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Abstract—This paper explores the optimization of
status updates in sensing systems, focusing on misclas-
sification in machine learning (ML) models. Previous
research has primarily tackled the impact of different
techniques throughout the communication layers on Age
of Information (AoI), or alternatively studied the Age
of Incorrect Information (AoII) as a flaw that can be
counteracted by a more active transmission pattern.
Our study presents analytical considerations, as well as
simulation results from real datasets, with the original
aspect that classification errors are not an externality,
but are triggered by a fraction of the status updates
themselves, which therefore ought to be kept under
control. An excessively high number of transmission may
be damaging the system, and the right balance needs
to be found between prompt updating that lowers AoI,
and accuracy to minimize AoII at the same time. In this
sense, we offer a new standpoint for timely status update,
where freshness of correct information is required for
smart systems to make the best decision in real-time.

Index Terms—Age of information; Age of incorrect in-
formation; Machine learning; Cross-layer optimization;
Data Acquisition.

I. INTRODUCTION

Nowadays, the need for up-to-date information is
undeniable in the ever-changing landscape of smart
devices and interconnected systems [1], [2]. However,
the importance of data accuracy is equally essential.
This duality highlights two key aspects that must be
taken into account in modern data-driven applications:
the freshness of the data and its correctness [3].

To illustrate this, consider the example of tracking
a vehicle’s location using a combination of GPS and
WiFi technologies [4], [5]. Both obsolete position
reporting and wrong estimates can lead to navigation
errors or misguided decision-making with fatal conse-
quences [6]. Similarly, in the healthcare sector, mon-
itoring a patient’s vital signs and health parameters
is heavily reliant on data timeliness and accuracy [7].
Stale data can cause overlook a serious health issue
that requires immediate attention, but at the same time
a rushed wrong classification may trigger unnecessary
alarms and interventions, causing undue stress and
potentially compromising patient care [8], [9].

Historically, the main focus in data-driven systems,
particularly in the Internet of Things (IoT) domain,
has been on the timeliness of data updates. Much

research has been done to address the challenge of
minimizing the Age of Information (AoI) through
efficient scheduling of status updates [10]–[13]. This
metric measures the time elapsed since the last suc-
cessful update of a particular piece of information.
By minimizing AoI, IoT systems strive to ensure
that decision-making processes are based on the most
current available data.

Although the pursuit of minimizing AoI is still
highly relevant and critical, there is an increasing
recognition that the correctness of data is just as
important. Timely but inaccurate data can be as dam-
aging as outdated information [14]. Changing focus
from emphasizing data freshness to incorporating data
correctness marks a significant evolution for data-
driven systems [15].

The scope of our research endeavor is on timely sta-
tus updates within the context of a Machine Learning
(ML) model classifying incoming data. We recognize
that, due to the inherent imperfections of ML models,
there exists a non-zero probability of misclassification
[16], which can lead to error amplification and/or
making wrong control decisions. Consequently, it is
imperative to address not only the timeliness of data
updates, but also the quality and correctness of the
information [17].

Thus, our primary focus shifts toward including
also a similar metric known as the Age of Incorrect
Information (AoII) [15], [18]. Unlike the conventional
AoI metric, which emphasizes the freshness of data,
AoII places significant emphasis on the potential con-
sequences of delivering incorrect or inaccurate data
[3].

In essence, AoII penalizes data updates that result in
incorrect classifications by the ML model. It encapsu-
lates the detrimental effects of misinformation and pro-
vides a holistic perspective on the cost associated with
erroneous data. By shifting our attention to AoII, we
recognize that the consequences of misclassification
can be severe, ranging from misinformed decisions in
critical applications to compromised system reliability
in various domains [18].

Our analytical formulation considers a sensor send-
ing status updates to a receiver over a finite time



horizon, driven by a penalty function to be minimized,
being the linear combination of AoI and AoII through
a variable weight [19]. The problem resembles that
of scheduling a constrained number of transmission
updates over an erasure channel [11], [15], [20], with
the important difference that in that scenario, the
only impairment is due to the channel which causes
the information to be less accurate, but this can be
counteracted by retransmissions [21] or additional
transmissions [22].

Conversely, we argue that achieving minimal
penalty in the case of imperfect classification (as
opposed to just erasures) lies in a balanced choice of
the transmissions to perform in the considered time
horizon, since too many status updates can harm the
problem’s objective when they do not bring signifi-
cantly fresh information and at the same time imply
a higher risk of misclassification that increases AoII
instead. This trend becomes even more acute if the
weight of AoII in the linear combination increases,
which is also a key parameter that we are going to
investigate [23].

