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Abstract—In this paper, we use game theory to analyze
the operations of energy harvesting in the context of multiple
sources powering an IoT device. Such terminals are often heavily
constrained in terms of energy provision, and they solely rely
on harvesting procedures, which do not guarantee reliability at
all times. We specifically consider a batteryless device that is
requested to send periodic updates and, for increased depend-
ability, exploits two different energy sources. The controllers of
these sources employ a game theoretic distributed management
that is simpler, and also more energy efficient, since no energy is
wasted for coordination. To evaluate the performance, we frame
the resulting interaction as a Bayesian game, for which we derive
the Nash equilibria and the Price of Anarchy. These insights
are discussed from a quantitative standpoint, giving numerical
assessments of the resulting system efficiency.

Keywords—IoT, energy harvesting, batteryless devices, game
theory, Bayesian game, Price of Anarchy

I. INTRODUCTION

IN THE INTERNET of things (IoT), thousands of devices
are expected to sense the environment and provide services,

in the contexts of smart home and factory automation, health-
care, cities, and agriculture networks [1], [2].

IoT devices are constrained in terms of performance (mem-
ory, computational resources, and so on) but also available
energy, since they are often deployed in remote/rural areas
or with just wireless connectivity, and it is not feasible or
simply inconvenient to provide them with wireline power
supply. Thus, it is sought to limit the power consumption to
what locally available at the IoT device, and to make it self-
sustainable in terms of energy [3], [4].

There are two general trends in research about energetic
management of IoT devices. The former is related to the use
of low-power consumption protocols, which is beneficial to
reduce the overall network consumptions from a general stand-
point [5]. For what concerns the energy generation instead, the
most adopted proposition is to take advantage of harvesting
renewable energy sources from the environment [6]. Both
points go in the direction of reducing the direct operational
costs of an IoT networks and improve the environmental
sustainability [7], i.e., they ultimately decrease the electrical
bills as well as the carbon footprint.

Unfortunately, when harvesting techniques are employed,
the availability of the device cannot be guaranteed due to
irregular and bursty energy arrivals [8], [9]. Some forms of
intelligent control becomes required to make the IoT device to
operate seamlessly as much as possible. One practical solution
would be to provide a rechargeable battery to the IoT devices,
so as to implement a Harvest-Store-Use architecture [10]. We
argue that this just mitigates the issue of dependability of IoT
devices without really addressing the main problem that the
energy arrivals are erratic. Adding a battery can indeed provide
an increased margin against outages but not avoiding them
entirely. Also, when introducing these architectures, batteries
are always thought of as ideal buffers, while in reality they
have several imperfections in their operation [11].

For this reason, we concentrate our analysis on batteryless
IoT devices, i.e., following a simpler Harvest-Use architecture,
where the harvested energy cannot be stored and it is therefore
either immediately used or wasted [12]. We do not advocate
that such operation framework is necessarily better than using
some form of energetic buffering, even though it is certainly
less expensive for widespread IoT deployments. Still, every
analytical insight that we gain in the context of batteryless IoT
devices through our analysis can in principle be extended, with
proper modifications, to a Harvest-Store-Use setup as well.

Beyond energy buffering, also multiple energy sources
to increase reliability of the end device. In particular, we
consider an IoT device that can be powered by two different
energy harvesting technologies [13], and evaluate whether this
increases its reliability. The two sources harvest energy from
different ambient effects (e.g., solar and wind). While the
maximum benefit would be theoretically achieved whenever
the associated natural phenomena are complementary to each
other (i.e., one produces energy whenever the other does not),
this does not sound very realistic, and therefore we focus on
two phenomena that are independent of each other.

