
Clustering

Part 1

1

The Clustering Problem

Given a set of points belonging to some space, with a notion
of distance between points, group the points into a number of
clusters such that

• Points in the same cluster are ”close” to one another

• Points in different clusters are ”distant” from one another

The distance may also capture a notion of similarity: close points
are similar, distant point are dissimilar.

2

Example

Figure from [Leskovec et al.: Mining Massive Datasets, 2014].

3

The clustering problem is a hard one!

Figure from [Leskovec et al.: Mining Massive Datasets, 2014]. 4

Applications

Clustering or cluster analysis is a fundamental task in exploratory
data mining, which finds applications in many different fields.
Some examples:

1 Preprocessing step for other mining/learning tasks. E.g., used
for summarization, compression, outlier detection, class
identification

2 Marketing. Clustering is used to partition consumers
(potential customers) into segments based on shared
characteristics. Then, high-yield segments can become targets
of marketing campaigns or new products development.

3 Biology. Clustering of protein primary structures (amino acid
sequences) is used to identify protein families and has
important applications (e.g., in phylogenetic analysis)

5

Applications (cont’d)

1 Image processing. Clustering is used to analyze digital images
for several pruposes: e.g., object recognition; identification of
different types of tissues in PET scans; identification of areas
of similar land use in satellite pictures;

2 Social network analysis. Clustering is used to detect
communities

3 Information retrieval. Clustering is used to categorize
documents or web pages based on their topics which are not
explicitly given but are inferred from their contents

4 Wireless sensor networks. Clustering is used to identify
suitable cluster leaders which can play the role of
communication hubs. In general, this is an instance of the
well know facility location problem.

6

Metric Space

Usually, the points in input to a clustering problem come from a
metric space

Definition

A metric space is an ordered pair (M, d) where M is a set and d(·)
is a metric on M, i.e., a function

d : M ×M → <

such that for every x , y , z ∈ M the following holds

• d(x , y) ≥ 0;

• d(x , y) = 0 if and only if x = y ;

• d(x , y) = d(y , x); (symmetry)

• d(x , z) ≤ d(x , y) + d(y , z); (triangle inequality)

7

Distance functions

KEY STEP: choice of a proper distance functions.

• Euclidean distances. Input = subset of <n. Given X ,Y ∈ <n,
with X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), the
Lrnorm is defined as (

n∑
i=1

|xi − yi |r
)1/r

.

• L2 : standard distance in <n (also denoted by || · ||)
• L1 : referred to as Manhattan distance, it is the sum of the

absolute differences of coordinates in each dimension. Used in
grid-like environments

• L∞ : (limit of Lr when r tends to ∞) it is the maximum
absolute differences of coordinates, over all dimensions.

8

Distance functions (cont’d)

• Jaccard distance. Used when points are sets (e.g., documents
seen as bags of words). Let S and T be two sets over the
same ground set of elements. The Jaccard distance between S
and T is defined as

1− |S ∩ T |
|S ∪ T |

.

Note that the distance ranges in [0, 1], and it is 0 iff S = T
and 1 iff S and T are disjoint. The value |S ∩ T |/|S ∪ T | is
referred to as the Jaccard similarity of the two sets.

9

Distance functions (cont’d)

• Cosine distance. Used when points are vectors, for example
with integral or binary coordinates. It is the angle between the
two vectors, which is measured as follows. Let
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be two vectors.
Their cosine distance is

arccos

(
X · Y

||X || · ||Y ||

)
= arccos

(∑n
i=1 xiyi√∑n

i=1(xi)2
√∑n

i=1(yi)2

)

Example. For X = (1, 2,−1) and Y = (2, 1, 1) the cosine
distance is

arccos

(
3√

6
√

6

)
= arccos(1/2) = π/3.

10

Distance functions (cont’d)

Observations on the cosine distance

• It takes values in [0, π], or in [0, π/2] in case of non-negative
coordinates. Dividing by π (or π/2) the range becomes [0, 1].

• In order to statisfy the second property of distance functions
for metric spaces, scalar multiple of a vector must be regarded
as the same vector

• The cosine distance can be used for documents. Consider an
alphabet of n words. A document X over this alphabet can be
represented as an n-vector, where xi is the number of
occurences in X of the i-th word of the alphabet.

