
Data Mining: Esercises on MapReduce 1

Esercises on MapReduce

Exercise. Specify input, output and intermediate key-value pairs for the space-efficient 2-
round MR-algorithm for matrix-vector multiplication (see slides 18 and 19).1 For simplicity,
assume that k divides n.

Solution. Let A and V denote the input n×n-matrix and n-vector, and let W = A·V . We
assume that A is represented through n2 pairs ((i, j), A[i, j]), with 0 ≤ i, j < n, where (i, j)
is the key, and that V (resp., W) is represented through n pairs (i, V [i]) (resp., (i,W [i])),
with 0 ≤ i < n, where i is the key.

Round 1

– Map phase. Each input pair ((i, j), A[i, j]) is mapped into the intermediate
pair ((s, t), ((i, j), A[i, j])), with s = bi/kc and t = bj/kc, where (s, t) is the
key. Thus, submatrix A(s,t) will be represented by all such pairs whose key
is (s, t). Also, input pair (i, V [i]) is mapped into the n/k intermediate pairs
((s, t), (i, V [i])) with 0 ≤ s < n/k and t = bi/kc, where (s, t) is the key. Thus,

the s-th replica of segment V (t) (denoted by V
(t)
s) will be represented by all such

pairs whose key is (s, t).

– Reduce phase. For each 0 ≤ s, t < n/k independently, the pairs represented

A(s,t) and V
(t)
s are gathered and the product W

(s)
t = A(s,t) ·V (t)

s is computed. Re-

call that W
(s)
t is the t-th contribution to the segment W (s), which comprises the

entries W [i] with sk ≤ i < (s+1)k, and that W (s) =
∑n/k−1

t=0 W
(s)
t . Therefore, we

can simply represent W
(s)
t through the s pairs (i,Wt[i]), with sk ≤ i < (s+ 1)k.

Round 2

– Map phase. Identity map.

– Reduce phase. For every 0 ≤ i < n independently, all pairs (i,Wt[i]), with
0 ≤ t < n/k, are gathered and the output pair (i,W [i]) is returned.

2

Exercise. Let T be a huge set of web pages gathered by a crawler. Design and analyze
an efficient MapReduce algorithm to create an inverted index for T , which associates each
word w to the list of URLs of the pages containing w.

Solution. Suppose that T is provided in input as a set of key-value pairs (uD, D) where
D is a web page and uD, the key of the pair, is the page URL. For each distinct word w
occurring in some page, the algorithm must output a pair (w,Lw), whose key is the word
w and whose value is the list Lw of URLs of all pages in T where w occurs. The task can
be accomplished in one round, using the following Map and Reduce phases:

1MR-algorithm stands for MapReduce-algorithm.

Data Mining: Esercises on MapReduce 2

• Map phase. Each pair (uD, D) is mapped into a number of pairs (w, uD), one for
each distinct word w ∈ D.

• Reduce phase. For every word w (occurring in some page) independently, all
pairs with key w, say (w, u1), (w, u2), . . . , (w, u`(w)), are gathered and the output pair
(w,Lw) is computed, where Lw is the list of URLs u1, u2, . . . , u`(w).

Let

N = total number of words (with repetitions) occurring in the pages

m1 = max size of a page (in number of words)

m2 = max number of pages containing a given word

It is immediate to see that the algorithm requires local space ML = Θ (max{m1,m2}) and
aggregate space MA = Θ (N). 2

Exercise. (Exercise 2.3.1.(b) of [LRU14]) Design an efficient MapReduce algorithm to
compute the average of a set S of N integers, coming up with interesting round-space
tradeoffs.

Solution. Suppose that S is provided in input as a set of key-value pairs (i, xi) where xi
is an arbitrary integer and i, with 0 ≤ i < N , is the key of the pair. While the trivial
1-round algorithm uses Θ (N) local space, the space requirements can be substantially
lowered using the following simple 2-round strategy.

