
Graph Analytics

1

Data Networks and Graphs

DATA NETWORK: set of entities together with a number of
pairwise relations among them. Each entity/relation can be
provided with additional information (attributes)

A data network can be conveniently represented as a GRAPH
G = (V ,E)

• V : (nodes) represents the entities, possibly with attributes

• E ⊆ V × V : (edges) represents the pairwise relations between
entities, possibly with attributes.

The graph is undirected (resp. directed) if edges are unordered
(resp. ordered) pairs, and is weighted if each edge is associated
with a numerical attribute representing a weight.

2

Examples: Social networks

Facebook graph (about 2 billion users)

Also: Google+, LinkedIn, Twitter ..
3

Examples: World Wide Web

Web graph (over 1 billion sites)

4

Examples: Communication networks

AS-level Internet graph (40k-50k nodes)

5

Examples: Biological networks

Food chain network

Also: Protein-Protein Interaction networks, biological neural networks, ..

6

Examples: Collaboration networks (actors)

Actors collaboration network

Also: co-authorship network (e.g., DBLP), citation networks
7

Examples: Road networks

8

Examples: Romantic networks

Romantic-sexual relationships at a US High School (832 students)

9

Examples: etc.

• Google+, LinkedIn, Twitter networks

• Citation networks, Co-autorship networks

• P2P networks

• Power grid networks

• Telephone networks

• Airline, railways networks

• Protein-Protein Interaction networks

• Biological neural networks

• etc.

10

Graph analytics: objectives

1 Connectivity analysis: e.g., s-t reachability, connected
components, bridges, spanning trees/forests

2 Distance analysis: e.g., distances between nodes, diameter,
radius

3 Centrality analysis: e.g., influential nodes, centralities

4 Community analysis: e.g., community detection (clustering),
clustering coefficient, triangle count

5 Pattern mining: e.g., frequent subgraphs (motifs), subgraph
enumeration

Remark: most problems are easily solved for small graphs (say up
to 100k nodes) but become increasingly challenging, from a
computational point of view, for larger graphs

11

Graph analysitcs: applications (some examples)

• Route/traffic optimization for logistics, distribution chains,
smart cities

• Discovery of weaknesses in utility power grids ior
transportation networs

• Discovery of influencers or communities in a social network

• Fraud, money laundering detection in Financial Activity
Networks (FANs)

• Discovery of mutation patterns associated with diseases in
gene interaction networks

12

Fundamental Primitives

Graph G = (V ,E ;w): n nodes (set V), m edges (E), weights
w : E → <

• Breadth-First Search (BFS), Depth-First Search (DFS):
systematic explorations of all nodes and edges of G .

Sequential complexity: O (n + m)

• Single Source Shortest Paths (SSSP): shortest paths from a
source node s ∈ V to all other nodes

Sequential complexity:
• Unweighted (i.e., unit weights): O (n + m) (via BFS)
• Nonnegative weights: O (n log n + m) (Dijkstra)
• Arbitrary weights (no negative cycles): O (nm) (Bellman-Ford)

N.B. In what follows, we focus on undirected graphs. Adaptations
to directed graphs are sometimes trivial, but other times are tricky!

13

Example: graph

14

Example: BFS

15

Example: DFS

16

Example: shortest path (unweighted)

17

Example: shortest path (weighted)

18

Fundamental Primitives (cont’d)

• Connected Components: maximal connected subgraphs of G

Sequential complexity: O (n + m) (via BFS or DFS)

• Minimum Spanning Tree (MST) or Forest: spanning tree for
each connected component of minimum total weight

Sequential complexity: O (n log n + m) (Prim’s algorithm)

Remark: Faster MST algorithms for sparse graphs (n ' m) exist

19

Example: Connected Components

20

Example: Connected Components

21

Example: Minimum Spanning Forest

22

Example: Minimum Spanning Forest

23

Challenges

For typical graph analytic tasks:

• Exact solutions require superlinear number of operations

• Parallel strategies incur high communication costs (e.g.,
several rounds in MapReduce)

• Sampling approaches are hard to devise

• Sparse inputs are often tougher

24

Filtering

Filtering: reduce the size of an input graph by eliminating (filtering
out) or contracting some edges until the graph is small enough to
be processed efficiently (e.g., by a single reducer)

We demonstrate this technique for computing the MST and
Connected Components of a large dense graph.