11

Distance functions (cont’d)

• Edit distance. Used for strings. Given two strings X and Y ,
their edit distance is the minimum number of deletions of
insertions that must be applied to transform X into Y . For
example: if X = ABCDE and Y = ACFDEG we can transform
X into Y as follows

• Delete B;

• Insert F after C;

• Insert G after E;

It is easy to see that in this case the edit distance is 3.

The edit distance can be obtained as
|X |+ |Y | − 2|LCS(X ,Y)|, where LCS(X ,Y) is the length of
the Longest Common Subsequence of X and Y , which can be
computed in O (|X | · |Y |) time thorugh
dynamic-programming.

12

Distance functions (cont’d)

• Hamming distance. Used when points are vectors (as for
cosine distance) over some n-dimensional space. Most
commonly, it is used for binary vectors. The Hamming
distance between two vectors is the number of coordinates in
which they differ. For example: for X = (0, 1, 1, 0, 1) and
Y = (1, 1, 1, 0, 0) (i.e., n = 5), the Hamming distance is 2,
since they differ in the first and last coordinates.

Exercise

Show that all distance functions introduced before satisfy the four
requirements for a metric space (listed in the definition of metric
space).

Proving the triangle inequality for the Jaccard distance is a bit tricky. See

proof in Section 3.5.3 of textbook [LRU14]. There is also a direct proof

in [M. Levandowsky, D. Winter. Distance between sets. Nature

234:34-35, 1971].

13

Curse of dimensionality

Random points in a high-dimensional metric space tend to be

• Sparse

• Almost equally distant from one another

• Almost orthogonal (as vectors) to one another .

As an example, consider N random points in [−1, 1]d , where for
each point the i-th coordinate is a random number in [−1, 1]
drawn with uniform probability independently of the other
coordinates and of the other points.

14

Curse of dimensionality (cont’d)

Let X = (x1, x2, . . . , xd) and Y = (y1, y2, . . . , yd) any two such points.
Their L2 distance is

d(X ,Y) =

√√√√ d∑
i=1

(xi − yi)2 ≤ 2
√
d .

Using Chebyshev’s inequality and other standard probability facts, one
can prove the following two properties hold with probability increasing
with d

• d(X ,Y) ∈ Θ
(√

d
)

, i.e., within constant from maximum

• The cosine of the angle formed by X ,Y (seen as vectors) w.r.t. to
origin, i.e., ∑n

i=1 xiyi√∑n
i=1(xi)2

√∑n
i=1(yi)2

is O (d−c) for some constant c > 0, therefore the angle tends to
π/2 (i.e., X ,Y orthogonal). as d grows large.

15

Types of clusterings

Given a set of points in a metric space, hence a distance between
points, one has to define an objective function to optimize. The
objective function also allows to compare different clusterings.

Objective functions can be categorized based on whether or not

• A target number k of clusters is given in input

• For each cluster a center must be identified and, possibly, the
objective function depends on the chosen centers. Centers are
usually input points, but, if the metric space is <d , centers
not belonging to the input points can be allowed (e.g., the
average of the points)

• Clusters are required to be disjoint

16

Center-based k-clusterings

Let P be a set of N points in metric space (M, d), and let k be the
target number of clusters, 1 ≤ k ≤ N. We define a k-clustering of
P as a tuple C = (C1,C2, . . . ,Ck ; c1, c2, . . . , ck) where

• (C1,C2, . . . ,Ck) defines a partition of P, i.e.,
P = C1 ∪ C2 ∪ · · · ∪ Ck

• c1, c2, . . . , ck are suitably selected centers for the clusters,
where ci ∈ Ci for every 1 ≤ i ≤ k.

Observe that the above definition requires the centers to belong to
the clusters, hence to the pointset. Whenever appropriate we will
discuss the case when the centers can be chosen more freely from
the metric space.

17

Example of 5-clustering

18

Center-based k-clusterings (cont’d)

Center-based clustering problems aim at computing a k-clustering
C which minimizes a suitable objective function Φ(C). The
following are three popular objective functions.

• (k-center clustering)

Φkcenter(C) =
k

max
i=1

max
a∈Ci

d(a, ci).

• (k-means clustering)

Φkmeans(C) =
k∑

i=1

∑
a∈Ci

(d(a, ci))2.

