
Timely Processing and Offloading of Short Term
Tasks in the Internet of Things

Umut Guloglu
Inst. of Comm. and Navigation

German Aerosp. Center (DLR), Germany
email: umutguloglu71@gmail.com

Leonardo Badia
Dept. of Information Engin.
University of Padova, Italy
email: badia@dei.unipd.it

Andrea Munari
Inst. of Comm. and Navigation

German Aerosp. Center (DLR), Germany
email: andrea.munari@dlr.de

Abstract—Numerous Internet of things (IoT) applications
demand accurate and timely information to enable effective
actuation. Nonetheless, in computation-intensive status update
systems or data gathering systems, the capabilities of IoT devices
may fall short in computing/acquiring data with high accuracy,
thereby requiring multiple trials before success. Offloading data
computation or acquisition tasks to robust units mitigates this
inaccuracy. However, these units can be positioned far from
the user, and latency becomes an issue for offloading due to
some factors, such as propagation delays and resource sharing
with other users. This paper investigates the optimization of
information freshness for short term tasks, introducing a cost
function representing the staleness of the recently obtained data
that is accurate enough for actuation. The problem is cast as
a Markov decision process and solved through finite-horizon
dynamic programming. We find interesting trends of the resulting
optimal policy, which can lead to relevant applications for many
IoT scenarios.

Index Terms—Edge computing, Age of information, Dynamic
programming, Internet of Things.

I. INTRODUCTION

The increase in the digitization of the society pushes Internet
of Things (IoT) applications to become more oriented towards
more pervasive real-time services in many everyday situations
[1]. For example, an increased availability of smart traffic
management systems can be expected, using real-time data
from connected road sensors to optimize traffic flow and
reduce congestion [2]. Similarly, in production settings, an
evolution towards Industry 4.0 is made possible by IoT-
enabled machinery that monitors and reports performance
metrics in real time, enabling predictive maintenance and
minimizing downtime [3]. Finally, e-health applications may
leverage monitoring devices continuously measuring patients’
vital signs, allowing for immediate medical intervention when
necessary [4].

These few examples also highlight that, while real-time
applications may provide extremely useful services and im-
prove the end user quality of life, they cause at the same
time an increase of generated data at the network’s edge. Not
only do data become more and more variegate, but also they
have requirements about timeliness, whose general direction
can be expressed through age of information (AoI) [5]–[7].

A. Munari acknowledges the support of the Federal Ministry of Education
and Research of Germany in the programme of “Souverän. Digital. Vernetzt.”
Joint project 6G-RIC, project identification number: 16KISK022.

This metric represents the time elapsed since the generation
of the last successfully processed data. Indeed, real-time IoT
applications must perform control operation in the cyber-
physical realm based on up-to-date information [8].

Hence, this scenario poses a general challenge for data
management and exchange, which becomes even more acute
if preprocessing is required, e.g., for AI-empowered systems
making real-time decision on the exchanged data [9]. This
corresponds to whether IoT devices ought to process the in-
formation in situ, based on their only computational resources,
which are often limited, or offload to more powerful remote
servers [10]. The latter are sometimes seen as being located in
the cloud, but for the purpose of our discussion, they can as
well be edge servers, still more powerful and reliable than the
individual IoT nodes that are strongly constrained in terms of
computational resources.

For this reason, we will generically distinguish between
local or remote processing [11]. The former makes only use
of the computational resources available at the device, which
is a fast but often inaccurate action that may require multiple
trials for completing a processing task. Conversely, the latter
calls up to a more powerful remote server for handling the
task, which can be seen as guaranteeing success at the first
attempt, yet implying longer delays. These can be due to
longer propagation delays for physically distant servers, or
to the fact that the remote computing unit is shared by other
users and therefore may lead to queueing delays [12].

This choice between local processing and remote offloading
is often addressed in the literature [13], but from the perspec-
tive of simpler objectives such as throughput maximization or
minimization of the outage probability under delay constraints.
While these are certainly important aspects for IoT systems,
we investigate the problem through the lens of information
freshness. Moreover, most of the existing investigations ex-
plore the case of an infinite horizon scheduling (and, even
when they consider AoI, this often translates into the long-
term average AoI minimization). We argue that, for the very
same reasons, it would be more poignant to consider a finite-
horizon, which may be more fitting for task-driven operations
over a short time span.

