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Cluster Evaluation

GOALs:

• Clustering tendency: assessment whether the data contain
meaningful clusters (e.g., clusters that are unlikely to occur in
random data)

• Unsupervised evaluation: assessment of the quality of a
custering (resp., the relative quality of two clusterings)
without reference to external information

• Supervised evaluation: assessment of the quality of a
custering (resp., the relative quality of two clusterings) with
reference to external information (e.g., class labels)
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Cluster Evaluation: clustering tendency

Let P be a dataset of N points in some metric space (M, d).

The Hopkins statistic measures to what extent the points of P can be
regarded as taken randomly from M. For some fixed t < N:

• X = {x1, x2, . . . , xt} random sample from P

• Y = {y1, y2, . . . , yt} random set of points from M

• wi = distance between xi and the closest point in P

• ui = distance between yi and the closest point in P

• The Hopkins Statistic is

H =

∑t
i=1 wi∑t

i=1 ui +
∑t

i=1 wi

If H is close to 0, then P is likely to have a clustering structure, while if

H is close to 1, then the points of P are likely to be well (i.e., regularly)

spaced. If H is close to 0.5, then P is likely to be a random set.
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Cluster Evaluation: unsupervised evaluation

• In the case of k-center, k-means, and k-median, the value of
the objective function can be employed to assess the quality a
clustering or the relative quality of two clusterings.

• In general, one could measure the cohesion of an individual
cluster C as the average distance between two points in C
(over all such pairs of points), or the separation between two
clusters C1 and C2 as the average distance between a point ot
C1 and a point of C2 (over all such pairs of points). The
values of cohesion (resp., separation) can be ranked or
averaged over all clusters (resp., pairs of clusters)
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Cluster Evaluation: unsupervised evaluation (cont’d)

• Silhouette coefficient. Consider a clustering C of a pointset P.
For a point p ∈ P belonging to some cluster C ∈ C

• ap = average distance between p and the other points in C
• bp = mininum, over all clusters C ′ 6= C of the average

distance between p and the other points in C ′

• The silhouette coefficient for p is

sp =
bp − ap

max{ap, bp}

The value of sp varies between −1 and 1. The closer sp to 1
the better.

As a quality measure of the clustering one could take the
average silhouette coefficient over all points of P.
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Cluster Evaluation: supervised evaluation

Consider a clustering C of a pointset P. Suppose that each point p ∈ P
is associated with a class label out of a domain of L class labels.

For each cluster C ∈ C and class i , let

mC = #points in cluster C

mi = #points of class i

mC ,i = #points of class i in cluster C

Entropy of a cluster C :

−
L∑

i=1

mC ,i

mC
log2

mC ,i

mC
(N.B. 0 log2 0 = 0)

It measures the impurity of C , ranging from 0 (i.e., min impurity when

all points of C belong to the same class), to log2 L (i.e., max impurity

when all classes are equally represented in C ).
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Cluster Evaluation: supervised evaluation (cont’d)

Entropy of a class i :

−
∑
C∈C

mC ,i

mi
log2

mC ,i

mi

It measures how evenly the points of class i are spread among
clusters, ranging from 0 (i.e., all points of class i concentrated in
the same cluster), to log2 K (i.e., the points of class i are evenly
spread among all clusters), where K is the number of clusters.

It is defined also when points belong to multiple classes (e.g.,
categories of wikipedia pages)
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Cluster Evaluation: supervised evaluation (cont’d)

Let

f00 = #pairs of points of distinct classes in distinct clusters

f01 = #pairs of points of distinct classes in the same cluster

f10 = #pairs of points of the same class in distinct clusters

f11 = #pairs of points of the same class in the same cluster

Rand statistic:
f00 + f11

f00 + f01 + f10 + f11

It measures whether the clustering is in accordance with the
partition induced by the classes, ranging from 0 (no accordance) to
1 (maximum accordance)
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Cluster Evaluation: supervised evaluation (cont’d)

Jaccard coefficient:
f11

f01 + f10 + f11

that is, the proportion of pairs of the same class in the same
cluster relatively to the total number of pairs that are of the same
class or in the same cluster. It is an alternative measure of the
accordance of the clustering with the classes.
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Case Study

Analysis of votes in the Italian Chamber of Deputies

Goal: Cluster Italian deputies based on their votes in Parliament

• Data source: Openparlamento (from Openpolis)
https://parlamento17.openpolis.it/

• 630 deputies

• Restriction to key votes, i.e., high political relevance. Overall
149 votes, from beginning of term until end of 2015

• Dataset: one row (”point” for each deputy) containing
• ID of the deputy
• Group: 24 = Mixed Group; 71 = PD; 90 = FI;

115 = Fratelli d’Italia; 117 = M5S; 119 = Sinistra Italiana;
120 = Lega Nord; 121 = Scelta Civica; 124 = Area Popolare;
125 = Democrazia Solidale;

• For each vote: −2 = against; −1 = abstention; 0 = missing;
2 = in favor.