• (k-median clustering)

Φkmedian(C) =
k∑

i=1

∑
a∈Ci

d(a, ci).

19

Observations

• All aforementioned problems (k-center, k-means, k-median) are
NP-hard. Hence, in general it is difficult to compute optimal
solutions.

• There are several efficient approximation algorithms that in practice
return good-quality solutions. However, dealing efficiently with large
inputs is still a challenge!

• k-center and k-median belong to the family of facility-location
problems. In these problems, a set F of facilities and a set C of
clients are given and the objective is to find a subset of at most k
facilities to open and an assignment of clients to them, so to
minimize some the maximum distance of the sum of the distances
between clients and their assigned facilities. In our formulation,
each input point represents both a facility and a client. Numerous
variants of these problems have been studied in the literature.

• k-means objective is also referred to as Sum of Squared Errors (SSE)

20

Partitioning primitive

Let P be a pointset and S ⊆ P a set of k selected centers. For all
previously defined clustering problems, the best clustering around
these centers assign to each ci the set of points that are closer to
ci than to any other center (ties broken arbitrarily). In the
following, we will use primitive Partition(P,S) to denote this task:

Partition(P, S)

Let S = {c1, c2, . . . , ck} ⊆ P
for i ← 1 to k do Ci ← ∅
for each p ∈ P do
`← argmini=1,k{d(p, ci)} // ties broken arbitrarily

C` ← C` ∪ {p}
C ← (C1,C2, . . . ,Ck ; c1, c2, . . . , ck)
return C

21

k-center clustering

22

Farthest-First Traversal: algorithm

• Popular 2-approximation algorithm developed by T.F.
Gonzalez [Theoretical Computer Science, 38:293-306, 1985]

• Simple and, somewhat fast, implementation

• Powerful primitive for extracting samples for further analyses

Input Set P of N points from a metric space (M, d), integer k > 1

Output k-clustering C = (C1,C2, . . . ,Ck ; c1, c2, . . . , ck) of P.

23

Farthest-First Traversal: algorithm (cont’d)

S ← ∅
for i ← 1 to k do

Find the point ci ∈ P − S that maximizes d(ci ,S)
S ← S ∪ {ci}

return Partition(P,S)

• d(ci ,S) denotes the minimum distance of ci from a point of S .
That is, d(ci ,S) = min{c ∈ S : d(ci , c)}

• The assignment of points to clusters can be accomplished while
determining the centers in the first for-loop.

24

Farthest-First Traversal: example

25

Farthest-First Traversal: example

26

Farthest-First Traversal: example

27

Farthest-First Traversal: example

28

Farthest-First Traversal: example

29

Farthest-First Traversal: example

30

Farthest-First Traversal: example

31

Farthest-First Traversal: analysis

Exercise

Show that the Farthest-first traversal algorithm can be
implemented to run in O (N · k) time.

Hint: make sure that in each iteration i of the first for-loop each point

p ∈ P − S knowns its closest center among c1, c2, . . . , ci−1 and the

distance from such a center.

Theorem

Let Φopt
kcenter(k) be the minimum value of Φkcenter(C) over all

possible k-clusterings C of P, and let Calg be the k-clustering of P
returned by the Farthest-First Traversal algorithm. Then:

Φkcenter(Calg) ≤ 2 · Φopt
kcenter(k).

32

Farthest-First Traversal: analysis (cont’d)

Proof of Theorem

Let
Calg = (C1,C2, . . . ,Ck ; c1, c2, . . . , ck).

There must exists a cluster Ci and a point q ∈ Ci such that
d(q, ci) = Φkcenter(Calg) (i.e., q is the point which maximizes the
distance from its cluster’s center). Observe that:

• d(q, cj) ≥ d(q, ci), for every j 6= i since q is assigned to Ci

• d(cj1, cj2) ≥ d(q, ci), for every 1 ≤ j1 6= j2 ≤ k, since
otherwise q would have been a better choice as center at
some point during the algorithm (exercise)

33

Farthest-First Traversal: analysis (cont’d)

Proof of Theorem (cont’d).

Therefore there exists k + 1 points, namely c1, c2, . . . , ck , q whose
pairwise distances are all ≥ d(q, ci) = Φkcenter(Calg). Two of them
must fall in the same cluster of the optimal clustering.