Thus, the contribution of the present paper is to propose a
timeliness-based model, where we can employ both local and
remote computing resources (as well as idling) and consider a

finite-horizon decision setting. We address the optimization as
a Markov decision problem, in which the user leverages the
current cost function value. We solve the problem through
dynamic programming [14], obtaining an optimized setting
that achieves superior performance, and we highlight whenever
we need to resort to the entire array of actions at our disposal
(remote processing, local processing, or wait).

However, the optimized policy can also be shown to be ap-
proached by much simpler randomized policies under certain
network parametrizations. Thus, the result is further discussed
comparing our stateful approach with a simpler blind, i.e., sta-
tionary policy for transmission scheduling. Therefore, depend-
ing on the system parameters, this comparison fosters practical
implications on IoT applications, determining whether simpler
scalable approaches are ultimately possible.

The rest of the paper is organized as follows. Related works
are discussed in Section II. The system model is formalized in
Section III and further solved in Section IV. Section V shows
numerical results, and we conclude in Section VI.

II. RELATED WORK

The concept of AoI was proposed in [5], considering a
communication link modeled as a queueing system. This
approach has been adopted by other papers in the literature,
and blurs the actual scheduling of the updates by considering
a more general approach where the offered traffic is the only
parameter, and the other element of variability is the queueing
discipline at the server [15], [16].

However, if the generation of status updates can be con-
trolled, it may be convenient to apply scheduling to optimize
the performance in terms of AoI performance. This may be
investigated subject to throughput or energy constraints [17],
[18], as well as the optimization itself of the scheduling
policy depending on its available information, e.g., whether
the scheduling is pre-set and immutable or can be adjusted
depending on possible failures in the transmission or other
random events [14], [19]. In particular, the main issues con-
sidered by these approach are either random channel erasures
due to noise or limited access to the medium, e.g., we are in
the presence of multiple sources yet the transmission happens
over a collision channel where only one source can transmit
at a time.

It is also worth noting that the most common scenario
involves users obeying the scheduling decision of a centralized
unit. In reality, this may not hold if transmitters are owned
by different operators and a game theoretic approach may
be desirable instead. For example, [20] studies a competitive
setup between two transmitter-receiver pairs, whereas [21]
focuses on an adversarial scenario instead. In the former case,
the additional agent considered is just symmetric in its desire
to access the channel as well, and interference may prevent that
they do it together. Instead, the latter paper considers again an
additional agent, but with the sole purpose of destroying the
communication of the other player. Similar approaches would
be applicable to the problem at hand in the present paper, with

the adjustments of considering equilibrium solutions instead of
optima, as typical of game theory [7].

The further extension that can be considered is to reverse
this scheduling perspective and include the choice of the actual
server, thereby translating from multiple sources transmitting
to the same server, to the case where a source can choose
among different available end points of the communication
[13], which would correspond to our problem of choosing
between a local processor or an edge/cloud server. For this
problem, the authors of [22] introduced age of processing
(AoP) as an extension to AoI, as they consider a different
delay for the servers, which must be accounted for when
making the scheduling decision. AoP minimization under the
choice of local vs. remote processing was also considered in
other contributions, adopting different models and processing
constraints.

In [23], a BS prompts the generation of data by one out
of multiple users and also determines whether data must
be processed locally or at an edge server. The problem
is cast as a Markov decision process, which is similar to
our approach. However, infinite-horizon is assumed and the
problem is approached through Lyapunov optimization. The
authors of [24] formalize a similar problem but under the
assumption that the system dynamics are unknown to the
scheduler, thus the problem is successfully tackled by applying
reinforcement learning Finally, [11] considers another state-
machine approach based on signal flow graphs, and gives
different characteristics to the server options, the remote being
farther but also more reliable, as we do here. However, this is
again studied only in the context of an infinite horizon, thereby
deriving stationary policies.