We further apply our framework to a real case
scenario of a support vector machine (SVM), whose
1-accuracy score is used to derive the probability of
misclassification [24]. Finally, we show how the most
critical scenario is when few updates can be sent and
the impact of wrong classification is more severe, since
in this case it is difficult to correct classification errors.
Such a trend eventually flattens out as the number of
updates increases.

The remainder of the paper is subdivided as follows.
In Section II, we discuss the state of the art relevant to
our work. In Section III, we describe the analysis of
our scenario. In Section IV, we present the ML model
we used for our experiments and its use pipeline. In
Section V we discuss the results obtained from our
numerical evaluations and finally in Section VI we
make the final remarks.

II. RELATED WORK

In recent research, numerous academic papers are
delving into the concept of AoI within communication
systems, with a particular emphasis on its relevance
to remote sensing applications in the context of the
Internet of Things (IoT) [10], [25], [26]. One note-
worthy group of studies focuses on the theoretical
assessment of AoI concerning various medium access
policies and queueing strategies [27]. This constitutes
a fundamental area of investigation, but somewhat
distinct from our analysis, which concentrates just on
a single node transmitting updates [19], [20].

Another frequently encountered scenario involves
integrating AoI into the objective function. This typ-
ically aims to minimize the average AoI over an
extended period at a receiving node while imposing
constraints on the average transmission count at the
source node [28].

In particular, papers like [11], [20], [22], [29] share
the similarity of planning the timing of status up-
dates, referred to as scheduling. In [29], the problem
considers multiple sources with independent arrivals
sharing a channel. Conversely, [11] focuses on a single
source but a broadcast communication. References
[20] and [22] study instead a single unicast source
transmitting over an error-prone channel, and present
different policies for AoI optimization. In the present
paper, we take inspiration from the stateless policy
presented in the former of these two references.

However, the important difference with all these
previous contributions is that we consider not just
AoI, but also AoII in the evaluation. This translates
the communication issue into semantic aspects, since
the content accuracy becomes relevant beyond its age
[23]. We actually look at a linear combination of
AoI and AoII; more precisely, as will be clear in
the following, we consider a baseline penalty related
to AoI that is constantly receiving unit weight in
all the evaluations, plus an increase of AoII times a
multiplicative coefficient denoted as Z ≥ 1 that is due
to wrong classifications following the reception of a
status update.

In other words, if the semantics of the commu-
nication is ignored and the failure events simply
correspond to packet losses, we can set Z = 1 to
imply that we treat information ageing phenomena
independently of whether said information is correct
or not. Conversely, for mission-critical assignments
where the accuracy of information is relevant, we will
evaluate the impact of a higher coefficient Z.

Finally, our aim is also to connect this penalty
combining AoI and AoII with the outcome of a
machine learning process [1]. Nowadays, smart cyber-
physical systems are expected to make real time
decisions that can be extremely critical for the end
user, which requires freshness but also accuracy of
information. However, this is often regarded as some
external factors cause the information to drift towards
an incorrect value [15].

The perspective of our approach is different, since
it is the sender that appears as an initiator of incorrect
content, due to wrong classifications in the ML unit
[16]. In turn, this implies that it may be not always
convenient to schedule an extra transmission, which
is harmless in the case of perfect data classification,
but can lead to increasing the penalty especially if the
probability of misclassification is high [23].

III. ANALYSIS

We consider a device located in a constrained en-
vironment and equipped with a pretrained ML model
to classify data collected through its sensors. Because
the ML classification is not perfect [16], there is a
non-zero probability of misclassification p. When a
data sample is misclassified, applications that operate
downstream would trust the classification performed,
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Fig. 1. AoI and AoII in the case of misclassified updates.

thinking of having fresh and correct information,
which is prone to wrong decision making.

For this reason, we do not use just AoI as the
metric of interest to be minimized, but we combine
it with AoII [3], with the latter having the benefit
of penalizing updates giving an incorrect reporting
about the process. Fig. 1 shows the time evolution
of AoII A(t) in a time frame of length N with
schedule update instants τ1, . . . τ4. If there was no
misclassification, A(t) would be reset to the original
value, in contrast, the metric continues to increase
in the case of incorrect information received at time
instants τ2 and τ3, highlighted in red in the figure. We
are interested in the average AoI, which is calculated
analytically, given the process A(t) as

∆ =
1

N

∫ N

0

A(t)dt . (1)

This means that from a geometric perspective, the area
below the triangle continues to increase by adding par-
allelograms on top of the baseline of update triangles
at every update instant. Thus, we study the effect of
adding a weighting parameter to these added areas
with respect to the offline choice of update intervals.