Suppose that x , y are two points which belong to the same cluster
of the optimal clustering with center c , and such that
d(x , y) ≥ Φkcenter(Calg). By the triangle inequality, we have that

Φkcenter(Calg) ≤ d(x , y) ≤ d(x , c) + d(c , y) ≤ 2Φopt
kcenter(k),

and the theorem follows.

34

Observations on k-center clustering

• k-center clustering provides a strong guarantee on how close
each point is to the center of its cluster.

• However, for noisy pointsets (e.g., pointsets with outliers) the
clustering which optimizes the k-center objective may
obfuscate some “natural” clustering inherent in the data (see
example in the next slide).

• For any fixed ε > 0 it is NP-hard to compute a k-clustering
Calg with

Φkcenter(Calg) ≤ (2− ε)Φopt
kcenter,

hence the Farthest-First Traversal is likely to provide almost
the best approximation guarantee obtainable in polynomial
time.

35

Example: noisy pointset

36

k-center clustering for big data

Let P be a set of N points (N large!) from a metric space (M, d), and
let k > 1 be an integer.

MapReduce algorithm for k-center clustering (MR-Farthest-First
Traversal)

• Round 1: Partition P arbitrarily in ` subsets of equal size
P1,P2, . . . ,P` and execute the Farthest-First Traversal algorithm on
each Pi separately.

• Round 2: Let Ti be the set of centers of the k-clustering computed
from Pi , for 1 ≤ i ≤ `. Gather together T = ∪ki=1Ti and run (using
a single reducer) the Farthest-First Traversal algorithm on T .

• Round 3: Let S = {c1, c2, . . . , ck} be the set of centers of the
k-clustering computed from T . Compute the final clustering by

running Partition(Pj ,S) for each 1 ≤ j ≤ `. Let C
(j)
i be the cluster

centered at ci computed by Partition(Pj ,S). The final cluster

centered at ci is Ci = ∪`j=1C
(j)
i .

Exercise: Specify in detail the map and reduce phases of each round.

37

Analysis of MR-Farthest-First Traversal

Assume k = o(N). By setting ` =
√

N/k , it is easy to see that
the 3-round MR-Farthest-First traversal algorithm uses

• Local space ML = O
(√

N · k
)

= o(N)

• Aggregate space MA = O (N)

Note that each reducer in this case performs O
(
k ·
√
N · k

)
local

computation, which is a substantial improvement w.r.t. the
O (k · N) complexity of the sequential Farthest-First algorithm.

Theorem

Let Φopt
kcenter(k) be the minimum value of Φkcenter(C) over all

possible k-clusterings C of P, and let Calg be the k-clustering of P
returned by the MR-Farthest-First Traversal algorithm. Then:

Φkcenter(Calg) ≤ 4 · Φopt
kcenter(k).

38

Analysis of MR-Farthest-First Traversal (cont’d)

Proof of Theorem

Consider an arbitrary index i , with 1 ≤ i ≤ `. Let Calg(Pi) be the
k-clustering returned by the Farthest-First Traversal algorithm applied to
Pi is Round 1, and let di be the maximum distance of a point of Pi from
its cluster center (which belongs to Ti).

By reasoning as in the proof of the previous theorem, we can show that
there exist k + 1 points in Pi whose pairwise distances are all ≥ di . At
least two such points, say x , y must belong to the same cluster of the
optimal clustering for P (not Pi !), with center c . Therefore,

di ≤ d(x , y) ≤ d(x , c) + d(c , y) ≤ 2Φopt
kcenter(k).

Let Calg(T) be the k-clustering returned by the Farthest-First Traversal
algorithm applied to T in Round 2, and let dT be the maximum distance
of a point of T from its cluster center (which belongs to S). The same
argument as above, shows that dT ≤ 2Φopt

kcenter(k)

39

Analysis of MR-Farthest-First Traversal (cont’d)

Proof of Theorem (cont’d).

Now consider an arbitrary point p ∈ P and suppose, w.l.o.g., that p ∈ Pi

for some 1 ≤ i ≤ `. By combining the two observations made before, we
conclude that there must exist a point t ∈ Ti (hence t ∈ T) and a point
c ∈ S , such that

d(p, t) ≤ 2Φopt
kcenter(k)

d(t, c) ≤ 2Φopt
kcenter(k).

