policy is not threshold-based with respect to the battery level.574

Fig. 9. Rate between the average AoI obtained by the optimal and aggressive
policies as a function of the EH rate.

Fig. 10. EH rate, λ vs average AoI and average energy consumption.

E. Performance Comparison 575

To understand the potential benefits of the optimal policy, 576

we compare it with the aggressive policy as a benchmark. 577

In Fig. 9 we plot the relative gain over the aggressive pol- 578

icy vs the EH rate λ, where the AoI-aggressive-efficiency in 579

the y-axis is defined as the ratio between the average AoI 580

obtained by the optimal strategy to the one obtained by the 581

aggressive policy. For the sake of brevity, five cost and age 582

distribution combinations are considered. High (close to 1) 583

AoI-aggressive-efficiency implies that the aggressive policy is 584

quite efficient, and benefit of using the more computationally 585

demanding VI framework is limited. Despite some differ- 586

ences in the structure of the optimal solution, the resulting 587

AoI-aggressive-efficiency has similar values for all cost-age 588

distribution combinations. The AoI-efficiency-rate increases 589

with λ, meaning that the difference in performance between 590

optimal and aggressive policy vanishes at high λ. In particu- 591

lar, for λ > 0.5 the AoI-aggressive-efficiency saturates above 592

0.90. We can conclude, that if the energy arrivals are rela- 593

tively stable, the benefits of optimization is rather limited. On 594

the other hand, for low values of λ the optimization of the 595

update policy is much more relevant, which follows the intu- 596

ition. Yet, when λ is very low, the role of multiple sources is 597

minimal, and only the cheapest sources are used (see Fig. 5). 598

In Fig. 10, we plot the average AoI and the average energy 599

consumption vs. the EH rate. As one would expect, the average 600

energy consumption increases with λ, while the average AoI 601

decreases. We observe that the two policies have almost identi- 602

cal energy consumption, for low λ values, although the optimal 603

policy provides significantly lower average AoI performance. 604
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Fig. 11. EH rate, λ, vs average AoI for linear cost-age distribution.

Also, the energy consumption of the aggressive policy satu-605

rates at high λ values, while that of the optimal policy continue606

to increase linearly.607

We also analyzed the average AoI when the average update608

cost is 50% higher than the default case. To do so, we609

increased the cost of each source 1.5 times (1.5C) and found610

the average AoI for the linear cost-age distribution case, as611

demonstrated in Fig. 11. With the increase of cost, the differ-612

ence between the average AoI achieved by the optimal and613

aggressive policies reaches up to 15%, if λ is low. When λ is614

high, the difference in performance is insignificant.615

F. Network Size616

Further, we analyze how the number n of information617

sources affects the performance for different values of EH618

rate, λ, and energy arrival units, ē. The analysis is performed619

for linear scaling of the costs of the devices, and a linear620

dependency between the cost and the number of the sources.621

We decrease the space of actions (or network size) in the622

following manner: first, we form the vector of size n with costs623

[c1, c2, . . . , cn ], and derive the average AoI for n information624

sources. Then, we reduce the network size by half at each step625

till we have only two information sources with cost vector626

[c1, cn ], thus we obtain the average AoI for n = 2, 4, 8, 16.627

For n = 12, we randomly removed four sources.628

Firstly, we consider a system without sources diversity, i.e.,629

with a single information source; and demonstrate the depen-630

dency of optimal average AoI and cost of that source. With631

the increase in the cost, the optimal average AoI increases,632

despite the fact that with the increase of the cost, the proba-633

bility to receive a fresh status update increases. Moreover, in634

the greatest extent, an increase in cost affects the performance635

in case of low frequency energy arrivals (see Fig. 12). If the636

cost value is low, i.e., c1 = 1, the performance for different637

values of λ has minor variation. In particular, the performance638

is identical if λ is sufficiently high (λ ≥ 0.4). Although, when639

λ = 0.2 the optimal solution has a larger energy saving area,640

which is why we observe a larger gap in performance.641

With the increase in the number of information sources, the642

optimal average AoI has a tendency to decrease, but the curves643

eventually saturate when the number of sources reaches n = 8644

(Fig. 13). The largest gain in performance is obtained when645

the system is of size n = 2. If the EH rate is low (λ = 0.2646

Fig. 12. Optimal average AoI vs. cost of an information source for different
values EH rates, λ.