We define M as the total number of updates we can
perform in a unit time interval. We further define the
duration of the inter-update times as yi = τi+1 − τi
with τ0 = 0 and τM+1 = 1. We consider p to be the
probability that a sample is incorrectly classified and
Z to be the factor that controls the importance given to
errors made by the model. With these definitions and
with a procedure similar to [20], the average penalty
can be computed using geometric intuition as

P(y) =

M∑
i=0

y2i
2

+ Z

M∑
j=i+1

yiyjp
j−i

 . (2)

We refer to the inner summation as ω, which is the
extra component of the penalty added whenever a
misclassification occurs, due to increasing AoII. We
also note that for Z = 1, (2) boils down to the standard
definition of average AoI [22].

We schedule inter-update times to minimize this
penalty with a stateless procedure [20]. More sophisti-
cated methodologies can be utilized, especially lever-
aging the knowledge about the classification outcome
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Fig. 2. Operation of the ML model. A successful classification
resets AoI, otherwise the penalty due to a misclassification increases.

in a stateful procedure [15], [29]. Yet, this approach
would require a more sophisticated analysis and is
therefore left for future research, also because it would
require a discussion on how to detect and possibly
counteract classification mistakes at run-time.

Finding a pre-determined schedule for status up-
dates is mathematically equivalent to solving the fol-
lowing optimization problem

min
y

P(y) (3)

s.t.
M∑
i=0

yi = 1

yi ≥ 0 ∀i = 0 . . .M . (4)

In order to to find the minimum of the objective
function we can null its gradient ∇∆(y) obtaining a
system of M−1 linearly independent equations, which
is fully determined because of the constraints.

Consisting of quadratic equations, the problem ad-
mits a solution in closed form. However, the resulting
expression is cumbersome and does not add much
to the discussion. Instead, the resulting optimization
can be solved by numerical methods with a fairly
tractable complexity. In the following, we will present
results obtained by numerical optimization through
the interior point method that in this specific problem
allows very fast convergence [30], where solution is
obtained almost immediately and with high accuracy
even on personal computer processors.

IV. MACHINE LEARNING MODEL

A schematic of the operation procedure of the ML
model, and its impact on the penalty function, is
shown in Fig. 2. In more detail, we trained a support
vector machine (SVM) with a radial basis function
(RBF) kernel on the TUANDROMD dataset [31]. This
procedure is carried out in two steps: first, we choose
the best fitting model and its hyperparameters through
a Bayesian optimization (BO) process [32], then we
train the obtained ML model until convergence. We
adopt a k-fold cross validation approach during the
model selection phase.
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Fig. 3. Average Age of Information with 3 update instants. Dashed
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Both the BO procedure and the final training aim at
maximizing the 1-accuracy score a of the model be-
cause this particular metric will then be used to derive
the probability p of misclassification as p = 1 − a.
Ultimately, our experiments obtained p ≈ 0.01.

Following the initial training phase, after which the
model is no longer updated and only used in inference
mode, a stateless scheduler decides the best update
instants a priori, based on the solution of (3). At
those predefined instants τi, the sensing unit sample
the environment and collect measurements, and the
resulting data point is classified by the ML model. This
determines the resulting trend of the penalty function,
depending on the correctness of the classification.

We assume that all classification attempts have
statistically independent outcomes, thus leaving the
statistics of failures as Bernoulli with probability p
and independent over different time instants. If the
classification is correct, the system AoI will corre-
spondingly be reset to 0, otherwise the penalty due
to misclassification will increase. This is true even for
the case when Z = 1, which implies that the penalty
is just AoI [22], with no superimposed effect of
misclassification, but becomes more acute when higher
values of the coefficient Z are considering, implying a
higher semantic relevance of the information content
[23].

Depending on the accuracy achieved in the test
set and the penalty applied to the misclassifications,
we can obtain an average estimate of AoII using the
specific ML model and parameters. This information
is useful if we want to compare various ML models
and dynamically choose which one is best to use,
depending on factors such as energy consumption or
latency required by the decision process [26].

