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Abstract—We extend available analytical studies that leverage
queueing theory to compute closed-form expressions for the aver-
age AoI in queueing systems with multiple sources. Specifically,
we consider the following original aspects. First, we assume that
multiple sensors are producing interconnected measurements and
therefore their status updates correlate with one another. We
also consider a cost associated with the measurements and we
finally apply non-cooperative game theory to derive the Nash
equilibria of the resulting system. Differently from the standard
multiple source system, which is analyzed in the literature from
the only game theoretic standpoint of competing sources, we show
that our system showcases collaborative-like behaviors thanks to
correlation among the source transmissions. Moreover, the impact
of a sensing cost is to decrease even further the aggressiveness of
strategic users, which may lead to the opposite problem, a lower
than optimal offered traffic to avoid costs.

Index Terms—Age of Information; Queueing theory; Game
theory; Remote sensing; Wireless sensor networks.

I. INTRODUCTION

Depending on the access technology, network management,
and application, age of information (AoI) may be a valuable
metric for wireless networks. It can be even more relevant
than throughput, delay, or loss probability, in remote sensing
applications such as environmental monitoring and status
reporting about position and movement of self or assisted
driving vehicles, which may need to exchange and keep data
updates as timely as possible [1]–[5].

AoI is an application-independent metric that refers to the
freshness of status updates over time. At time t, if the last
update from a monitor was exchanged at σ(t), the AoI is
defined as ∆(t) = t − σ(t). In the literature, stochastic
evaluations have been applied to derive AoI evaluation in
classic queueing systems, such as M/M/1, M/M/1/1, or G/G/1
queues with different disciplines [6]–[13]. This is a sort
of extension of classic queueing theory, often analogous to
finding the steady-state distribution for a Markov chain.

Moreover, there are extensions to cases with multiple
sources, most notably in [14], on which our analysis is based,
but also in [15]–[18]. These papers also explicitly address the
competition among multiple sources, each treated as a different
network agent reporting on its own monitored quantity and
therefore competing with the others in the queueing process.
The main theoretical instrument used to obtain analytical
results within a competing scenario is game theory, which we
also use but with a different twist on the problem [19]–[22].

Indeed, in most of the related research, different sources
of information are considered as entirely separate and inde-

pendent in their contents and also objectives. This means that,
whenever game theory is applied, it is for a purely competitive
scenario, up to the point of being adversarial, where multiple
sources try to gain as much as they can of the service capacity
of the queue for their own transmission.

We argue that this scenario may not represent many wireless
sensor network deployments, where it is well possible that
multiple sources generate independent data, but they often
track correlated underlying processes, when not the same one
[23]–[26]. In that case, we may think of using game theory,
which still is applicable as a framework to understand multi-
agent multi-objective problems [27]–[29], not to represent
aggressive competition among the sources but rather to inves-
tigate whether the anarchical behavior of a distributed system
can still obtain an efficient performance in terms of AoI.

In more detail, while we ground our derivations on pre-
viously available analytical findings, we bring the following
advancements with respect to the existing literature. First of
all, we introduce a cost for offered traffic from a source, which
is meant to constrain the data generation. This modification
would not be strictly needed in the standard queueing scenario,
where there is an implicit drawback in being too aggressive,
i.e., too high an offered traffic might clog the buffer at the
receiver and therefore result in exploding AoI values [14]. On
the other hand, this modification is needed in our scenario
as we consider a game theoretic perspective for evaluating
the efficiency of a distributed source management. The idea
is that if data generation processes result in equivalent AoI
performance, a lower offered traffic should be preferred as it
leads to a more parsimonious system utilization.

After this change, we explicitly consider a scenario with
multiple sources that, instead of transmitting entirely unrelated
and independent data, and therefore being purely competing
distributed agents, we allow for the content of the multiple
flows to be correlated [26], [30]. This means that any agent
can consider the traffic of others as somehow useful to bring
relevant information and therefore lowering the AoI of its own
source. This can actually be strategically advantageous as it
will allow for a decrease of the AoI without paying any cost.