We assume that both energy sources are managed by a smart
controller. Also, the energy harvesting operation has a cost,
although lower than the benefit of having operation from the
IoT device. Thus, on the one hand, the controllers of each

978-1-6654-5303-5/22/$31.00 ©2022 IEEE
441



source would like to limit their activations if they can estimate
the other source is already powering the IoT device. On the
other hand, there is a risk that one source, despite being able
to provide energy, is kept inactive, just to avoid the activation
cost, but ultimately resulting in the IoT device being in outage,
which is generally to be avoided [14], [15].

Even though some signaling exchanges among the con-
trollers would avoid inefficiency, we argue that this would
also consume energy and therefore is not generally convenient
[16]. Thus, we would like to see if it is possible to design the
interaction of multiple sources in a completely distributed way,
so as to reduce overall complexity in terms of management.
In particular, we make use of an approach rooted in game
theory; specifically, we frame the interaction between the
source controllers as a Bayesian game [17].

As such, we discuss the resulting Bayesian Nash equilibrium
(NE) and the Price of anarchy (PoA), arguing whether the
introduction of multiple sources can be beneficial to avoid
outages, and a distributed management is really efficient. The
results imply that, whenever one of the multiple sources is
clearly better, e.g., in terms of suitability (lower cost, higher
availability), a rational decision making process would lead to
always use that source, and smart controllers can consider any
less efficient source to be strictly dominated. This result is in
line with the finding of [14], showing that multiple sources of
different effectiveness have little use as the best one will be
used for most of the operation, if not always.

Conversely, multiple source diversity might be useful when
the sources have similar characteristics. However, also in this
case, inefficiencies may arise from a distributed management,
especially since the lack of coordination may lead to unnec-
essary activations. In short, multisource energy diversity may
not be beneficial if not properly controlled.

In the following, after introducing some game theory prin-
ciples in Section II, we develop in Section III a mathematical
model of the interaction between two sources of energy that
attempt providing energy to an IoT node. Section IV computes
the NEs. We provide quantitative results in V and finally we
conclude the paper in Section VI.

II. GAME THEORY FUNDAMENTALS

Making predictions about the conduct of multiple concur-
ring agents is the main application of Game Theory which is,
in recent times, increasingly being used for information and
communication technology (ICT) [18], [19], as well as energy
management [6], [20], [21].

Agents interacting within a game are called players. Each
of them aims to achieve an individual objective, described as
the maximization of the utility of that player. In particular, we
consider a game involving a set of players N , choosing their
pure strategies (in our case, to be active or not) in a set S,
and U is the set of utilities that result from the joint selection
by all the players.

An important concept is the Nash equilibrium, defined as
a joint strategy profile that leads to locally maximize the
individual utilities of all the players. In other words, at an

NE each agent is playing a best response to what are the
predicted strategies of all the others [22], i.e., the so called
beliefs. Thus, a NE is a strategy profile for which no player has
an incentive to unilaterally deviate. Also, we remark that we
can consider pure strategies (i.e., elements of sets S) or extend
the discussion to mixed strategies, i.e., probability distributions
over the set of pure strategies. This latter extension is relevant
because a game with finite strategy set is guaranteed to have
a NE only in the sense of mixed strategies, in general.

For the present case, we consider a Bayesian game, i.e., a
scenario of incomplete information in which beliefs over the
characteristics and behaviors of other players are also captured
by types [17]. In essence, depending on the type, a player
can have a different utility function. Each player has only
knowledge about its own type, while it is unaware of the types
of the opponents and only knows the probability distribution
over them. More precisely, the probability distribution over the
types of the players is common knowledge among the players.

III. SYSTEM MODEL

We focus on a system consisting of two energy harvesting
sources S1 and S2 and an IoT device that is the only user
of the produced energy. We suppose that the IoT device has
some data to send, but it can do that only if at least one of the
sources is providing energy. A source can provide energy if it
is able to harvest it from the environment in that specific slot,
and this happens with a certain probability. If this condition
does not hold (i.e., no energy is received by the device) the
sender is not able to complete its job, failing its task [12]. To
be more precise, if a source collect energy but it does not send
it until the end of the same slot, the energy will be lost, so it
cannot be stored to be sent in subsequent slots. In our specific
model, the end device is treated as a completely passive object
since its only role is to send data whenever it has available
energy; for this reason, it is not a player of the game.