We argue that a finite horizon may give a more fitting
representation for short term tasks, which are quintessential
in real-time services. For example, vehicular control is mostly
exerted on very specific fine-horizon tasks, relative to the
road time of the car [2]. Similarly, industrial automation can
be seen as a series of short-term production tasks, related
to production cycles [3]. Even IoT scenarios with persistent
background monitoring, such as agricultural [12] or e-health
[4] applications, may contain short term tasks for specific
observations.

We note that the approaches proposed for settings similar
to ours, but considering stochastic decision-making over an
infinite horizon, end up in assigning a probability to each
action so as to minimize the long-term average cost. Such
a solution does not require any knowledge on the current
state of the system, and solely relies on average values (e.g.,
the completion time of a remote task and the success of a
local computation). From this standpoint, such a policy may
be easier to implement, also avoiding the memory and com-
putational burden of determining the optimal online solution.
Yet, a stationary policy may be inconvenient if the system
dynamics matters, and ought to be kept into account [14].
In the following, we will argue whether this is the case or
not, depending on the system parameters found in practical
evaluations.

× ×
k

δk

T0

Fig. 1. Example evolution of the cost metric δk over time. Green circles
() denote slots in which a local task is successfully performed, whereas red
crosses (×) indicate performing a local task unsuccessfully. Finally, the blue
rectangle () covers slots over which a task is offloaded to the remote server.
Upon completion, the metric is reset.

III. SYSTEM MODEL

To capture the key trade-offs in the setting under study, we
focus on a slotted timeline. Each slot is of equal duration,
and denoted by an index k ∈ N0. A reference user (node)
aims at executing tasks, defined as atomic activities. A task
may involve data collection, processing, or both, depending
on the context. We assume that a new task arises as soon as
the previous one is succesfully completed, so that one atomic
activity is always available, and that tasks can be completed
either locally at the node or by resorting to a remote server.

Specifically, the user over a slot may be either idle or busy,
where the former condition refers to being ready for processing
the next task. Whenever idle at the beginning of a slot, the node
may perform one of three actions: (i) attempt to process the
next task locally, (ii) offload it, or (iii) wait and not deal with
the task at the current slot. In the first case, the local execution
is processed within the same slot, yet leads to a successful
completion of the task with probability α. Failures may be due
for example to lack of sufficient computational capabilities at
the node, or to low quality of available information. Regardless
of the outcome, the user will be idle again at the start of the
next slot. Conversely, an offloaded task is always successfully
completed thanks to the stronger capabilities of the remote
server. On the other hand, the execution may require more
than one slot, e.g., due to resource sharing policies with other
nodes, forwarding/re-routing among edge/cloud components,
or network propagation delays. To capture this, we assume
that the remote task can eventually be completed at each slot
with probability p. Accordingly, in case (ii), the node remains
busy for a geometric time prior to returning idle. Finally, when
a wait action is selected (case (iii)), the user clearly stays idle.
The relevance of such choice will become clear later, when
limitations to the other actions will be discussed.

To gauge the performance of a user, we introduce a cost
metric δk, k ∈ N0, akin to AoI or AoP [5], [22], defined as

δk := k − sk

where sk denotes the slot index of the last successful task
completion, as of time k. The function portrays the staleness
of the most recent task completion, increasing linearly until

a new task is completed successfully, when it reset to 0. An
example of the time evolution for δk is reported in Fig. 1,
where actions are assumed to be chosen at the onset of time
slots, while the effects are observed at the slot end. For the
setting under study, we are interested in determining how the
user shall optimally make decisions on which actions to take
based on the experienced cost metric. We focus in particular on
a finite time horizon of duration T slots, and aim to minimize
the average penalty

∆ =
1

T

T∑
k=0

δk. (1)

As a practical consideration, we assume that the frequency
for attempting local processing is bounded to ε. This could
be due to the availability of a subset of the computational
resources, e.g., need to process other tasks, as well as to
duty cycle or energy consumption constraints. The limitation
translates into a condition on the maximum number of local
actions performed within the time horizon, which cannot
exceed εT .

IV. OPTIMAL TASK SCHEDULING

The problem at hand can be conveniently captured resorting
to the framework of Markov decision processes (MDPs) [25].
For the sake of simplicity we first focus on the case in which
the user can attempt local processing without limitations, later
extending the approach to the constrained setting.