Input Weighted Graph G = (V ,E ;w), with |V | = n and
|E | = m = n1+c for some constant c > 0

Output Minimum spanning forest of G , that is, MST of each
connected component of G .

Remark: From this output, one can immediately derive the connected

components of G or assess whether G is connected

25

MR algorithm for minimum spanning forest
([L+11])

• Round 1: Partition E at random into ` = nc/2 subsets
E1,E2, . . . ,E`, and compute the minimum spanning forest of the
graph induced by each Ei separately. Let Fi ⊂ Ei be the set of edges
of the i-th forest, 1 ≤ i ≤ `

• Round 2: Compute (with a single reducer) and return the minimum
spanning forest of G ′ = (V ,F1 ∪ F2 ∪ · · · ∪ F`), subgraph of G .

Observation: The first round filters out some edges, leaving at most
n− 1 edges in each Fi (recall from DA1 that a forest over n nodes has at
most n − 1 edges!).

Assuming that for every 1 ≤ i ≤ `, |Ei | = O (m/`) = O
(
n1+c/2

)
, which

is true with high probability (Chernoff+union bound), the
local/aggregate space requirements of the algorithm are

• ML = Θ
(
n1+c/2

)
= o(m) (i.e., sublinear in the input size)

• MA = Θ (m) (i.e., linear in the input size)

26

Example

27

Example (cont’d)

28

Example (cont’d)

29

Example (cont’d)

30

Example (cont’d)

31

Correctness

Theorem

The MR algorithm for minimum spanning forest is correct.

Proof

It is sufficient to show that there exists a minimum spanning forest
that uses none of the edges filtered out in the first round. Let H
be an arbitrary minimum spanning forest for G . For each edge
(u, v) belonging to H with (u, v) ∈ Ei − Fi , for some i

• u and v must belong to the same tree T of the forest defined
by Fi , otherwise there would be two trees for the same
connected component

• Adding (u, v) to T creates a cycle C where the weight of
(u, v) is at least as large as the weight of any other edge in C ,
otherwise T would not have minimum weight (cycle property)

32

Correctness (cont’d)

Proof of theorem (cont’d).

• Remove (u, v) from H, thus splitting some tree T ′ ⊆ H into 2
subtrees T ′(1) and T ′(2), and replace (u, v) in H by one of
the edges of C to join again the subtrees (note that an edge
in C which joins T ′(1) and T ′(2) must exist!). The weight of
the new spanning forest we obtain is not larger than the
weight of H.

After processing each edge (u, v) of H not belonging to the Fi ’s as
explained above, we get a new minimum spanning forest using only
edges of the Fi ’s

33

Trading rounds for local space

The MR algorithm for minimum spanning forest can be generalized
to work with O

(
n1+ε

)
local space, for any 0 < ε < c (recall that

m1+c), using the following strategy. Let M = n1+ε and m0 = m.

• Round 1: Partition the edges at random into `0 = m0/M
subsets and compute a minimum spanning forest separately
for each subset. Let m1 be the number of residual edges (i.e.,
edges that belong to computed forests)

• Round 2: Partition the m1 residual edges at random into
`1 = m1/M subsets and compute a minimum spanning forest
separately for each subset. Let m2 be the number of residual
edges.

• . . . Continue until, at the end of Round i , we have mi ≤ M.
Then, in the next round (Round i + 1) compute the final
minimum spanning forest on the mi residual edges.

34

Exercise

Consider the above strategy for computing the minimum spanning
forest in MapReduce

• Give an upper bound to the number of rounds as a function of
c and ε.

• Consider a Round j , with 1 ≤ j ≤ i , and one specific subset S
of the random partition of the mj−1 residual edges, performed
at the beginning of the round. Determine an upper bound to
the probability that |S | ≥ 6M (use the Chernoff bound).