As a result, we present a closed-form derivation that ex-
plores cost and correlation of multiple sources and derives the
resulting Nash equilibria (NEs) of the distributed allocation,
comparing it with an optimal resource sharing. The main
implication of our analysis is that while entirely disjoint
sources can compete for the queue’s service capacity but this



ultimately results in an efficient distributed sharing, where the
NE is sufficiently close to the optimal assignment, such a
property does not hold for correlated sources. Even though
the resulting AoI is made lower by exploiting the correlation
among the sources, this advantage is not fully exploited in
a distributed setup, especially for increasing costs, since the
agents tend to become lazy and leave the burden of the
update to others [29]. Our results can therefore open a new
line of investigation for AoI optimization in case of multiple
correlated sources, in particular exploring possible ways to
make their cooperation more efficient.

The rest of this paper is organized as follows. In Section II,
we briefly review reviews models proposed in the literature for
AoI optimization in queueing systems, on which we base our
analysis. In Section III, we describe our proposed extensions,
which is further analyzed in Section IV by means of game
theory. In Section V, we present some numerical results, and
we conclude in Section VI.

II. BACKGROUND

Many studies evaluate the AoI in queueing systems, for
various settings but especially based on classic memoryless
systems with different disciplines [8], [16], [31]. Even a basic
M/M/1 queue with FCFS discipline, which is the entry-level
system for any queueing theory student, poses two interesting
aspects that make it palatable for an exact analysis. First of
all, it is fully characterizable in closed-form, and computing
the statistics of the AoI can be simply seen as an extension
of classic evaluations pertaining to the queueing delay and/or
the number of users in the system.

In addition, the M/M/1 queue presents an interesting be-
havior for what concerns its AoI. It is well known that its
throughput is simply related to its stability, i.e., the arrival rate
λ and the service rate µ must satisfy the condition λ < µ, and
a high throughput is achieved on the border of this condition,
i.e., whenever λ approaches µ. On the other hand, the delay is
minimized whenever λ is close to 0. The AoI can be optimized
instead by offering a traffic that is in a somewhat intermediate
condition, i.e., λ close to µ/2, even though the server is
slightly biased towards being busy over being idle and so the
optimal load factor ρ = λ/µ actually happens to be ρ∗ ≈ 0.53
[7]. In other words, optimizing the AoI in an M/M/1 queue
implies seeking for non-aggressive management, where λ is
significantly lower than µ, so there is already a self-limitation
imposed to the choice of λ.

The quite elegant analytical results presented by Kaul and
Yates in [7] and subsequent contributions [14] are important
sources of inspiration for the present work. In particular, the
full expression of the average AoI ∆ for an M/M/1 queue
with FCFS policy, which leads to the considerations mentioned
above, is given as [7]

∆ =
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
(1)

and the computation is further extended in [14] to the case of
multiple sources to a scenario that, for the sake of simplicity,
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Fig. 1: Queueing system with 2 sources

can be thought of consisting of just 2 flows, with parameters
λ1, µ1, ρ1, and λ2, µ2, ρ2, respectively.

Some side remarks involve that there are substantially equiv-
alent expressions, at least for what concerns the extensions
meant in the present paper, to the cases of M/D/1, D/M/1,
G/M/1, and so on, as well as with switching the discipline
of the queue to LCFS, adding preemption, and more [6],
[15], [16], [18]. For the purposes of our study, all of these
evaluations can be considered equivalent, so we just go with
the simpler M/M/1 queue. Moreover, as already remarked by
[14], the scenario with just 2 sources is representative of an
arbitrary number of Poisson sources, since source 1 can be
thought as the one of interest, and the others just aggregate
every other flow in the network, if needed.

For the case of two independent sources, the average AoI
for source 1 is [14]

∆1 =
1

µ

[
ρ21(1− ρρ2)
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+

1

1− ρ2
+

1

ρ1

]
(2)

where ρ = ρ1 + ρ2.

III. SYSTEM MODEL

Our extension is based on a system like the one depicted
in Fig. 1, where two sources transmit their update packets
through an FCFS M/M/1 packet queue. The global service
rate of the queue is µ, and packets from either source are
identically served. Source i ∈ {1, 2} has Poisson arrival rate
λi, generating offered load ρi = λi/µ.

The first extension with respect to the existing literature is
to consider that a fraction α ∈ [0, 1] of the packets transmitted
by source 2 contain data that correlate to the process tracked
by source 1 so that they are actually able to benefit the AoI of
source 1 in the same way that packets transmitted by source
1 do. Consequently, we can reformulate (2) by considering
two equivalent sources, whose arrival rates are λ1 + αλ2 and
(1−α)λ2, respectively. Note that in this way the aggregate rate
is still unchanged, being equal to λ1+λ2. Also, the load factors
of the two sources are ρ1 + αρ2 and (1− α)ρ2, respectively.