Fig. 13. Optimal average AoI vs. number of information sources for different
values of EH rates, λ.

in Fig. 13), then the increase in the number of devices does 647

not provide any gain for the system performance, but with 648

an increase in the EH rate, the gain increases as the system 649

size goes from n = 1 to n = 2 if λ ≤ 0.6. If λ ≥ 0.4 the 650

gain obtained by an increase of the system size from n = 1 651

to n = 2 and from n = 2 to n = 4 is similar. Nevertheless, 652

in the performance comparison in case of n = 1 we consider 653

the best performing setting, i.e., c1 = 1, p1 = 0.1. If c1 > 1, 654

p1 > 0.1, the gain is much more significant when the system 655

size is increased from n = 1 to n = 2. A similar statement 656

holds true when we vary the values of energy arrivals, ē . This 657

is because, when the EH rate is low, the monitoring node 658

almost exclusively uses the “cheaper” information sources, so 659

introducing more expensive alternatives does not help. 660

If the monitoring node exploits the aggressive strategy, then 661

we observe a counterintuitive behaviour: with an increase 662

in the system size for n > 2, the performance worsens, 663

or, in other words, the average AoI at the monitoring node 664

increases. Moreover, the lower λ, the higher the increase 665

in the average AoI, or the more inefficient the aggressive 666

policy becomes. This effect is particularly negative for low 667

λ values because the aggressive policy always goes for the 668

most expensive information source it can afford. Introducing 669

more expensive alternatives means that they will end up being 670

used rather than the cheaper sources. This results in a poorer 671

performance particularly for low λ values, when it is optimal 672

to exploit only the cheapest sources. Yet, when λ ≥ 0.4 intro- 673

ducing system diversity slightly improves the performance; 674
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Fig. 14. Average AoI vs. number of information sources vs. if the monitoring
node adopts aggressive strategy for different values of the EH rate, λ.