A. Unconstrained local actions (ε = 1)

The definition of a MDP requires specification of a Marko-
vian system state, a set of control actions together with their
rewards (or costs), as well as of existing noise components
influencing the state evolution. In the unconstrained setting,
the state at time 0 ≤ k ≤ T can be described by the sole
pair xk = (δk, ςk), where δk is the current value of the cost
function, whereas ςk ∈ {I,B} denotes the condition of the
user at the start of the slot, with I indicating idle and B busy,
respectively. Control uk is a ternary choice among attempting
local execution of the task (L), offloading it remotely (R), or
waiting (W). Not all the actions can be taken in each state,
as, for instance, uk ∈ {L,R} only when ςk = I , i.e., the node
is idle. Finally, the noise component is fully characterized by
the geometric duration of a remote task completion and the
probability of successfully performing a task locally.

Accordingly, the evolution over time of the system state can
be readily described, resorting for compactness to the binary
r.v. sk ∈ {0, 1}, taking value 1 if a task is completed (either
locally or remotely) at the end of slot k, and 0 otherwise.
Specifically, we have for k ∈ {0, . . . , T − 1}

δk+1 =

{
0 if sk = 1

δk + 1 otherwise

ςk+1 =

{
ςk if ςk = B ∧ sk = 0

I otherwise

(2)

0, I 0, I 0, I

1, I 1, I

1, B 1, B

2, I

2, B

· · ·

k = 0 k = 1 k = 2

uk = W

uk = L ∧ sk = 1

uk = L ∧ sk = 0

uk = R

ςk = B ∧ sk = 1

ςk = B ∧ sk = 0

Fig. 2. State transitions for the MDP in the unconstrained case (ε = 1). Solid
lines denote deterministic transitions, dashed and dash-dotted lines indicate
stochastic transitions leading to a task being completed or not completed in
the current slot, respectively. Black, blue and red colors are used to identify
wait, remote and local actions, respectively.

The state space of the MDP is shown in Fig. 2, highlighting
the possible transitions of the model. The system is initialized
in x0 = (0, I), and the time index advances from left to right,
with all potential states of a time slot arranged vertically.
In the plot, colors are used to differentiate transitions that
follow a wait (black), local (red) and remote (blue) action.
Moreover, solid lines denote deterministic transitions, whereas
dashed and dash-dotted lines are used to indicate probabilistic
transitions that lead or not to a successful completion of the
task in the current slot, respectively.

In this setting, the cost incurred over the k-th time slot
is simply gk(xk, uk, sk) = δk, with terminal condition
gT (xT) = δT . Accordingly, we aim to determine the optimal
stateful control policy minimizing the expected value of the
average cost over the finite time horizon T introduced in
(1), i.e. E[∆], where the expectation is intended over all the
possible realizations of the state transitions. The problem can
be solved via dynamic programming for the presented MDP,
obtaining the optimal solution via backward induction [25].
The solution has a computational complexity O(T 2), and the
size of the generated dynamic programming look-up tables is
proportional to T 2.

B. Constrained local actions (ε < 1)

Whenever ε < 1, the user faces a constraint on the number
of times it can attempt to perform a task locally, which is
bounded over the time horizon of interest to a maximum of
Λ := ⌊εT ⌋. To tackle this setup, we consider an extended ver-
sion of the MDP introduced earlier, where the system state is
captured by the triplet xk = (δk, ςk, λk), and λk ∈ {0, . . . ,Λ}
denotes the number of possible attempts at local completion of
a task which are remaining at the start of slot k. The system has
initial state x0 = (0, I,Λ). Whenever uk = L, λk decreases
by 1, regardless of whether the task is completed successfully
or not during the slot, until no local actions remain. At that

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Fig. 3. Empirical probability distribution of selecting a local action at time
slot k ∈ {0, . . . , T − 1}. Different markers denote values of the local task
success probability α. In all cases, p = 0 (i.e., no remote offloading available),
ε = 0.1, and T = 1000 slots.

point, the sole options are to either wait or trigger a remote
action when idle. The evolution of the system state is still
described by (2), with the added condition

λk+1 =

{
max{0, λk − 1} if uk = L

λk otherwise.