Round 1

– Map phase. Each pair (i, xi) is mapped into the pair (i mod b
√
Nc, xi).

– Reduce phase. For each key k independently, with 0 ≤ k < b
√
Nc, the set Sk

of all intermediate pairs (k, x) is gathered and the pair (0, avgk)) is produced,
where avgk = (1/N)

∑
(k,x)∈Sk

x is produced.

Round 2

– Map phase. Identity

– Reduce phase. All pairs (0, avgk) are gathered and the pair (0, avg), with
avg =

∑
(0,avgk)

avgk.

It is immediate to see that the algorithm requires ML = Θ
(√

N
)

and aggregate space

MA = Θ (N).

Data Mining: Esercises on MapReduce 3

Observation. Suppose that the size of ML is fixed. We can modify the above algo-
rithm so that it uses local space ML, as follows. In the first round, the input set S
is partitioned into N/ML subsets of size ML each, and the contribution each subset to
the average is computed. Then, the final average is computed in O

(
logML

(N/ML)
)

=
O (log(N/ML)/ log(ML)) additional rounds, using a summation tree of ariety ML whose
leaves are the N/ML contributions to be summed up. The number of rounds remains con-
stant as long as ML = Ω (N ε) for some constant ε > 0. The details are left as an exercise.
2

Exercise. (Exercise 2.3.1.(d) of [LRU14]) Design an efficient MapReduce algorithm to
compute the number of distinct integers in a set S of N integers, coming up with interesting
round-space tradeoffs.

Solution. As before, we assume that S is provided in input as a set of key-value pairs
(i, xi) where xi is an arbitrary integer and i, with 0 ≤ i < N , is the key of the pair. We
present a straightforward 2-round algorithm and a more space-efficient 3-round algorithm.
The 2-round algorithm does a simple removal of duplicates. It works as follows:

Round 1

– Map phase. Each pair (i, xi) is mapped into the pair (xi, i), that is, xi becomes
the key.

– Reduce phase. For each key x independently, the set Sx of all intermediate
pairs (x, j) are gathered and a unique pair (0, x) is produced.

Round 2

– Map phase. Identity

– Reduce phase. The set S0 of all pairs (0, x) is gathered and the pair (0, count),
where count = |S0|, is returned.

Let K1 be the maximum number of occurrences of the same integer and K2 the number of
distinct integers in the input set S. Observe that K1 ≥ N/K2. It is immediate to see that
the algorithm requires ML = Θ (K1 +K2) and aggregate space MA = Θ (N). Note that,

since K1 ≥ N/K2, we have that, in general, ML = Ω
(√

N
)

, but it may become much

larger than
√
N if K2 is small.

Below, is an alternative strategy that reduces the local space requirements for small
K2, at the expense of an extra round.

Round 1

– Map phase. Each pair (i, xi) is mapped into the pair (i mod b
√
Nc, xi).

– Reduce phase. For each key k independently, with 0 ≤ k < b
√
Nc, the set Sk

of all intermediate pairs (k, x) is gathered and the duplicates are eliminated.

Data Mining: Esercises on MapReduce 4

Round 2

– Map phase. Each pair (k, x) is mapped into the pair (x, k), that is, x becomes
the key.

– Reduce phase. For each x independently, the set Sx of all intermediate pairs
(x, k) is gathered and only one pair (0, x) is produced.

Round 3

– Map phase. Identity.

– Reduce phase. The set S0 of all pairs (0, x) is gathered and the pair (0, count),
where count = |S0|, is returned.

Let K2 be defined as above. It is easy to see that Round 1 and 2 require local space

Θ
(√

N
)

, while Round 3 requires local space Θ (K2). Therefore, the algorithm requires

ML = Θ
(√

N +K2

)
and aggregate space MA = Θ (N). For small K2, namely, K2 �

√
N ,

the algorithm uses substantially less local space than the previous one. 2

Exercise. Consider a dataset T of N transactions over I given in input as in the SON
algorithm. Assume that each transaction has constant legnth. Show how to draw a sample
S of K transactions from T , uniformly at random with replacement, in one MapReduce
round. How much local space is needed by your method?