• Distance: Manhattan distance
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Case Study (cont’d)

• All deputies except for Mixed Group (630-62=568 deputies)

• Algorithm: k-means with k = 12

• Results:
Cluster

Group 0 1 2 3 4 5 6 7 8 9 10 11

71 174 26 2 2 12 26 13 32 10 3 0 0
90 1 1 0 17 0 0 0 0 0 0 36 0
115 0 0 0 7 0 0 0 0 0 1 0 0
117 0 0 0 2 0 0 0 0 0 89 0 0
119 0 0 0 1 4 0 1 0 0 0 0 25
120 0 0 0 2 1 0 0 0 0 10 3 0
121 4 2 10 1 0 1 0 0 3 1 0 1
124 3 11 1 4 0 0 0 4 7 0 1 0
125 1 3 1 1 1 0 1 4 1 0 0 0

Entropy 0.37 1.54 1.29 2.42 1.34 0.23 .. .. .. .. .. 0.24

• Entropy of PD (G.71): 2.12; Entropy of M5S (G.117): 0.15
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Case Study (cont’d)

• Deputies from PD (G.71), FI (G.90), M5S (G.117) who never
changed group (422 deputies out of 446)

• Algorithm: k-means with k = 5

• Results:

Cluster

Group 0 1 2 3 4

71 186 43 0 0 51

90 0 3 48 0 0

117 0 0 0 91 0

Entropy 0 0.35 0 0 0

• Unlike FI and M5S, the PD group is split into 3 subgroups
probably reflecting a political subdivision (e.g., Orfini and
Guerini in Cluster 0; Bersani in Cluster 1; Cuperlo in Cluster 4)
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Hierarchical clustering

• Produces a hierarchy of nested clusterings of decreasing
cardinalities

• Two alternative high-level strategies:
• Agglomerative: Starts with each input point in a separate

cluster and progressively merges suitably selected pairs of
clusters. It is the most common strategy and we focus on it.

• Divisive: Starts with one cluster containing all points and
progressively splits a cluster into two.

• Features:
• Flexibility with respect to number of clusters
• No cluster centers are required
• May capture clusters of arbitrary shapes
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General Agglomerative Strategy

Let P be a set of N points in a metric space (M, d).

Make each point as a distinct singleton cluster
while (!stopping-condition) do

merge the two closest clusters

return the current set of clusters

Observations:

• In order to instantiate the algorithm one needs to decide when
to stop (stopping condition) and which pair of clusters to
merge at each iteration (closest clusters)

• The number of clusters decreases by 1 at each iteration

• Instead of returning the clustering resulting after the last
iteration, one may return the dendogram, i.e., the tree/forest
defined by all clusters created at the various iterations.
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Merging criterion

How do we measure the distance between two clusters C1,C2 so to
be able to identify the ”two closest clusters” at each iteration?

• Single linkage: dist(C1,C2) = minx∈C1,y∈C2 d(x , y)

• Complete linkage: dist(C1,C2) = maxx∈C1,y∈C2 d(x , y)

• Average linkage: (average distance between C1 and C2)

dist(C1,C2) =
1

|{(x , y) : x ∈ C1, y ∈ C2}|
∑

x∈C1,y∈C2

d(x , y)

• Ward’s method (in Euclidean space):

dist(C1,C2) = cost(C1 ∪ C2)− cost(C1)− cost(C2),

where, for a cluster C with centroid c , cost(C ) =
∑

x∈C (d(x , c))2.

Remark about Ward’s method: at each iteration we merge the two

clusters that yield the smallest increase to the k-means objective.
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Example (single linkage)

• Distance matrix (6 points: A,B,C,D,E,F):

• Dendogram (stopping condition: 1 cluster left):

- It shows sequence of mergings:

D-F; A-B; DF-E; DFE-C; DFEC-AB

- y-axis: inter-cluster distances. E.g.,

root of subtree for DFEC has

y = 1.41, which is the distance

between cluster DFE and cluster C
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Stopping condition

Depending on the application, the merging process can be stopped
using one of the following conditions

• A desired number K of clusters is obtained (i.e., after N − K
iterations)

• The distance between the next pair of clusters to be merged
exceeds a fixed cluster threshold t

• The clustering resulting after the next merge would violate
some specific condition on the density or cohesion of the
clusters (e.g., threshold on maximum distance of a point from
the centroid of its cluster in Euclidean space)
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Example (single linkage)
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Time Complexity

Consider the execution of the hierarchical clustering strategy for a
set P of N points.