A. Players characterization

Sources S1 and S2 are not always able to power the
device with sufficient energy for its operation. We assume that
this relates to some random ambient condition, on which the
energy harvest is based, so that each source has a different
probability of being able to produce electrical energy in a
given slot [8]. The harvesting conditions are i.i.d for each slot
and also the two sources are mutually independent. This is the
proper description, for example, if the two sources generate
energy from different natural phenomena (e.g., solar or wind
energy); and, of course, having the energy arrivals to each
source being independent from one another appears justified
as it increases the diversity.

So, denote with λ1 and λ2, the probability that sources S1
and S2, respectively, have available energy on that time slot.
Each source is characterized by an action set that provides two
different options:
idle (I): if a source decided to stay idle it means that indepen-
dently from the fact that there is or not energy availability, it
will not provide any energy to the target device;
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send energy (E): if a source decided to be active it means
that it will try anyway to provide power to the target device
anyways, and therefore, possibly failing if the energy is not
available in actuality. To send energy, it must activate paying
an activation cost in term of used power.

B. Payoffs description

We consider that the only goal of the two sources is to
guarantee that the IoT device has the necessary energy to
transmit data. For this reason, it is not important whence
the required power comes from; consequently, if in a given
time instant the transmission succeeded, both the players will
receive an identical reward, set to an arbitrary value of 1. Given
that the utilities only have ordinal meaning, these values can
be rescaled if needed [23]. Following the same reasoning, if
neither S1 nor S2 provide energy to the target device in a
given time slot, both of them will get utility 0.

Each source has to pay a cost to send energy to the IoT
device. Independently from the fact that a given player has
available energy or not in the considered time slot, if it decides
to send power, it will pay the corresponding cost. Since we are
considering two different types of sources, each one of them
has a different cost value ki ∈ (0, 1) ∀i = 1, 2.

The overall expected payoff obtained by each player de-
pends on the action chosen by the other one, but also its
own cost of sending power, and the probabilities that S1 and
S2 are able to collect energy, i.e., λ1 and λ2, respectively.
Consequently, as described above, we assume that if the IoT
device will be able to transmit its packet, both sources get a
profit equal to 1. The utility is equal to the profit minus the
player’s own cost of sending power to the user. Furthermore,
if both players decide to send energy simultaneously, there is
no added benefit, since they will both pay the sending cost
and the profit will still be 1, without any advantage from the
extra energy sent, which is wasted.

C. Game model

This problem can be modeled as a Bayesian static game
with two players [17], S1 and S2. Each of them can be of
two types according to λi, ∀i = 1, 2. The set of actions that
players can take is {E, I}, independent of their type.

In more detail, the two sources (or better, their controllers)
are rational selfish players that can decide whether to be active
or not. In the former case, the IoT device is powered: it
is enough that just one source is active, but of course both
sources being active is also a valid option to power the device.
On the other hand, the controllers incur a cost in being active,
which implies that both of them choosing the same course of
action is inefficient: if they are both active, some unnecessary
cost is incurred, while if they are both inactive, the IoT device
is in outage. Finally, we consider the option of the environ-
mental sources to be harvested by each of the controllers to
be available with given independent probabilities, which are
common priors for the players. In game theoretic jargon, this
corresponds to introducing a Bayesian type of the players,
describing their actual ability of choosing to be active.

According to the choices of the players, we have 16 possible
outcomes, as we can see in the Normal form representation of
Fig. 2, derived from the Extensive form of Fig. 1.

IV. NASH EQUILIBRIA COMPUTATION

Starting from the game representation, we compute all the
payoffs as functions of parameters ki and λi. It can be shown
that four situations occur, depending on the numerical values
of the parameters. According to the region where their values
fall, the set of NEs changes, and consequently the preferred
strategies of each player. Actually, this count can be increased
by considering threshold cases where border values are taken.
We can write strategies as pairs XY of actions, meaning that
a player plays X or Y depending on whether it has energy
available or not, respectively.