Therefore, by triangle inequality, we have that

d(p, c) ≤ d(p, t) + d(t, c) ≤ 4Φopt
kcenter(k),

and this immediately implies that Φkcenter(Calg) ≤ 4 · Φopt
kcenter(k).

40

k-means clustering

41

Properties of Euclidean spaces

Let X = (X1,X2, . . . ,XD) and Y = (Y1,Y2, . . . ,YD) be two points
in <D . Recall that their Euclidean distance is

d(X ,Y) =

√∑
i=1

(Xi − Yi)2 4= ||X − Y ||.

Definition

The centroid of a set P of N points in <D is

c(P) =
1

N

∑
X∈P

X ,

where the sum is component-wise.

Observe that c(P) does not necessarily belong to P

42

Properties of Euclidean spaces (cont’d)

Lemma

The centroid c(P) of a set P ⊂ <D is the point of <D which minimizes
the sum of the square distances to all points of P.

Proof

Consider an arbitrary point Y ∈ <D . We have that∑
X∈P

(d(X ,Y))2 =
∑
X∈P

||X − Y ||2

=
∑
X∈P

||X − cP + cP − Y ||2

= (
∑
X∈P

||X − cP ||2) + N||cP − Y ||2 +

+2(cP − Y) ·

(∑
X∈P

(X − cP)

)
,

where ”·” denotes the inner product.

43

Properties of Euclidean spaces (cont’d)

Proof. (cont’d).

By definition of cP we have that
∑

X∈P(X − cP) = (
∑

X∈P X)− NcP is
the all-0’s vector, hence∑

X∈P

(d(X ,Y))2 =
∑
X∈P

||X − cP ||2 + n||cP − Y ||2

≥
∑
X∈P

||X − cP ||2

=
∑
X∈P

(d(X , cP))2

Observation: The lemma implies that when seeking a k-clustering for

points in <D which minimizes the kmeans objective, the best center to

select for each cluster is its centroid (assuming that centers can be

selected outside the input points).

44

k-means algorithm

• Also known as Lloyd’s algorithm (developed by Stuart Lloyd in
1957). In 2006 it was listed as one of the top-10 most
influential data mining algorithms (A-Priori is also one of
these). It is considered among the most popular clustering
algorithm used in both scientific and industrial applications.

• It focuses on Euclidean spaces

• It relates to a generalization of the Expectation-Maximization
algorithm

45

k-means algorithm (cont’d)

Input Set P of N points from <D , integer k > 1

Output k-clustering C = (C1,C2, . . . ,Ck ; c1, c2, . . . , ck) of P, where
centers need not belong to P

S ← arbitrary set of k points in <D

Φ←∞; stopping-condition ← false

while (!stopping-condition) do
(C1,C2, . . . ,Ck ;S)← Partition(P,S)
for i ← 1 to k do c ′i ← centroid of Ci

C ← (C1,C2, . . . ,Ck ; c ′1, c
′
2, . . . , c

′
k)

if Φkmeans(C) < Φ then
Φ← Φkmeans(C)
S ← {c ′1, c ′2, . . . , c ′k}

else stopping-condition ← true

return C

46

Example

47

k-means algorithm: analysis

Theorem

The k-means algorithm always terminates, that is, it converges to
a (local) optimum.

Proof.

Observe that values of the objective function for the k-clusterings
C computed in the iterations of the while-loop (except for the last
iteration) form a strictly decreasing sequence. Therefore, the
clusterings C generated at all iterations (except for the last one)
must be distinct.

The clustering C generated at each iteration is uniquely determined
by the set of clusters C1,C2, . . . ,Ck returned by Partition.

Thus, all iterations (except for the last one) generate different sets
of clusters. The theorem follows since there are kN of possible
partitions of P into k clusters (counting also permutations of the
same partition).

48

Observations on k-means algorithm

• The k-means algorithm may be trapped into a local optimum whose
value of the objective function can be much larger than the optimal
value. Consider the following example and suppose that k = 3.

If initially one center falls among the points on the left side, and
two centers fall among the points on the right side, it is impossible
that one center moves from right to left, hence the two obvious
clusters on the left will be considered as just one cluster.