actually, the best performance is provided by c1 = 8 (see675

Fig. 12), therefore, when we shift from C = [1] to C = [16, 1]676

we achieve the “balance” and an improvement in the677

performance. However, with a further increase of the system678

size the “balance” shifts causing an increase in average AoI679

(see Fig. 14).680

IV. CONCLUSION681

In this work, we considered a system model with a sin-682

gle energy-harvesting monitoring node that can request status683

updates from multiple heterogeneous information sources that684

monitor the same process of interest. We assumed that the685

energy cost of requesting an update, as well as the statistics686

of the age of the received update varies across the information687

sources. In order to analyze the system, we considered dif-688

ferent combinations of costs and age distributions that are689

described in detail in Section III.690

We formulated the long-term average AoI minimization691

problem as an MDP, and obtained the optimal solution using692

the relative VI algorithm. We then studied the optimal solu-693

tion for different EH rates and found out that the solutions694

are more sensitive to the age distribution rather than the695

costs of the status updates. We demonstrated that having696

just the cheapest sources is mostly sufficient if the EH697

rate is low. We also considered an aggressive policy, which698

requests a status update from the most expensive source it699

can afford at each time slot, as a benchmark. We observed700

that the aggressive policy is near optimal when the EH rate701

is high.702

We found that adding information sources beyond a cer-703

tain number does not help, particularly if the available sources704

already provide sufficient diversity in terms of the cost-average705

age trade-off within the available energy sources.706

Future work includes an extended model comprising the707

channel dynamics and the resulting transmission time and708

costs, as well as more general EH schemes [39]. Another709

direction is to study reinforcement learning to choose the710

information source to use over time without depending on the711

explicit information on the age distributions of the sources or712

the statistics of the EH process [30].713

APPENDIX A 714

PROOF OF LEMMA 1 715

The lemma requires to prove, for any b, the existence of a 716

ϑ1(b) such that it is convenient to update if and only if δ ≥ 717

ϑ1(b). First of all, for b < b0 = minj=1,2,...,N cj , then the 718

statement is trivially true with an infinite ϑ1(b) as all sources 719

are too expensive to update. 720

Define R̄(s(t) = (b, δ), ai ) as the average optimal reward 721

starting from the current state s(t) = (b, δ) and after taking 722

action a(t) = ai . According to our model, if i > 0, that is, 723

we perform an actual update from source i, we evolve to a 724

state with either energy level b − ci or b − ci + ē (depending 725

on the EH process) and AoI ε∈Ei = [α,min(β, δ + 1)] with 726

probability γ̃i (ε), which is defined as follows. If β≤δ then 727

γ̃i (ε) = γi (ε) for all ε. If β>δ then γ̃i (ε) = γi (ε) for ε ∈ [α, δ] 728

and γ̃i (δ + 1) =
∑β

n=δ+1 γi (n). 729

From (4) and (5) we can write the following Bellman 730

equation for R̄(s(t), ai ) being 731

max
j∈Ω



(1− λ)
∑

ε∈Ei

(
ε+ γ̃i (ε)R̄

(
s(t + 1) = (b − ci , ε), aj

))
732

+ λ
∑

ε∈Ei

(
ε+ γ̃i (ε)R̄

(
s(t + 1) = (b − ci + ē, ε), aj

))


, 733

where Ω = {0, . . . ,n} (12) 734

Given that ε does not depend on aj , (12) can be written as: 735

(1− λ)
∑

ε∈Ei

(
ε+ γ̃i (ε)max

j∈Ω
R̄
(
s(t + 1) = (b − ci , ε), aj

))
736

+ λ
∑

ε∈Ei

(
ε+ γ̃i (ε)max

j∈Ω
R̄
(
s(t + 1) = (b − ci + ē, ε), aj

))
737

(13) 738

whereas if we do not update (action a0) we obtain 739

R̄(s(t), a0) = (1− λ) 740

×
(
δ +max

j∈Ω
R̄
(
s(t + 1) = (b, δ + 1), aj

))
741

+ λ

(
δ +max

j∈Ω
R̄
(
s(t + 1) = (b + ē, δ + 1), aj

))
742

(14) 743

We notice that (13) is not explicitly influenced by δ, which 744

is incidentally logical as, after the update, δ is reset to a “low” 745

AoI value,1 whereas (14) is increasing in δ. This implies that as 746

δ increases, there exists a turning point ϑ1(b) that makes (13) 747

smaller than (14) and this stays true for all values of δ ≥ 748

ϑ1(b). 749

APPENDIX B 750

PROOF OF LEMMA 2 751

Similarly to the previous lemma, we can compare the 752

Bellman equations for the updates from two different sources 753

1To be precise, the set Ei actually depends on δ but only for the reason
that whenever the update is supposed to be to a value in [α,β] that is higher
than δ + 1, the update information is actually useless and discarded, see (1).
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i and j. Note that we are always considering AoI values754

δ > ϑ1(b) for which an update is preferable to staying idle, as755

proven in Lemma 1. And since we are updating in both cases,756

we lose any explicit dependence on the AoI δ, as per (13) -757

in other words, after either update action, the system trajec-758

tory evolves from states with “low” AoI. Finally, we remark759

that R̄((b, δ), a) is always non-decreasing in δ for given b and760

action a. This implies that if R̄((b, δ1), ai ) < R̄((b, δ1), aj )761

but R̄((b, δ2), ai ) > R̄((b, δ2), aj ), then R̄((b, δ), ai ) >762

R̄((b, δ), aj ) also for every δ > δ2; that is, a source to update763

from can be the optimal one only over a set of contiguous AoI764

values.765
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