We can distinguish the following cases:
(A) λ1 < 1− k2, λ2 < 1− k1: the only NE is (EI, EI)
(B) λ1 < 1− k2, λ2 > 1− k1: the only NE is (II, EI)
(C) λ1 > 1− k2, λ2 < 1− k1: the only NE is (EI, II)
(D) λ1 > 1−k2, λ2 > 1−k1: there are three NEs, that is, both
(II, EI), (EI, II) and one in mixed strategies: (αEI + (1−α)II,
(1− β)EI + βII), with parameters α, β ∈ [0, 1].

These situations also become blended along the borders,
i.e., whenever one of the conditions holds with equality. In the
followings we will discuss each region of interest separately.

A. Analysis of region A

In this case, the two λis are similarly valued and on the
lower side of their range, and this is known to both controllers.
Hence, from a game theoretic perspective, the two sources
decide to play conservatively. In other words, they always
send energy if they have some, in order to ensure the maximal
power availability to the target node. In this way, the drawback
of those strategies is that there is a real chance that both
sources decide to transmit together, which leads to a waste
of energy. Anyway, our model does not explicitly penalize
wasting energy if power delivery is successful. For this reason,
given the low probabilities involved, they prefer to always
transmit if they can.

B. Analysis of region B

If the combination of costs and probabilities falls in B, we
can conclude that S1 decides to never send energy regardless
its probability and cost, while S2 decides to send energy only
if it has enough energy available in that specific time slot. If
this is not the case, also S2 chooses to stay idle. This happens
because, with this parameters, the payoff of S2 playing this
strategy is always greater or equal than the ones obtained by
playing others strategies. The situation is analogous for S1.

In practice, inside region B, both players know that source
2 is the more adequate to provide energy (λ2 > λ1). So, S1
has an incentive in staying idle in any case.
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Fig. 1. Extensive form representation.
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S1

EE λ1+λ2−λ1λ2−k1 λ1+λ2−λ1λ2−k1 λ1−k1 λ1−k1
λ1+λ2−λ1λ2−k2 λ1+λ2−λ1λ2−λ2k2 λ1+λ2k2−k2 λ1

EI λ1+λ2−λ1λ2−λ1k1 λ1+λ2−λ1λ2−λ1k1 λ1(1−k1) λ1(1−k1)
λ1+λ2−λ1λ2−k2 λ1+λ2−λ1λ2−λ2k2 λ1+λ2k2−k2 λ1

IE λ1k1+λ2−k1 λ1k1+λ2−k1 λ1k1−k1 λ1k1−k1
−λ2−k2 λ2−λ2k2 λ2k2−k2 0

II λ2 λ2 0 0
λ2−k2 λ2−λ2k2 λ2k2−k2 0

Fig. 2. Normal form of the game.

C. Analysis of region C

In area C, what happens is somehow symmetrical to what
described in area B. S2 decides to never send energy regard-
less its probability and cost, while S1 decides to send energy
only if it has enough in that specific moment. If it is not so,
also S1 chooses to stay idle. For both players, these actions
are always the best response to the other player’s choice and
hence they describe dominant strategies.

D. Analysis of region D

In region D, three NEs are found: two in pure strategies and
one in mixed strategies, mixing the same strategies already
involved in the pure NEs. This situation can be interpreted
considering that both players have high probabilities of having
energy to send. So, what happens in the pure NEs is that
one of the players takes action, at which point the other has
no incentive to intervene. Indeed, the latter always stay idle,
assuming that the high probability of the other source to have
energy is a good assurance about the successful delivery.