Solution. Suppose that T is provided in input as a set of key-value pairs (i, ti) where the
key is a TID i, with 0 ≤ i < N , and the value is a transaction ti. We can extract the
sample in one round by first choosing the indices of the transactions to be sampled in the
map phase, and then extracting the transactions in the reduce phase. The details of the
algorithm are as follows.

• Map phase. Each pair (i, ti) is mapped into the pair (i mod (N/K), (i, ti)), where
the key is i mod (N/K). Moreover, if i < K the mapper will generate a random
value, xi ∈ [0, N) and produce N/K pairs (0, xi), (1, xi), . . . , (N/K − 1, xi).

• Reduce phase. For each key j independently, with 0 ≤ j < N/K, gather the set
Tj of all intermediate pairs (j, (i, ti)) (i.e., with j = i mod (N/K)), and the set Hj of
K, intermediate pairs (j, xi) with 0 ≤ i < K. Note that Tj and Hj contain K pairs
each. Extract from Tj the multiset Sj of all pairs (j, (i, ti)) such that i corresponds to
some index x` with ` ∈ [0, K). Multiple copies of (j, (i, ti)) will be included in Sj in
case more than one of the indices x1, x2, . . . , x` (which are chosen with replacement)
are equal to i.

The final sample S will be the aggregation of all Sj’s. It is immediate to see that the
algorithm requires ML = Θ (K) and aggregate space MA = Θ (N). 2

Data Mining: Esercises on MapReduce 5

Exercise. Generalize the space-efficient matrix-vector algorithm to handle rectangular
matrices

Solution. Suppose that we must compute the product W = A · V , where A is an
n × m-matrix and V an m-vector. We assume that A is represented through nm pairs
((i, j), A[i, j]), with 0 ≤ i < n and 0 ≤ j < m, where (i, j) is the key, and that V
(resp., W) is represented through n pairs (i, V [i]), with 0 ≤ i < m (resp., (i,W [i]), with
0 ≤ i < n), where i is the key. Let k = b

√
mc and assume, for simplicity, that k divides

m. Consider A subdivided into nm/k rectangular blocks 1 × k, which we denote as A(i,t)

with 0 ≤ i < n and 0 ≤ t < m/k. Also, consider V subdivided into m/k segments of
lenght k, which we denote as V (t), with 0 ≤ t < m/k. In the first round, we compute
independently the nm/k values Wt[i] = A(i,t) · V (t), with 0 ≤ i < n and 0 ≤ t < m/k.
In the second round, for every index i, with 0 ≤ i < n, we compute the entry W [i] of

the output vector as W [i] =
∑m/k−1

t=0 Wt[i]. It is easy to see that both rounds require local
space ML = O (

√
m) and aggregate space MA = O (nm). The details are left as an exercise.

Observation. Note that for m = n the above algorithm is more sapce-efficient than the
one presented in class. 2

Exercise. In the SON algorithm the dataset T of N transactions is initially partitioned
into K subsets Tj, with 0 ≤ j < K, so that the transaction of index i is assigned to subset
Tj with j = i mod K. If the transactions have arbitrary lengths, this partition may be
unbalanced in terms of space. Is there a better way to partition T?

Solution. Let T = {ti : 0 ≤ i < N} and let `i be the length of ti, for each 0 ≤
i < N . Therefore, the total space occupied by T is M =

∑N−1
i=0 `i. We can assign

each transaction ti ∈ T to Tj, where j is a random index in [0, K), chosen with uniform
probability. The expected aggregate length of the transactions assigned to Tj, for any

arbitrary j, is (1/K)
∑N−1

i=0 `i = M/K. 2