49

Observations on k-means algorithm (cont’d)

• While the k-means algorithm surely terminates, the number of
iterations can be exponential in the input size.

• Besides the trivial kN upper bound on the number of
iterations, more sophisticated studies proved an O

(
NkD

)
upper bound which is improves upon the trivial one, in
scenarios where k and D are small

• Some recent studies proved also a 2Ω(
√
N) lower bound on the

number of iterations in the worst case.

• Despite the not so promising theoretical results, emprical
studies show that, in practice, k-means requires much less
than N iterations.

• In order to improve performance, without sacrificing the
quality of the solution too much, one could stop the algorithm
earlier, e.g., when the value of the objective function
decreases by a small additive factor.

50

Effective initialization

• The quality of the solution and the speed of convergence of
k-means depend considerably from the choice of the initial set
of centers (e.g., consider the previous example)

• Typically, initial centers are chosen at random, but there are
more effective ways of selecting them

• In a paper presented at ACM-SODA’07, D. Arthur and S.
Vassilvitskii developed k-means++, a careful center
initialization strategy that yields clusterings not too far from
the optimal ones.

• A parallel variant of k-means++ (k-means|| [B+12]) is
implemented in the Spark MLlib.

51

k-means++

Algorithm k-means++ uses the following procedure to select the
set S of k centers at the start of k-means.

c1 ← random point chosen from P with uniform probability

S ← {c1}
for i ← 2 to k do

for each p ∈ P − S do dp ← minc∈S d(c , p)
ci ← random point chosen from P − S, where a point P

is chosen with probability (dp)2/(
∑

q∈P−S(dq)2)

S ← S ∪ {ci}

Observe that the probability values (dp)2/(
∑

q∈P−S(dq)2), used to
select the next center in each iteration of the for-loop, define a
probability distribution.

After the initialization, k-means++ proceeds exactly like k-means

52

k-means++

Let P be a set of N points from a metric space (M, d), and let
k > 1 be an integer.

Theorem (Arthur-Vassilvitskii’07)

Let Φopt
kmeans(k) be the minimum value of Φkmeans(C) over all

possible k-clusterings C of P, and let Calg be the k-clustering of P
returned by the k-means++ algorithm. Then:

E [Φkmeans(Calg)] ≤ 8(ln k + 2) · Φopt
kmeans(k),

where the expectation is over all possible initial sets of centers
produced by the novel randomized initialization strategy.

Observation: The k centers computed in the initialization phase
already provide the above guarantee on the clustering quality. The
successive iterations of the k-means algorithm can only improve
this quality.

53

Observations on k-means clustering

• In essence, k-means clustering aims at minimizing cluster
variance. It is typically used in Euclidean spaces and works
well for ball-shaped clusters. In fact, the centroids used in the
k-means algorithm make no sense in non-Euclidean spaces

• Because of the quadratic dependence on distances, k-means
clustering is rather sensitive to outliers. However, the fact
that the objective function sums all distances, makes it more
robust than the k-center objective to noise and outliers.

• In practice, if the inital centers are suitably selected and a
careful implementation is used, the k-means algorithm is
rather fast and accurate. This is one of the main reasons of
the popularity of the algorithm

54

k-median clustering

55

Partitioning Around Medoids (PAM) algorithm

• Devised by L. Kaufman and P.J. Rousseeuw in 1987

• Based on the local search optimization strategy

• Unlike the k-means algorithm, cluster centers belong to the
input pointset and, traditionally, are referred to as medoids

Input Set P of N points from a metric space (M, d), integer k > 1

Output k-clustering C = (C1,C2, . . . ,Ck ; c1, c2, . . . , ck) of P.

56

PAM algorithm (cont’d)

S ← {c1, c2, . . . , ck} (arbitrary set of k points of P)
C ← Partition(P,S)
stopping-condition ← false

while (!stopping-condition) do
stopping-condition ← true

for each p ∈ P − S do
for each c ∈ S do S ′ ← (S − {c}) ∪ {p}
C′ ← Partition(P, S ′)
if Φkmedian(C′) < Φkmedian(C) then
stopping-condition ← false

C ← C′
exit both for-each loops

return C

57

PAM algorithm: example

58

PAM algorithm: example

59

PAM algorithm: example

60

PAM algorithm: example

61

PAM algorithm: example

62

PAM algorithm: example

63

PAM algorithm: example

64

PAM algorithm: example

65

PAM algorithm: analysis

Let P be a set of N points from a metric space (M, d), and let
k > 1 be an integer.

