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Esercises on Graph Analytics

Exercise. Let G = (V,E) be an undirected graph with n nodes and m = n1+c edges,
for some constant c > 0. The following algorithm computes a minimum spanning forest
for G in MapReduce using O (m) aggregate space and O (n1+ε) local space, for some fixed
ε ∈ (0, c]. Let M = n1+ε and m0 = m. Initially, all edges are called live edges. For i ≥ 1

Round i: if there are mi−1 ≤ M live edges then return the minimum spanning forest
computed on the subgraph induced by these edges. Otherwise

• Partition the live edges into ` = mi−1/M subsets by assigning each edge to a ran-
dom subset, chosen with uniform probability and independently of the other edges.
Assume for simplicity that mi−1/M is an integer.

• Compute the minimum spanning forest separately for each subset. Call live edges
all edges belonging to the ` forests and let mi be their number. All other edges are
discarded.

Answer the following questions.

1. Give an upper bound to the number of rounds as a function of c and ε.

2. Consider a Round i with mi−1 > M , and let E(i) be the set of mi−1 live edges at the
beginning of the round. In the round, E(i) is randomly partitioned into ` = mi−1/M

subsets, say E
(i)
1 , E

(i)
2 , . . . , E

(i)
` . For any fixed j, with 1 ≤ j ≤ `, give an upper bound

to Pr(|E(i)
j | ≥ 6M).

Hint: Use the Chernoff Bound that states that for a Binomial r.v. Z with E[Z] = µ,
Pr(Z ≥ 6µ) ≤ 2−6µ.

3. Using the above points, show that the probability that the algorithm requires local
space < 6M tends to 1 as n goes to ∞.

Solution.

1. Since a spanning forest of any subgraph of G has at most n− 1 edges we have that
mi ≤ (n− 1)mi−1/M < nmi−1/M , which implies mi < m0(n/M)i = n1+c(n/M)i, for
every i ≥ 1. Hence, the last round is Round i + 1, where i is the smallest integer
such that mi ≤ M . Since for i + 1 ≥ dc/εe we have n1+c(n/M)i ≤ M , we conclude
that the number of rounds is ≤ dc/εe.

2. Let Z = |E(i)
j |. Since each live edge of E(i) ends up in E

(i)
j with probability 1/`, inde-

pendently of the other edges, Z can be regarded as the sum of mi−1 i.i.d. Bernoulli
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variables Xe, one for each live edge e, where Xe = 1 if e ∈ E(i)
j and 0 otherwise, and

Pr(Xe = 1) = 1/`. Hence, Z is a Binomial r.v. with expectation

µ =
mi−1

`
= mi−1

1

mi−1/M
= M.

By Chernoff Bound we have that

Pr(Z ≥ 6M) ≤ 2−6M .

3. Since there are ≤ dc/εe rounds and < n2/M subsets of edges created at each round,
the probability that exists a round and a subset of live edges, created in that round,
with size ≥ 6M , is at most⌈c

ε

⌉ n2

M

1

26M
=
⌈c
ε

⌉
n1−ε 1

26n1+ε ,

which tends to 0 as n tends to ∞. Therefore, the algorithm requires local space
< 6M with probability that tends to 1 as n goes to ∞.

2

Exercise. Let G = (V,E) be a connected, undirected graph with n nodes. Suppose that
a BFS is executed from each of k > 1 distinct pivots v1, v2, . . . , vk ∈ V , and that the
following two values are computed:

R = max
u∈V

min
1≤i≤k

dist(u, vi)

∆ = max
1≤i,j≤k

dist(vi, vj).

Determine a lower and an upper bound to the diameter of G (denoted by Diameter(G)) as
functions of R and ∆. Justify your answer.

Solution. By definition,
Diameter(G) = max

x,y∈V
dist(x, y).

Since ∆ accounts only for a subset of pairs, we have that Diameter(G) ≥ ∆. Let x and y
be two nodes such that dist(x, y) = Diameter(G), and let vi be the pivot closest to x, and
vj the pivot closest to y. Since one can go from x to y passing first through vi and then
through vj, we have that

dist(x, y) ≤ dist(x, vi) + dist(vi, vj) + dist(vj, y) ≤ 2R + ∆.

Thus,
∆ ≤ Diameter(G) ≤ 2R + ∆.

2
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Exercise. Let G = (V,E) be a connected, undirected graph with n nodes. For an integer,
with 1 ≤ k < n, let v1, v2, . . . , vk be k random pivots drawn from V independently, with
replacement and with uniform probability. According to the Eppstein and Wang’s method,
For each v ∈ V , its closeness centrality c(v) can be approximated by the estimator

c̃(v) =
k(n− 1)

n

k∑
i=1

dist(v, vi).

Show that 1/c̃(v) is an unbiased estimator of 1/c(v), i.e.,

E

[
1

c̃(v)

]
=

1

c(v)
,

Solution. Since the pivots are random, for each v ∈ V and for each pivot vi the value
dist(v, vi) is a random variable. Since the pivots are drawn from V independently, with
replacement and with uniform probability, we have that the expectation of dist(v, vi) is

E[dist(v, vi)] =
∑
u∈V

(
1

n
dist(v, u)

)
.

Then, for each v ∈ V

E

[
1

c̃(v)

]
= E

[
n

k(n− 1)

k∑
i=1

dist(v, vi)

]

=
n

k(n− 1)
E

[
k∑
i=1

dist(v, vi)

]

=
n

k(n− 1)

k∑
i=1

E[dist(v, vi)] (by linearity of expectation)

=
n

k(n− 1)

k∑
i=1

∑
u∈V

(
1

n
dist(v, u)

)
=

n

k(n− 1)

k

n

∑
u∈V

dist(v, u)

=
n

k(n− 1)

k

n

∑
u∈V,u 6=v

dist(v, u)

=
1

c(v)
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