• Using the above points, show that the probability that the
implementation requires local space < 6M tends to 1 as n
goes to infinity.

35

Distances (or degrees of separation)

Average degrees of separation (i.e., ”distance”-1) between nodes in
the facebook graph, as of february 2016: nodes are user profiles
(about 1.6 billion at that time); undirected edges are friendship
relationships [B+16].

Remark: The graph is not connected and the average is taken
over all connected pairs

36

A bit of history

• 1929: In a short story (Chains) Krigyes Karinthy conjectures that
any two people are connected by a chain of at most 5
intermediaries. Hence, the theory of 6 degrees of separation (here,
erroneously regarded as ”distance”)

• 1967: Stanley Milgram does an experimental validation of the
theory: asks a group of people from Midwest (USA) to send a
parcel to an unkown recipient in Massachusetts , through friends,
friends of friends, etc. It discovers that the average number of
intermediaries is between 4.4 and 5.7

• In 2011, Boldi et al. [B+11] analyze the FB graph (at that time
with about 721 million nodes and 69 billion edges) and discover

• Average degrees of separation: 3.74. For 92% of the
connected pairs it is ≤ 4

• Connectivity: the graph is not connected but has a giant
connected component with > 97% of the nodes and diameter
41.

They made it to the New York Times (nov. 22, 2011)!

37

Computational issues

Undirected graph G = (V ,E). ∀u, v ∈ V , let dist(u, v) be the
length of the shortest path in G between u and v (i.e., minimum
number of edges to reach v from u and viceversa). Set
dist(u, v) =∞ if u and v do not belong to the same connected
component.

Define

ADS(G) =

∑
u,v∈V : dist(u,v)<∞ dist(u, v)

|{u, v ∈ V : dist(u, v) <∞}|
− 1

Diameter(G) = max{dist(u, v) : u, v ∈ V ∧ dist(u, v) <∞},

where ADS stands for Average Degrees of Separation.

38

39

Computational issues (cont’d)

How easy is it to compute ADS and Diameter? Conceptually easy.
Recall that the BFS from a node v provides the distance between
v and all other nodes reachable from v .

Thus:

Run BFS from each node

Requires, Θ (n ·m) operations, which is unfeasible for graphs with
billion nodes/edges!

⇒ resort to approximate solutions

40

Neighborhood function

Consider an undirected, unweighted graph G = (V ,E).

Definition (Neighborhood function)

The neighborhood function NG (t) of G returns for each integer
t ≥ 1 the number of pairs of nodes u 6= v ∈ V such that
dist(u, v) ≤ t, where dist(·, ·) denotes the shortest path distance.

Setting NG (0) = 0, we have

ADS =

∑
t≥1 t · (NG (t)− NG (t − 1))∑
t≥1(NG (t)− NG (t − 1))

− 1

Diameter = min{t ≥ 1 : NG (t) = NG (t + 1)}

41

Exact Neighborhood Function
The following algorithm computes the exact neighborhood function for a
graph G = (V ,E) with n nodes and m edges.

The algorithm is based on the observation that ∀v ∈ V and t ≥ 1,

{z ∈ V : dist(v , z) ≤ t + 1} = ∪w : (v ,w)∈E{z ∈ V : dist(w , z) ≤ t}

for each v ∈ V do Cv ← {w : (v ,w) ∈ E} // direct neighbors of v

NG (0)← 0; NG (1)←
∑

v∈V |Cv |/2; t ← 1

repeat

for each v ∈ V do C ′
v ← ∪w : (v ,w)∈ECw

for each v ∈ V do Cv ← C ′
v

// at this point Cv is the set of nodes at distance ≤ t + 1 from v

NG (t + 1)← (1/2)
∑

v∈V |Cv | // each pair is counted twice in the sum

t ← t + 1

until (NG (t) = NG (t − 1))

42

Approximate Neighborhood Function
The previous algorithm:

• Requires Θ (n) space at each node

• Performs d iterations, where d is the diameter of G ,

• In every iteration computes, for each node, the union of sets of size
up to n − 1

⇒ not practical!