Theorem (Arya et al.’04)

Let Φopt
kmedian(k) be the minimum value of Φkmedian(C) over all

possible k-clusterings C of P, and let Calg be the k-clustering of P
returned by the PAM algorithm. Then:

Φkmedian(Calg) ≤ 5 · Φopt
kmedian(k).

Remark: by imposing that in each iteration the new clustering C′

decreases the objective function by at least 1− ε/(Nk), for some constant

ε ∈ (0, 1), stopping the algorithm if this is not possibile, it can be proved

that the algorithm executes a number of iterations polynomial in N and

Φkmedian(Calg) is a factor f (ε) ∈ O (1) away from the optimal value.

66

Observations on k-median clustering

• k-median is less sensitive to outliers than k-center and
k-means since all distances (not squared) are taken into
account

• The PAM algorithm works for any metric space and fatures
provable performance and approximation guarantees.
However, it can be quite slow in practice since in each
iteration up to (N − k) · k swaps may need to be checked, and
for each swap a new clustering must be computed

• A faster alternative is an adaptation of the k-means algorithm:
in each iteration of the main while-loop, and for each current
cluster Ci the new center (medoid) will be the point of Ci

which mimimizes the sum of the distances to all other points
of the cluster, instead of the centroid usednby k-means. This
algorithm appears faster and still very accurate in practice
(see [PJ09]).

67

How to pick the “right” value for k?

• Sometimes, the application provides a target value for k (e.g.,
the number of facilities we want to open)

• If such a target value of k is not known:
• Find k-clusterings with geometrically larger values of k (i.e.,

k = 2, 4, 8, . . .) and stop at k = x if the value of the objective
function (or some other metric) for k = x does not improve
“too much” with respect to k = x/2.

• (Optional) Refine search of k in [x/2, x].

68

Exercises

Exercise

For a pointset P from a metric space (M, d) and an integer k > 1,
let Φopt

kcenter(k) be the minimum value of Φkcenter(C) over all
possible k-clusterings C of P.

1 Show that Φopt
kcenter(k + 1) ≤ Φopt

kcenter(k)

2 Suppose that Φopt
kcenter(k) is attained by a clustering

(C1,C2, . . . ,Ck ; c1, c2, . . . , ck). Show that for any point
p ∈ P, with p ∈ Ci for some i , we have that

Ci ⊆
{
q : d(p, q) ≤ 2Φopt

kcenter(k)
}

Exercise

Specify in detail the map and reduce phases of each round of the
MR-Farthest-First Traversal algorithm.

69

Exercises

Exercise

Argue that when k = o(N) the MR-Farthest-First Traversal
algorithm requires local space ML = o(N) and aggregate space
MA = O (N).

Exercise

Let P be a set of N points from <n and let k > 1 be an interger.
Using Markov’s inequality and Chernoff bound show that by
repeating k-means++ c logN times, for a suitable constant c > 1,
and by taking the best clustering Calg found among all repetitions,
we have that

Φkmeans(Calg) = O
(

(ln k)Φopt
kmeans(k)

)
,

with probability ≥ 1− 1/N.

70

References

LRU14 J. Leskovec, A. Rajaraman and J. Ullman. Mining Massive
Datasets. Cambridge University Press, 2014. Sections 3.1.1 and 3.5,
and Chapter 7

BHK16 A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data
Science. Manuscript, June 2016. Chapter 8

AV07 D. Arthur, S. Vassilvitskii. k-means++: the advantages of careful
seeding. Proc. of ACM-SIAM SODA 2007: 1027-1035.

B+12 B. Bahmani et al. Scalable K-Means++. PVLDB 5(7):622-633,
2012

Arya+04 V. Arya et al. Local Search Heuristics for k-Median and Facility
Location Problems. SIAM J. Comput. 33(3):544-562, 2004.

PJ09 H.S. Park, C.H. Jun. A simple and fast algorithm for K-medoids
clustering. Expert Syst. Appl. 36(2):3336-3341, 2009

71

