Esercises on Graph Analytics

Exercise. Let G = (V, E) be an undirected graph with n nodes and $m = n^{1+c}$ edges, for some constant c > 0. The following algorithm computes a minimum spanning forest for G in MapReduce using O(m) aggregate space and $O(n^{1+\epsilon})$ local space, for some fixed $\epsilon \in (0, c]$. Let $M = n^{1+\epsilon}$ and $m_0 = m$. Initially, all edges are called *live edges*. For $i \ge 1$

Round *i*: if there are $m_{i-1} \leq M$ live edges then return the minimum spanning forest computed on the subgraph induced by these edges. Otherwise

- Partition the live edges into $\ell = m_{i-1}/M$ subsets by assigning each edge to a random subset, chosen with uniform probability and independently of the other edges. Assume for simplicity that m_{i-1}/M is an integer.
- Compute the minimum spanning forest separately for each subset. Call live edges all edges belonging to the ℓ forests and let m_i be their number. All other edges are discarded.

Answer the following questions.

- 1. Give an upper bound to the number of rounds as a function of c and ϵ .
- 2. Consider a Round *i* with $m_{i-1} > M$, and let $E^{(i)}$ be the set of m_{i-1} live edges at the beginning of the round. In the round, $E^{(i)}$ is randomly partitioned into $\ell = m_{i-1}/M$ subsets, say $E_1^{(i)}, E_2^{(i)}, \ldots, E_\ell^{(i)}$. For any fixed *j*, with $1 \le j \le \ell$, give an upper bound to $\Pr(|E_i^{(i)}| \ge 6M)$.

Hint: Use the Chernoff Bound that states that for a Binomial r.v. Z with $E[Z] = \mu$, $\Pr(Z \ge 6\mu) \le 2^{-6\mu}$.

3. Using the above points, show that the probability that the algorithm requires local space < 6M tends to 1 as n goes to ∞ .

Solution.

- 1. Since a spanning forest of any subgraph of G has at most n-1 edges we have that $m_i \leq (n-1)m_{i-1}/M < nm_{i-1}/M$, which implies $m_i < m_0(n/M)^i = n^{1+c}(n/M)^i$, for every $i \geq 1$. Hence, the last round is Round i+1, where i is the smallest integer such that $m_i \leq M$. Since for $i+1 \geq \lceil c/\epsilon \rceil$ we have $n^{1+c}(n/M)^i \leq M$, we conclude that the number of rounds is $\leq \lceil c/\epsilon \rceil$.
- 2. Let $Z = |E_j^{(i)}|$. Since each live edge of $E^{(i)}$ ends up in $E_j^{(i)}$ with probability $1/\ell$, independently of the other edges, Z can be regarded as the sum of m_{i-1} i.i.d. Bernoulli

Data Mining: Esercises on Graph Analytics

variables X_e , one for each live edge e, where $X_e = 1$ if $e \in E_j^{(i)}$ and 0 otherwise, and $\Pr(X_e = 1) = 1/\ell$. Hence, Z is a Binomial r.v. with expectation

$$\mu = \frac{m_{i-1}}{\ell} = m_{i-1} \frac{1}{m_{i-1}/M} = M.$$

By Chernoff Bound we have that

$$\Pr(Z \ge 6M) \le 2^{-6M}$$

3. Since there are $\leq \lceil c/\epsilon \rceil$ rounds and $< n^2/M$ subsets of edges created at each round, the probability that exists a round and a subset of live edges, created in that round, with size $\geq 6M$, is at most

$$\left\lceil \frac{c}{\epsilon} \right\rceil \frac{n^2}{M} \frac{1}{2^{6M}} = \left\lceil \frac{c}{\epsilon} \right\rceil n^{1-\epsilon} \frac{1}{2^{6n^{1+\epsilon}}},$$

which tends to 0 as n tends to ∞ . Therefore, the algorithm requires local space < 6M with probability that tends to 1 as n goes to ∞ .

Exercise. Let G = (V, E) be a connected, undirected graph with n nodes. Suppose that a BFS is executed from each of k > 1 distinct *pivots* $v_1, v_2, \ldots, v_k \in V$, and that the following two values are computed:

$$R = \max_{u \in V} \min_{1 \le i \le k} \operatorname{dist}(u, v_i)$$
$$\Delta = \max_{1 \le i, j \le k} \operatorname{dist}(v_i, v_j).$$

Determine a lower and an upper bound to the diameter of G (denoted by Diameter(G)) as functions of R and Δ . Justify your answer.

Solution. By definition,

$$Diameter(G) = \max_{x, y \in V} dist(x, y).$$

Since Δ accounts only for a subset of pairs, we have that $\text{Diameter}(G) \geq \Delta$. Let x and y be two nodes such that dist(x, y) = Diameter(G), and let v_i be the pivot closest to x, and v_j the pivot closest to y. Since one can go from x to y passing first through v_i and then through v_j , we have that

$$\operatorname{dist}(x, y) \le \operatorname{dist}(x, v_i) + \operatorname{dist}(v_i, v_j) + \operatorname{dist}(v_j, y) \le 2R + \Delta.$$

Thus,

$$\Delta \leq \text{Diameter}(G) \leq 2R + \Delta.$$

Data Mining: Esercises on Graph Analytics

Exercise. Let G = (V, E) be a connected, undirected graph with n nodes. For an integer, with $1 \le k < n$, let v_1, v_2, \ldots, v_k be k random *pivots* drawn from V independently, with replacement and with uniform probability. According to the Eppstein and Wang's method, For each $v \in V$, its closeness centrality c(v) can be approximated by the estimator

$$\tilde{c}(v) = \frac{k(n-1)}{n} \sum_{i=1}^{k} \operatorname{dist}(v, v_i).$$

Show that $1/\tilde{c}(v)$ is an unbiased estimator of 1/c(v), i.e.,

$$\operatorname{E}\left[\frac{1}{\tilde{c}(v)}\right] = \frac{1}{c(v)},$$

Solution. Since the pivots are random, for each $v \in V$ and for each pivot v_i the value $dist(v, v_i)$ is a random variable. Since the pivots are drawn from V independently, with replacement and with uniform probability, we have that the expectation of $dist(v, v_i)$ is

$$E[\operatorname{dist}(v, v_i)] = \sum_{u \in V} \left(\frac{1}{n} \operatorname{dist}(v, u)\right).$$

Then, for each $v \in V$

$$E\left[\frac{1}{\tilde{c}(v)}\right] = E\left[\frac{n}{k(n-1)}\sum_{i=1}^{k}\operatorname{dist}(v,v_{i})\right]$$
$$= \frac{n}{k(n-1)}E\left[\sum_{i=1}^{k}\operatorname{dist}(v,v_{i})\right]$$
$$= \frac{n}{k(n-1)}\sum_{i=1}^{k}E[\operatorname{dist}(v,v_{i})] \quad \text{(by linearity of expectation)}$$
$$= \frac{n}{k(n-1)}\sum_{i=1}^{k}\sum_{u\in V}\left(\frac{1}{n}\operatorname{dist}(v,u)\right)$$
$$= \frac{n}{k(n-1)}\frac{k}{n}\sum_{u\in V}\operatorname{dist}(v,u)$$
$$= \frac{n}{k(n-1)}\frac{k}{n}\sum_{u\in V,u\neq v}\operatorname{dist}(v,u)$$
$$= \frac{1}{c(v)}$$