At each iteration, maintain with each point the ID of the cluster it
belongs to (Θ (N) space).

Straightforward implementation:

• In each iteration, search for the pair of closest clusters by
computing (or reading, if precomputed) the distances between
all pairs of points

• Θ
(
N2
)

time per iteration, hence Θ
(
N3
)

overall time, if full
hierarchy is sought.

• Θ (N) space, if distances are computed on-the-fly, while
Θ
(
N2
)

space if all distances are precomputed (may be
advisable in high dimensions)
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Time Complexity (cont’d)

Improved implementation (for single linkage):

• Precompute all Θ
(
N2
)

distances and store each pair of points
(x , y) into a min-heap H, using d(x , y) as a key.

• Extract, one after the other, the pairs of points from H in increasing
order of distance. After extracting pair (x , y), if the two points
belong to different clusters, then merge the two clusters.

• The initialization requires Θ
(
N2
)

time and space. Each extraction
from H takes O (logN) time, while each merge takes O (N) time.
Thus, the implementation requires
O
(
N2 logN

)
overall running time and Θ

(
N2
)
space.

Remarks

• More efficient implementations for both single and complete linkage
(O
(
N2
)

time and O (N) space) exist: see [MC12] for details.

• For a Spark implementation (single linkage), see [J+15]
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Observations on Hierarchical Clustering

Pros

• Useful when some sort of hierarchical taxonomy is sought
and/or a precise number of clusters cannot be established
apriori

• Can capture clusters of non-elliptical shapes (especially single
linkage): see example in the next slide.

Cons

• Does not optimize any specific objective function

• Sensitive to noise (especially single linkage), since each merge
is final

• Computationally expensive
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Example
The pointset in the following example exhibits two natural clusters

A hierarchical clustering run with single linkage and a suitable cluster
threshold would capture the two clusters accurately, while a center-based
clustering would not.

The following theorem generalizes this special case
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Accuracy

Let P be a set of N points in some metric space (M, d).

For a given distance threshold σ > 0 define the graph
GP,σ = (V ;E ) as follows:

V = P

E = {(x , y) : x , y ∈ P ∧ d(x , y) ≤ σ}

Suppose that GP,σ has K connected components. (Note that the
pointset of the previous example has K = 2, for small enough σ.)

The following two properties are immediately proved

• The distance between any two points in distinct connected
components is > σ

• For any non-trivial bipartition of a connected component,
there are two points x , y in different subsets of the bipartition
such that d(x , y) ≤ σ
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Accuracy (cont’d)

Theorem (Thm. 8.9 in BHK16)

Using cluster threshold σ as a stopping condition (i.e., only
clusters at distance at most σ can be merged), the hierarchical
clustering with single linkage applied to the above pointset P
returns the set of K connected components as clusters.

Proof

Let C(i) be the current clustering at the end of Iteration i of the
clustering algorithm. Note that C(i) consists of N − i clusters. In
particular, C(0) is the initial clustering comprising N singleton clusters.

In order to prove the theorem, it is sufficient to show that the following

property holds: for every i ≤ N − K , and every cluster C ∈ C(i), C is a

subset of one of the connected components of GP,σ. This immediately

implies that at the end of Iteration N − K the current clustering

coincides with the partition into connected components of GP,σ.
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Accuracy (cont’d)

Proof of Theorem (cont’d).

We show the above property by induction on i ≤ N − K .

BASIS: the property trivially holds for i = 0

INDUCTIVE STEP: Suppose that the property holds up to some
Iteration i , with 0 ≤ i < N − K , and consider Iteration i + 1. Note
that at the end of Iteration i there are N − i > K clusters and, by
the inductive hypopthesis, each of them is fully contained in a
connected component of GP,σ. This implies that there exists two
current clusters C1,C2 such that dist(C1,C2) ≤ σ and that any
two such clusters must be subsets of the same connected
component. Therefore, in the i + 1-st iteration, two clusters,
subsets of the same connected component, are merged, hence the
property is maintained.
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Case Study

Battere Calderoli usando Python

Dal blog di Jacopo Notarstefano (02/2016)

http://www.jacquerie.it/battere-calderoli-usando-python
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Theory questions

• Define the Manhattan distance for points in <d , and show
that it satisfies the triangle inequality

• Rigorously define the objective of k-center clustering

• Suppose that you want to open some hospitals to serve N
cities so that each city is at distance at most t from a hospital
and the costs (proportional to the number of opened
hospitals) are minimized. What would you do?

• Show that the k-means algorithm always terminates.

• Describe what the unsupervised evaluation of a clustering is,
and define a measure that can be used to this aim.
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