In this case, the average AoI is given by

∆1 =
1

µ

[
(ρ1 + αρ2)2(1− ρ(1− α)ρ2)

(1− ρ)(1− (1− α)ρ2)3
+

+
1
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ρ1 + αρ2

]
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The introduction of α allows to distinguish a continuous
range of scenarios, with 3 particular cases:
α = 0 −→ Two independent sources, which is the scenario

of reference in [14] and the average AoI is given by (2)
α = 1 −→ The two sources behave as a unique flow with

arrival rate λ1 + λ2, which is the basic scenario of [7]
and the average AoI is given by (1)

0 < α < 1 −→ This is an intermediate situation where the
status updates of the two sources are correlated, meaning
that some packets transmitted by source 2 can act as
updates also for source 1 and vice versa; the average AoI
is as per (3).

An interdependence among the sources would be relevant
if, for example, they track connected processes, for example,
quantities with a cause-effect connection, or simply a positive
correlation. Or, they can be even tracking the same process of
interest [23], [32].

Notice that the AoI is a concept that makes sense of tem-
poral redundancy, implying that, to have fresh status reports,
it is pointless to concentrate updates at close instants, but
rather it more convenient to have them spread over the time
axis. In the exact same way, our analysis keeps into account
spatial redundancy among multiple sources, i.e., the fact that
fresh information can be gained from the update related to
some interrelated process. If this is the case, exploiting this
kind of redundancy would as well avoid needless updates
that can cause congestion, not to mention unnecessary energy
consumption from remote sensors [17].

IV. GAME THEORETIC ANALYSIS

Game theory is generally applied to multi-agent systems
to frame them into a multi-objective optimization where each
agent is driven by its own selfish objectives. For the context
of AoI, the immediate application, which is also discussed in
some related papers [14], [19], [21], would be to consider
that each source is an agent that is totally uninterested in
the other sources’ performance, and conversely considers the
minimization of its own AoI as the sole objective. This leads
to an NE solution that can be computed in closed form, thanks
to the analytical expressions of the AoI in different systems.

We remark that this very approach can still be translated
into our problem, which would imply to differentiate between
the globally optimal management, in which the average (or
total) AoI of all the sources is minimized, as opposed to the
NE, where each source is acting as a selfish player. However,
the rationale behind this implementation of game theory does
not fully represent our context where correlation among the
sources may be present. In this case, the objective of a low
AoI can also be achieved by letting the other source transmit,
and therefore the competition for the server is blurred.

In this paper, we are interested in extending the utility
function for each agent by introducing a cost, so that a source
objective is not just represented by a minimal AoI but rather
by the minimization of the linear combination of AoI and a
cost associated with the offered traffic, and weighted through
a cost coefficient c > 0. In other words, we define a utility for

source 1, which is a function of λ1 and λ2 chosen by each
players, respectively, as

u1(λ1, λ2) = −∆1 − cλ1 (4)

and similarly for source 2, with just an index substitution,

u2(λ1, λ2) = −∆2 − cλ2 (5)

Note that the costs are assumed to be symmetric for both
sources, but this assumption would be actually easy to relax,
and also the negative signs are due to that both the expected
AoI and the cost are metrics to be minimized, while the utility
is often conventionally taken as a quantity that is desirable to
maximize [28], [33].

The introduction of a cost term can be justified by many
reasons, including a more realistic characterization of the
sources, since it would correspond to the energy expenditure
or the updating costs that each source incurs for generating
status updates. But especially, the motivation behind adding
a cost term is that we need to more explicitly address the
strategic interaction among the sources in the case of α > 0,
i.e., correlation of their updates, to some extent [29].

When individual competing sources are considered, the
introduction of a cost term would just be redundant since
the individual agents see in the mutual access of the server a
limiting factor. In other words, no player will try monopolizing
the service capacity µ of the queue with its offered traffic
λ as this would lead to congestion and high AoI, even in
the single source case. However, we are now focusing on a
scenario where the sources are not necessarily competing and
can assist each other thanks to correlation [30], [34]. This is
pushed to the point that each individual agent may prefer that
some other source updates the information, if α is sufficiently
high, since it would still lead to a decreasing AoI without
paying any cost.