In this specific contribution, we focus on the perfor-
mance of a single exemplary ML model and dataset,
because we are interested in analyzing the impact of a
weighting factor applied to AoI in case of misdetection
events [16].
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Fig. 4. Minimal penalty with 3 update instants. Dashed lines imply
that multiple update instants collapse.

V. PERFORMANCE EVALUATION

We hereby present the quantitative results of our
evaluation, where we consider different parametric
choices of p and Z and evaluate their impact on the
resulting stateless scheduling, the average AoI, and the
penalty defined as per (2).

In Figs. 3–6, the plots start with solid lines with
full markers for lower misclassification probabilities,
subsequently they switch to dashed lines with empty
markers whenever the optimization dictates that mul-
tiple update instants collapse to the same value, which
implies that not all the status update transmission
opportunities are used. This signifies that the actual
number of performed updates is lower than M , which
happens for higher values of p.

As a result, AoI values tend to saturate early and
the penalty experiences sudden spikes. Arguably, for
higher penalty values Z the threshold after which
multiple updates collapse into the same one moves
towards smaller misclassification probabilities; more-
over, the curves obtained have a strictly positive slope,
underlying the fact that using fewer updates has a
detrimental effect on the metrics of interest. Another
interesting remark to be done on all the results is that
since the penalty coefficient Z = 1 has no effect
in changing the weights of the misclassification, the
average AoI and the minimal penalty have the same
values in the graphs for the same number of updates.

Fig. 3 describes the evolution of AoI applying the
optimal scheduling with different penalty coefficients.
Even though the minimization goal is the penalty
function and not AoI, the latter being just one of
the terms inside the penalty, it is evident that the
choice of Z has a strong impact even on AoI alone.
An interesting point is that when multiple updates
are scheduled to be performed at the same time the
expected AoI is independent of Z as all the dashed
lines converge towards the same direction.

Fig. 4 shows the minimal extra penalty value paid
due to misclassifications. When comparing these val-
ues to AoI alone, without extra terms due to AoII,



10−2 10−1

Misclassification probability (p)

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

∆
(y

)

Z = 1
Z = 2
Z = 5
Z = 10

Fig. 5. Average AoI with 6 update instants. Dashed lines imply
that multiple update instants collapse.

the increase is immediately noticeable, hence implying
that misclassifications may have a severe impact on
the resulting performance. When there are overlaps on
the updates instants, the dashed lines do not converge
to the same general direction for all the penalty
coefficients. This was expected, as we are plotting
the weighted area of the added parallelograms ω and
thus the weight factor plays an important role in this
computation.

Figs. 5 and 6 display the expected AoI and the
minimal penalty P(y) for up to M = 6 distinct update
instants. In this situation, the step-like behavior of the
curves is enhanced by the fact that there are multiple
opportunities for the scheduling of the updates instants
to coincide. Moreover, the values obtained for AoI
alone and the penalty due to misclassifications are very
similar.

As stated for Fig. 3, the dashed lines for AoI tend to
converge towards the same directions when the same
number of updates is used. Comparing Fig. 6 with
Fig. 4 highlights the higher degree of freedom from a
larger number of possible update instants in reducing
the impact of possible errors made by the ML model.

In Fig. 7, we report the increase of the penalty for
different numbers of update instants M and values
of the weighting parameter Z, with respect to the
baseline case Z = 1 for the ML model described in
Section IV. For M = 1, . . . , 5, there is a considerable
increase of the penalty that eventually wears out for
a higher number of update instants available. An
interesting point is that even for very high penalty
factors, the worsening of the experienced penalty is
below 20%, which can be attributed to the optimality
of the scheduling process keeping under control surges
in the penalty.

VI. CONCLUSION

Our study explored how misclassification in ML
affects freshness and accuracy in sensing systems
exchanging status updates, leading to a tradeoff [19].
We derived the expression of a penalty function,
combining the expected values of ages of correct and
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Fig. 7. Increase of the penalty for different values of the Z
parameter with respect to Z = 1.

incorrect information for a stateless scheduling [20],
and we showed that finding the proper balance in the
aforementioned tradeoff sometimes imply to discard
some of the updates.

In addition to the analytical framework, we also per-
formed evaluations via simulation for a real ML model
[24], demonstrating that even with higher weighting
factors, the AoI penalty remains bounded in the opti-
mal scheduling. This suggests possible further studies
to understand the practicality and robustness of ML in
real-time status updates, so as to obtain guidance for
system design and optimization.
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