In the mixed case, both the sources play both strategies
according to a certain probability. In particular, the presence
of the mixed strategies NE is justified by the fact that a player
may not want to always play the same strategy, but it may
prefer to play sometimes ”EI” and others ”II”. Accordingly to
the probabilities of the mixed strategies, it is possible that the
alternation of strategies will lead to a lower number of times
in which both stay idle, alternatively transmit or both transmit.

E. Analysis of the borders

In the situations where λ1 = 1−k2 and/or λ2 = 1−k1, that
is, values along the borders between the main regions, we fall
in some sort of hybrid operating points. Indeed, in those cases
the resulting NEs are the combinations of the equilibria of the
involved areas.

Without giving a specific analysis of every combination, we
can connect the outcomes over each border region with the
surrounding areas. It is important to point out that, somehow
analogous to region D, in the border points also multiple
equilibria are present. On the one hand, this leads to multiple
options for the two players. On the other hand, this means
that the system behavior is difficult to predict and a distributed
strategic choice by individual selfish players may not be the
best course of action, as this can lead to lack of coordination,
opposed to the cases where a single NE is present.

F. Remarks

When the parameters falls in region A, both sources con-
tribute to the overall system availability. In regions B and
C, one of the sources always remains idle. Thus, if λ1 ∈
(0, 1−k2)∧λ2 ∈ (1−k1, 1) there is no point in having S1 as
just S2 is possibly used. If λ1 ∈ (1−k2, 1)∧λ2 ∈ (0, 1−k1),
the situation is reversed and the only used source is S1. This
has to be taken into account while dimensioning the system,
deciding to implement two sources only if it is worth the effort.

Finally, in region D, the mixed NE makes the outcome
more difficult to predict. Also, when the mixed equilibrium
is chosen, with non-zero probability both source are inactive.
Overall, this may lead to inefficiencies, especially if the
availability of energy is quite high for both sources. In this
case, a selfish behavior by a source can be to stay inactive
and avoid paying the cost; however, if they both act this way,
the outcome is in the end that the IoT device is not pow-
ered. Surprisingly, this might be worse than what happens in
strongly unbalanced scenarios, i.e., when only one source has
high energy availability, since the NE will be unequivocally
determined as that source being the energy provider.
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Fig. 3. Numerical instances.

V. NUMERICAL RESULTS

We consider a game theoretic management of a two source
energy harvesting system as described in the previous section,
and we consider specific choices of the numerical parameters,
in particular for what concerns their operating costs, discussing
the resulting NEs and operating regions. We consider four
situations, represented in Fig. 3:

(a) both sources have equal intermediate costs k1=k2=0.5
(b) both costs are low, but different, k1 = 0.2, k2 = 0.3
(c) the costs of the sources are low and intermediate,

respectively, i.e., k1 = 0.2, k2 = 0.5
(d) the costs of the sources are low and high, respectively,

i.e., k1 = 0.2, k2 = 0.8.
We see that whenever k1 is close to k2, we have a similar

role played by both sources, which leads region B and C to
be small. The width of regions A and D depends instead on
the magnitude of k1 and k2. Notably, when these costs are
average to large, as in Fig. 3a, the area of D may be quite
large and, as we will discuss next, we expect that in this case
the outcome can be extremely variable. On average, in region
D, the presence of two sources that act egoistically tends to
be even worse than a single source.

Thus, it would be more convenient to operate in situations
such as the one in Fig. 3b, where both sources are analogous
and their cost is low. In this case, we obtain that the largest
region is A, where the only NE is also the most efficient, as we
will discuss later. Hence, the presence of multiple affordable
sources boosts the efficiency of the system.

To quantify the efficiency of the outcomes for each scenario
and in each region, we discuss the PoA of the resulting system.
This is a game theoretic concept often used to describe the
impact of players’ egoistic behaviors on the system perfor-
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Fig. 4. Graphs of PoA for the four different situations.

mance. We compute the PoA based on the total system utility
by taking the ratio between its maximum possible value and
its value at the NE; in the case of multiple NEs, we take the
worst one. The idea is that if the PoA is close to 1, then the
NE obtain close-to-optimal performance. Otherwise, the PoA
quantifies the extra cost paid by the system due to inefficiency
in coordination [24]. The graphs of the PoA are shown in
Fig. 4, where the colors match those used in Fig. 3.