This interaction can still be framed in the context of game
theory, but more than being a conflict between competing
sources, it is just cast as a distributed management, whose
efficiency may be worth assessing [21], [22]. For this to
happen, the scenario of multiple sources in the presence of cost
and correlation can be framed as a static game of complete
information [35], [36]. Formally speaking, we introduce the
players as the two sources, their strategies as the choices of
λ1 and λ2 respectively, and the resulting payoffs as the utilities
given through (4).

We remark that in this context, it is possible to find a global
optimum as

λ∗ =arg max
λ

(
u1(λ, λ)+u2(λ, λ)

)
=arg min

λ
(∆1+∆2+2cλ)

(6)
where symmetry considerations lead to a solution where both
sources choose λ1 = λ2 = λ∗. The solution is easy to
derive in closed-form by finding the first-order derivative of
the objective, which can be computed through (3) and setting
it as equal to 0.

The NE is also found in a symmetric point, but a different
one. Indeed, the NE can be computed by considering the
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Fig. 2: Arrival rate λ at the NE (solid) and the global
optimum (dashed), versus the cost c, for different values of
the correlation parameter α.

selfish perspective of an individual source, which leads to
source 1 computing

λ∗1(λ2) = arg max
λ1

u1(λ1, λ2) = arg min
λ1

(∆1 + cλ1) (7)

that is, the best response of source 1 to any possible choice of
λ2 by source 2. However, this also leads to source 2 choosing
instead λ∗2(λ1) and because of the symmetry in the formulas
we get that the NE is ultimately achieved at the fixed point of
the best response, i.e., the solution in λ of equation λ = λ∗1(λ)
– or equivalently, λ = λ∗2(λ).

Moreover, given that we assumed a cost directly propor-
tional to λ, it is immediate to see that the globally optimal λ
is set in the value satisfying the following condition

∂
(
u1(λ, λ) + u2(λ, λ)

)
∂λ

= 0 ⇒ ∂∆1

∂λ
+
∂∆2

∂λ
= −2c (8)

whereas the NE must satisfy a similar condition but without
the partial derivative of ∆2 and the coefficient 2 multiplying
c, since source 1 does not care about minimizing the AoI of
the others and only counts its own costs (so, one source only).

In other words, this leads to a classic tragedy of the com-
mons [37], where the inefficiency of an NE are caused by the
selfish maximization of one player’s utility. This is not really
in contrast with the greater good of a global optimization, but
it just gives a partial view of the problem.

V. NUMERICAL RESULTS

We present some numerical evaluations of the target value of
λ computed through different approaches, either from a global
perspective or a selfish one of an NE. Given the symmetry of
the scenario, all of them result in the same arrival rate λ =
λ1 = λ2 for both sources. For the sake of visual representation,
µ is always chosen to be equal to 1.

Fig. 2 compares the optimal choice of the transmission rate
from a global standpoint with the selfish perspective of the NE.
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Fig. 3: Average AoI of one source at the NE (solid) and the
global optimum (dashed), versus the cost c, for different values
of the correlation parameter α.
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Fig. 4: Total cost ∆1 + ∆2 + 2cλ at the NE (solid) and the
global optimum (dashed), versus the cost c, for different values
of the correlation parameter α.

Remarkably, the value of λ at NE starts from a much higher
value than the optimal λ when c = 0 but, for increasing cost,
the two values become closer. This behavior reverses when
α = 1 where initially, for c = 0, the optimal value for λ is
approximately equal to λ at NE. When the cost increases, the
optimal value for λ becomes significantly larger than λ at NE.
When α = 0.5 the figure shows that the two curves (dashed
for optimal λ, solid for λ at NE) intersect for c ' 3.5.

According to the optimal and NE values of λ depicted in
Fig. 2, the average AoI achieved by source 1 is represented
in Fig. 3. Note that, given the symmetry of the scenario, also
∆∗

1 = ∆∗
2 , either for the global optimum or the NE. Fig. 3

shows that the value of ∆1 at NE is always higher than the
optimal value when α = 0.5 or α = 1, and the gap between the
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Fig. 5: Arrival rate λ at the NE (solid) and the global optimum
(dashed), versus the correlation parameter α, for different
values of the cost parameter c.

two curves representing the optimal (dashed) and NE (solid)
AoI becomes larger as the cost c increases. We also remark
that the AoI at the NE can even be lower than the optimal
case (for small α and large costs), which is due to the optimal
management not just considering the AoI but also the cost.