With these modifications, the problem can again be solved
through backward induction, entailing a complexity of O(T 3).

V. RESULTS AND DISCUSSION

To understand the structure of optimal task allocation, as
well as the achievable performance over a finite time horizon,
dedicated numerical studies were performed. In particular, for
a given configuration of the system parameters (α, p, ε, T),
the optimal action policy has been computed via dynamic
programming, and applied throughout Montecarlo simulations
to gauge the expected average cost.

Initial insights on the behavior of the system are offered
in Fig. 3, considering the degenerate case p = 0. In such
conditions, no task would be completed remotely (infinite
server response time), and the sole options available to the user
at a slot are to attempt a local execution or to remain idle. The
plot reports the empirical probability distribution of selecting
the former action at each slot, i.e., P (uk = L), obtained by
counting the number of times the action was chosen at time
k ∈ {0, . . . , T − 1} and by normalizing to the number of
Montecarlo runs. Results achieved under three values of the
local task completion probability α are shown with different
marker styles, considering a time horizon of T = 1000 slots,
and a maximum number of local attempts Λ = 100 (ε = 0.1).
When task completion within a slot is always successful
(α = 1), local actions are uniformly distributed over the hole
horizon. In this setting, it is indeed easy to verify via simple
geometric arguments that a fixed schedule regularly allocating
uk = L, for k = i T/(Λ + 1), i ∈ {1, . . . ,Λ} minimizes
the average (deterministic) penalty ∆. Conversely, if failures
are possible (α < 1), local actions tend to be triggered
more often towards the center of the overall time interval.

0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Fig. 4. Empirical probability distribution of selecting a local (empty markers)
or remote (filled markers) action at time slot k ∈ {0, . . . , T − 1}. Squared
and circle markers denote distinct values of p. In all cases, α = 0.2, ε =
0.1,T = 1000 slots.

The trend stems from the attempt of avoiding long periods
without successful task completions that could be experienced
by favoring placement of (potentially failed) attempts in the
initial or final part of the horizon. Incidentally, the trend is
consistent with similar results obtained for the scheduling of
wireless transmissions over lossy links in [14].

The picture radically changes when task offloading is avail-
able (p > 0), as pinpointed by Fig. 4. The plot reports again the
empirical probability distribution of an action choice, reporting
both local processing (empty markers) and remote offloading
(filled markers). Two different values of p are considered. In
this case, the same time horizon considered before has been
used (T = 1000 slots), setting α = 0.2 and ε = 0.1. Let us first
consider the case p = 0.05 (circle markers), corresponding to
having a longer average response time from the remote server
(1/p = 20 slots) compared to the average time needed to
successfully completing the task locally by repeated attempts
(1/α = 5 slots). In such conditions, local actions are favored
in the initial phases of the horizon. The strategy aims to avoid
long time bursts spent in busy conditions, waiting for a task
completion without the possibility to react by attempting a
local processing, which would lead to high costs from the
beginning.1 As time progresses, and the impact of such bursts
on the average cost diminishes, remote actions start being
triggered more often, also in view of the potential exhaustion
of the limited local processing opportunities. The structure of
the optimal solution changes as p increases. This is exemplified
by the setting α = p (square markers), where equal average
performance of local and remote computations leads to lean
more on the latter, saving local actions for the final part of the
time horizon to avoid an early depletion. The situation would
be further exacerbated for even shorter average completion
times of offloaded tasks (p > α). This case, not reported in the
plot for the sake of clarity, results in a vanishing probability
of triggering local actions, resorting to the more convenient
remote resources.

1Recall that a local action can be triggered only if the node is idle.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
1

10
2

Fig. 5. Expected average cost vs. duration of the time horizon T . Empty
markers refer to the optimal strategy derived in Sec. IV, whereas filled markers
report the optimal performance attained with the offline stochastic solution in
[11]. In all cases, p = 0.01.