It is immediate to see that the PoA in region A is very close
to 1. This means that the situation with one single NE equal
to (EI, EI) achieves the best possible outcome for the system.
This is of course more likely to happen when the costs are
low, in which case region A is bigger. In such a region, both
sources are aware that the cost of sending energy is low and
the likelihood that the other source is active is high. So, in this
case, even an egoistic choice of strategy makes the interest of
the whole system as well. Therefore, the use of a distributed
management in such a scenario is well justified. Seen the other
way around, this scenario implies that the extension to multiple
sources is sensible only if both are sufficiently reliable and
cheap, in which case the system performance is increased by
means of added source diversity. Conversely, there is almost
no point in adding a significantly worse source to a system,
as any benefit is nullified by the added burden for managing
it, as will be shown next.

Regions B and C are characterized by symmetric NEs and as
such, their PoA trends are analogous. The symmetry is evident
especially in Fig. 4a, where the costs are equal. What happens
is that when the probability for a source of having energy is
much bigger than the other, the PoA is close to 1, i.e., very low.
However, this does not necessarily comment on the resulting
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efficiency, but rather implies that the distributed choices of the
players lead to a very predictable outcome. Specifically, in this
case one source has little availability on average, so the other
source would be better off by being always active. As a result,
the PoA is low as there is no doubt on the outcome, but it is
hardly an increase in efficiency from the system management
point of view, it simply means that the less efficient source is
never used, and its presence may even be questioned.

When the probabilities become similar, the PoA of regions
B and C increases. This is because the NEs in these regions are
(II, EI) and (EI, II), respectively, i.e., there is only one active
source, and the efficiency of choosing it depends on whether
this is actually significantly better than the other. If they are
comparable, instead, it is inefficient to use the better of them
but not exploiting the other, that is just slightly worse. Also,
as the values approach region D, there is a steep increase of
the PoA due to the sources possibly changing roles.

Indeed, in region D, the PoA is generally quite high in all
situations. This is especially due to the presence of multiple
NEs, which can lead to lack of coordination. In fact, while
game theory postulates that selfish rational users will operate at
an NE, in the presence of multiple equilibria they can end up in
choosing different uncoordinated policies, unlike the situation
where the equilibrium is unique and there is no doubt on the
choice. As a side comment, the PoA also happens to be high
on the borders, for the very same reason, i.e., the presence of
multiple equilibria, as discussed in the previous section. This
result comments on the insertion of multiple sources in an
energy harvesting platform not being always beneficial if the
sources are not sufficiently reliable. While the case with one
weak source is just pointless, the scenario where all the sources
are weak can even lead to harmful outcomes if the controllers
are not properly coordinated, which jeopardizes the possibility
of a distributed management. We believe that this stands out
as a particularly useful guideline for system implementation.

VI. CONCLUSIONS

We presented a game theoretic analysis of an energy
harvesting system with two renewable sources powering an
IoT target node with distributed management. We considered
the key parameters of the activation cost and the probability
of being capable to deliver energy, which is framed as the
Bayesian type of the players.

We showed the impact of both parameters on the choices of
the players and the resulting system equilibrium. Our analysis
shows that the availability/cost tradeoff of both sources is
actually key in determining whether the use of multiple
sources is beneficial. The introduction of multiple sources
with uneven properties (i.e., one is much more often available
and less expensive than the others) is basically useless, since
the worse source will never be used anyways [17]. When
both sources have analogous properties, they better have good
availability and/or low cost, in which case their distributed
management will be efficient and with low PoA. Conversely,
the introduction of multiple sources with bad properties might
even make the distributed management inefficient [14].
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