Indeed, the real objective of the optimization, i.e., the total
cost function ∆1 + ∆2 + 2cλ, is shown in Fig. 4. For an
optimal choice of λ (dashed lines), this value is minimized,
whereas the NE obtains values that are always slightly higher.
It is interesting to remark that, while the case with uncorrelated
sources (α = 0) achieves an NE that, while being sub-optimal,
is very close to the best possible allocation of offered traffic,
the gap widens when α increases. This happens in spite of the
AoI and the overall objective function being always lower as
the correlation increases.

This trend is shown to be even more acute in Fig. 3 for the
AoI than for the cost function of Fig. 4, where a worse AoI
can be somehow compensated by a better cost. This implies
that, while correlation among multiple sources is generally
beneficial to the AoI, the selfishness of the individual sources
may fail to properly exploit it to the best possible extent.

To further investigate this point, we consider the correlation
parameter α as the independent variable in Figs. 5 and 6. Fig.
5 shows the transmission rate λ at the global optimum solution
and the NE, for different values of the cost. It can be seen that,
for all the cost values, λ is higher at the NE than the globally
optimal case. The values of λ are in both cases decreasing in α,
which means that in a correlated scenarios the sources can save
transmissions. However, the trend is much steeper for the NE,
meaning that in a selfish allocation, the sources adopt a lazy
behavior where they rely on the other to perform the update
and save cost [29]. As a result, the higher the cost, the lower
λ and also the lower the α required for the curves to intersect,
meaning that for values of α higher than the intersection point,
the NE implies a lower λ than the optimal allocation.
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Fig. 6: Average AoI of one source at the NE (solid) and the
global optimum (dashed), versus the correlation parameter α,
for different values of the cost parameter c.

Fig. 6 shows the average AoI for one source as a function
of the correlation parameter α under different costs. We recall
that the optimization is performed over the linear combination
of cost and AoI, which explains why the AoI at the NE is
actually lower than the cost-optimal allocation at α = 0. In
this case, the cost of the NE is still higher than the optimal
allocation, but this is achieved with a lower AoI, since in the
case of no correlation among the sources, the NE describes
a slightly more aggressive offered traffic than the optimum.
However, as α increases, we observe a decreasing trend in all
the curves, for both NE and global optimal allocations. Thus,
analogous considerations than for the previous figure hold,
with the difference that now the AoI is higher for increasing
costs, since a larger c causes the source to be less active and
therefore updating less often.

VI. CONCLUSIONS

We discussed the role of correlation among multiple sources
in remote sensing, and how this can lead to spatial redundancy
that can be exploited in an AoI-optimization. Based on existing
analytical results for the AoI in multiple source queueing
systems, we inserted two parametric terms related to cost of
offered traffic and correlation among the source contents, so
as to enable a game theoretic evaluation that, in line with the
existing discussions on the subject, quantifies the efficiency of
a distributed management by the individual sources.

It is important to remark that our game theoretic analysis
does not revolve around a competition among the different
sources, which is already investigated in the present literature.
Indeed, competing behaviors among the sources are partially
emended by the correlation of their content that allows for
collaboration, rather than conflict. Still, given that generating
updates can be seen as a costly operation (in terms of trans-
mission and energy consumption), a distributed management
must account for that it would be convenient, from the strategic



standpoint of a distributed agent, to avoid sending updates and
letting the others do it.

As a result, we show that, while correlation among sources
is generally beneficial in lowering the AoI, a distributed
management is not always successful, especially if the cost
for generating updates is high. This means that the advantage
coming from exploiting the correlation may be partially lost
due to distributed selfish decisions made by strategic players.
This opens the door to better and possibly low-cost strategic
interactions.
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of information in IEEE 802.11p,” in Proc. IFIP/IEEE Int. Symp. Integ.
Netw. Manag. (IEEE IM), 2021, pp. 1024–1031.

[3] E. Gindullina, L. Badia, and D. Gündüz, “Average age-of-information
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