Now, we consider the expected average cost that can be
attained by the optimal task allocation policies derived in
Sec. IV. To gather proper insights, we compare the informed
decision making obtained via dynamic programming (DP) to
a reference benchmark in the literature [11], which considers
an infinite horizon and derives stationary (stateless) policies.
This will thereafter be denoted as the blind (BL) scheme.

The results obtained with the DP (empty markers) and BL
(filled markers) strategies are reported in Fig. 5. Here, the
expected average cost E[∆] is shown against the duration
of the finite time horizon T , considering different values of
α and ε. In all cases, p = 0.01. The values shown in the
plot for BL have been obtained picking the optimal action
choice probabilities as computed in [11], and correspond to
the expected value of the long term average of the cost.
The performance of the scheme remains constant along the
x-axis, as the solution is not affected by T . Consider first
the unconstrained case (ε = 1), where the same behavior
is exhibited by DP and BL. For the configuration under
study, local actions are convenient over remote offloading
(1/α < 1/p), and, in the absence of limitations, both solutions
consistently resort to computing locally, attaining minimum
average cost. Interesting trends emerge in a constrained setting
(ε = 0.01). First, the average cost by DP increases with T .
This is due to the initial transient (recall that the system is
initialized with δ0 = 0), and progressively vanishes as the time
horizon widens. More importantly, the plot reveals the power
of informed decision-making, as the user can strategically
utilize local actions. For both α = 0.2 and α = 1, DP
outperforms the blind decision approach, with a cost reduction
of up to 60% in the former case for large values of T .

Finally, we explore the impact of different system param-
eters on the expected average cost under the optimal task
scheduling policy. We do so in Fig. 6, reporting E[∆] against
α, considering for DP a time horizon of T = 3000 slots
and ε = 0.01. Focus first on the reference case p = 0
(solid lines), where the user solely resorts to (a finite num-
ber of) local actions. Here, besides DP and BL, we also

Fig. 6. Expected average cost vs. local success probability α for different
values of p. In all cases, ε = 0.01. For the BP and offline schedule, T = 3000.

consider as additional benchmarks an offline method, which
simply schedules beforehand local computations, spreading
them evenly over the time horizon. In extreme cases (α → 0,
α = 1), the offline approach behaves as the DP, as the lack of
stochastic fluctuations does not provide any advantage to an
online adaptation based on the current cost level. Conversely,
even when local tasks are always successful, the BL solution
offers worse performance, due to the probabilistic allocation of
tasks, which departs from the optimal (regular) schedule. In the
more practical and intersting intermediate cases (0 < α < 1),
the advantage of an online adaptation is apparent. Fig. 6 also
reports results for the case p = 0.2. Notably, BP and BL offer
similar performance as long as α < p, as the user constantly
resorts to task offloading. However, as α increases and local
actions becomes more advantageous, the DP approach starts
to yield better results compared to blind decision-making.

VI. CONCLUSIONS

We investigated finite horizon minimization of freshness
metrics in the presence of multiple available endpoints for
data processing. We formalized the problem as a MDP and
we solved it via dynamic programming.

Albeit the resulting optimized policy is clearly superior
to the alternatives, depending on the scenario it can also be
approximated by much simpler randomized policies under cer-
tain network configurations. This reveals practical implications
for IoT applications, indicating that, depending on system
parameters, simple, more scalable approaches may be feasible.

As for future work, other original aspects related to dis-
cording control agents, thereby leading to game theoretic
approaches [7], [20], can be included in the analysis. Another
interesting avenue for further exploration is the application of
reinforcement learning or similar techniques [24] to capture
the variability of network parameters, which may not be know
a priori.

REFERENCES

[1] X. He, Q. Ai, J. Wang, F. Tao, B. Pan, R. Qiu, and B. Yang, “Situation
awareness of energy Internet of things in smart city based on digital
twin: From digitization to informatization,” IEEE Internet Things J.,
vol. 10, no. 9, pp. 7439–7458, 2022.

[2] A. Rolich, I. Turcanu, A. Vinel, and A. Baiocchi, “Impact of persistence
on the age of information in 5G NR-V2X sidelink communications,” in
Proc. IEEE MedComNet, 2023, pp. 15–24.

