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Abstract

Social scientists use graphs to model group activities in social net-
works. An important property in this context is the centrality of a vertex:
the inverse of the average distance to each other vertex. We describe
a randomized approximation algorithm for centrality in weighted graphs.
For graphs exhibiting the small world phenomenon, our method estimates
the centrality of all vertices with high probability within a (1 + ε) factor
in Õ(m) time.
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1 Introduction

In social network analysis, the vertices of a graph represent agents in a group
and the edges represent relationships, such as communication or friendship. The
idea of applying graph theory to analyze the connection between the structural
centrality and group processes was introduced by Bavelas [4]. Various measure-
ment of centrality [7, 15, 16] have been proposed for analyzing communication
activity, control, or independence within a social network.

We are particularly interested in closeness centrality [5, 6, 25], which is used
to measure the independence and efficiency of an agent [15, 16]. Beauchamp [6]
defined the closeness centrality of agent aj as

n − 1∑n
i=1 d(i, j)

where d(i, j) is the distance between agents i and j.1 We are interested in
computing centrality values for all agents. To compute the centrality for each
agent, it is sufficient to solve the all-pairs shortest-paths (APSP) problem. No
faster exact method is known.

The APSP problem can be solved by various algorithms in time O(nm +
n2 log n) [14, 20], O(n3) [13], or more quickly using fast matrix multiplication
techniques [2, 11, 26, 28], where n is the number of vertices and m is the number
of edges in a graph. Faster specialized algorithms are known for graph classes
such as interval graphs [3, 9, 24] and chordal graphs [8, 18], and the APSP
problem can be solved in average-case in time O(n2 log n) for various types
of random graph [10, 17, 21, 23]. Because these results are slow, specialized,
or (with fast matrix multiplication) complicated and impractical, and because
recent applications of social network theory to the internet may involve graphs
with millions of vertices, it is of interest to consider faster approximations.
Aingworth et al. [1] proposed an algorithm with an additive error of 2 for the
unweighted APSP problem that runs in time O(n2.5

√
log n). Dor et al. [12]

improved the time to Õ(n7/3). However it is still slow and does not provide a
good approximation when the distances are small.

In this paper, we consider a method for fast approximation of centrality.
We apply a random sampling technique to approximate the inverse centrality
of all vertices in a weighted graph to within an additive error of ε∆ with high
probability in time O( log n

ε2 (n log n + m)), where ε > 0 and ∆ is the diameter of
the graph.

It has been observed empirically that many social networks exhibit the small
world phenomenon [22, 27]. That is, their diameter is O(log n) instead of O(n).
For such networks, our method provides a near-linear time (1+ε)-approximation
to the centrality of all vertices.

1This should be distinguished from another common concept of graph centrality, in which
the most central vertices minimize the maximum distance to another vertex.
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2 Preliminaries

We are given a graph G(V,E) with n vertices and m edges, the distance d(u, v)
between two vertices u and v is the length of the shortest path between them.
The diameter ∆ of a graph G is defined as maxu,v∈V d(u, v). We define the
centrality cv of vertex v as follows:

cv =
n − 1∑

u∈V d(u, v)
.

If G is not connected, then cv = 0. Hence we will assume G is connected.

3 The Algorithm

We now describe a randomized approximation algorithm RAND for estimating
centrality. RAND randomly chooses k sample vertices and computes single-
source shortest-paths (SSSP) from each sample vertex to all other vertices. The
estimated centrality of a vertex is defined in terms of the average distance to
the sample vertices.
Algorithm RAND:

1. Let k be the number of iterations needed to obtain the desired error bound.

2. In iteration i, pick vertex vi uniformly at random from G and solve the
SSSP problem with vi as the source.

3. Let
ĉu =

1∑k
i=1

n d(vi,u)
k(n−1)

be the centrality estimator for vertex u.

It is not hard to see that, for any k and u, the expected value of 1/ĉu is
equal to 1/cu.

Theorem 1 E
[

1
ĉu

]
= 1

cu
.

Proof: Each vertex has equal probability of 1/n to be picked at each round.
The expected value for 1

ĉu
is

E

[
1
ĉu

]
=

n

n − 1
· 1
nk

· knk−1
∑n

i=1 d(vi, u)
k

=
n

n − 1
·
∑n

i=1 d(vi, u)
n

=
1
cu

.

�



D. Eppstein and J. Wang, Approximating Centrality , JGAA, 8(1) 39–45 (2004)42

In 1963, Hoeffding [19] gave the following theorem on probability bounds for
sums of independent random variables.

Lemma 2 (Hoeffding [19]) If x1, x2, . . . , xk are independent, ai ≤ xi ≤ bi,
and µ = E[

∑
xi/k] is the expected mean, then for ξ > 0

Pr

{∣∣∣∣∣
∑k

i=1 xi

k
− µ

∣∣∣∣∣ ≥ ξ

}
≤ 2e−2k2ξ2/

∑k

i=1
(bi−ai)

2

.

Theorem 3 Let G be a connected graph with n vertices and diameter ∆. With
high probability, algorithm RAND computes the inverse centrality estimator 1

ĉu

to within ξ = ε∆ of the inverse centrality 1
cu

for all vertices u of G, using
Θ( log n

ε2 ) samples, for ε > 0.

Proof: We need to bound the probability that the error in estimating the inverse
centrality of any vertex u is at most ξ. This is done by applying Hoeffding’s
bound with xi = d(vi,u)n

(n−1) , µ = 1
cu

, ai = 0, and bi = n∆
n−1 .

We know E[1/ĉu] = 1/cu. Thus the probability that the difference between
the estimated inverse centrality 1/ĉu and the actual inverse centrality 1/cu is
more than ξ is

Pr
{
| 1
ĉu

− 1
cu
| ≥ ξ

}
≤ 2 · e−2k2ξ2/

∑k

i=1
(bi−ai)

2

≤ 2 · e−2k2ξ2/k( n∆
n−1 )2

= 2 · e−Ω(kξ2/∆2)

For ξ = ε∆, using k = α · log n
ε2 samples, α ≥ 1, will cause the probability of error

at any vertex to be bounded above by e.g. 1/n2, giving at most 1/n probability
of having greater than ε∆ error anywhere in the graph. �

Fredman and Tarjan [14] gave an algorithm for solving the SSSP problem in
time O(n log n + m). Thus, the total running time of our algorithm is O(k · m)
for unweighted graphs and O(k(n log n + m)) for weighted graphs. Thus, for
k = Θ( log n

ε2 ), we have an O( log n
ε2 (n log n + m)) algorithm for approximation of

the inverse centrality within an additive error of ε∆ with high probability.

4 Conclusion

We gave an O( log n
ε2 (n log n+m)) randomized algorithm with additive error of ε∆

for approximating the inverse centrality of weighted graphs. Many graph classes
such as unweighted paths, cycles, and balanced trees, have inverse centrality
proportional to ∆. More interestingly, Milgram [22] showed that many social
networks have bounded diameter and inverse centrality. For such networks, our
method provides a near-linear time (1 + ε)-approximation to the centrality of
all vertices.
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