[3] X. Xie, H. Wang, and X. Liu, “Scheduling for minimizing the age
of information in multisensor multiserver industrial Internet of things
systems,” IEEE Trans. Ind. Informat., vol. 20, no. 1, pp. 573–582, Jan.
2024.

[4] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, and
R. Y. Kwok, “Mobile edge computing enabled 5G health monitoring for
Internet of medical things: A decentralized game theoretic approach,”
IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 463–478, 2020.

[5] S. K. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
should one update?” in Proc. IEEE Infocom, 2012, pp. 2731–2735.

[6] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “On the age of information with packet deadlines,” IEEE
Trans. Inf. Theory, vol. 64, no. 9, pp. 6419–6428, Sep. 2018.

[7] L. Badia and A. Munari, “A game theoretic approach to age of infor-
mation in modern random access systems,” in Proc. IEEE Globecom
Wkshps, 2021.

[8] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age
of information in the Internet of things,” IEEE Commun. Mag., vol. 57,
no. 12, pp. 72–77, 2019.

[9] Y. Xu, M. Xiao, Y. Zhu, J. Wu, S. Zhang, and J. Zhou, “AoI-guaranteed
incentive mechanism for mobile crowdsensing with freshness concerns,”
IEEE Trans. Mobile Comput., vol. 23, no. 5, pp. 4107–4125, 2023.

[10] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Comput. Surv., vol. 52, no. 1, pp. 1–23, 2019.

[11] A. Munari, T. De Cola, and L. Badia, “Local or edge/cloud processing
for data freshness,” in Proc. IEEE GLOBECOM, 2023, pp. 01–06.

[12] A. Zancanaro, G. Cisotto, A. Munari, and L. Badia, “Status update
scheduling in remote sensing under variable activation and propagation
delays,” Ad Hoc Networks, 2024.

[13] C. Li, S. Li, Y. Chen, Y. T. Hou, and W. Lou, “Minimizing age of
information under general models for IoT data collection,” IEEE Trans.
Netw. Sci. Eng., vol. 7, no. 4, pp. 2256–2270, 2019.

[14] A. Munari and L. Badia, “The role of feedback in AoI optimization
under limited transmission opportunities,” in Proc. IEEE Globecom,
2022.

[15] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of
information through queues,” IEEE Trans. Inf. Theory, vol. 65, no. 8,
pp. 5215–5232, 2019.

[16] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information
in multi-source queueing models,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 5003–5017, Aug. 2020.

[17] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1359–1372,
2019.

[18] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Timely status updating
over erasure channels using an energy harvesting sensor: Single and
multiple sources,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1, pp.
6–19, 2021.

[19] Y.-P. Hsu, E. Modiano, and L. Duan, “Scheduling algorithms for
minimizing age of information in wireless broadcast networks with
random arrivals,” IEEE Trans. Mobile Comput., vol. 19, no. 12, pp.
2903–2915, 2020.

[20] G. D. Nguyen, S. Kompella, C. Kam, J. E. Wieselthier, and
A. Ephremides, “Information freshness over an interference channel:
A game theoretic view,” in Proc. IEEE Infocom, 2018, pp. 908–916.

[21] S. Banerjee and S. Ulukus, “Age of information in the presence of an
adversary,” in Proc. IEEE Infocom Workshops, 2022.

[22] R. Li, Q. Ma, J. Gong, Z. Zhou, and X. Chen, “Age of processing: Age-
driven status sampling and processing offloading for edge-computing-
enabled real-time IoT applications,” IEEE Internet of Things Journal,
vol. 8, no. 19, pp. 14 471–14 484, 2021.

[23] S. Jayanth and R. V. Bhat, “Age of processed information minimization
over fading multiple access channels,” IEEE Trans. Wireless Commun.,
vol. 22, no. 3, pp. 1664–1676, 2022.

[24] X. He, S. Wang, X. Wang, S. Xu, and J. Ren, “Age-based scheduling for
monitoring and control applications in mobile edge computing systems,”
in Proc. IEEE Infocom, 2022, pp. 1009–1018.

[25] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Belmont, MA, USA: Athena Scientific, 2005, vol. I.