HyperANF: efficient implemention of the above strategy devised by
[BRV11], which uses an approximate representation of each Cv (say C̃v)

The main features of this representation are:

• Each C̃v requires only O (log log n) bits!

• The approximate representation of ∪w : (v ,w)∈ECw is easily

computed as a function of the C̃w ’s.

• An accurate estimate of |Cv | is easily computed from C̃v

⇒ NG (t) is accurtely estimated for each t. Moreover, the value t − 1

after the last iteration provides a lower bound to the diameter of G .
43

Observations

• HyperANF can be employed to provide accurate estimates of
the average degrees of separation and a lower bound to the
diameter of the graph. However, for the diameter there are no
theoretical guarantees on the accuracy of the estimate.

• While for high-diameter graphs (i.e., d ∈ Θ (n)) the
complexity of HyperANF is not better than the one of the
trivial BFS-based algorithm, for low-diameter graphs (e.g.,
social networks) it runs rather fast

• HyperANF is very efficient on multicores with a lot of RAM

44

Approximating the diameter

Suppose G = (V ,E) is connected

• Run BFS from an arbitrary node v ∈ V

• Let ∆ = max{dist(v , u) : u ∈ V }. Then

∆ ≤ Diameter(G) ≤ 2∆

Thus, with just one BFS (O (n + m) time) we can get an estimate
of the diameter within a factor 2.

How hard is it to get a tighter estimate?

Theoretically, quadratic time is required to get an estimate within
a factor less than 1.5. In practice, however, one can do better

45

Practical and accurate diameter estimation
Need two primitives. Let v ∈ V

• max-dist(v): returns the node u ∈ v with the largest shortest-path
distance from v

• middle(v , u): returns a node w in the middle of a shortest path
between v and u

Observation: both primitives require O (n + m) time (BFS from v)

4-SWEEP Algorithm

v1 ← arbitrary node in V
u1 ← max-dist(v1) /*1st sweep*/
z1 ← max-dist(u1) /*2nd sweep*/
v2 ← middle(u1, z1)
u2 ← max-dist(v2) /*3rd sweep*/
z2 ← max-dist(u2) /*4th sweep*/
return ∆ = max{dist(v1, u1), dist(u1, z1), dist(v2, u2), dist(u2, z2)}

46

Example

47

Observations

• In theory we can only claim that the value ∆ returned by the
4-SWEEP algorithm is such that

∆ ≤ Diameter(G) ≤ 2∆,

however, in practice ∆ is very close to the actual diameter!

• In general, the diameter can be approximated with increasing
accuracy (up to exact estimation) using a sufficiently large
number of BFSes. One of the exercises explains why.

• For weighted graphs, the BFS-based diameter estimation
algorithms can be employed by substituting each BFS with a
SSSP computation.

48

Centrality

From [BV14]:

Real-world complex networks [...] typically generated directly or
indirectly by human activity and interaction (and, therefore,

hereafter dubbed ”social”), appear in a large variety of contexts
and often exhibit a surprisingly similar structure. One of the most
important notions that researchers have been trying to capture in

such networks is node centrality: ideally, every node (often
representing an individual) has some degree of influence or

importance within the social domain under consideration, and one
expects such importance to surface in the structure of the social

network; centrality is a quantitative measure that aims at revealing
the importance of a node.

49

Spectrum of uses

Centrality has been used for decades as a tool in the analysis of
(social) networks

• In the late 40s, Alex Bavelas, American psychologist at MIT
defined a notiuon of centrality for revealing the impact of
communciation patterns in a group’s performance

• Since then, centrality has also been used to, understand
political integration in Indian social life, to study
communication paths for urban development, to explore
efficient design of organizations, to explain the wealth of the
Medici family w.r.t. marriages and finantial transactions in
the 15th century (see links in [BV14])

• Centrality is also used for ranking purposes (e.g., in the
context of web search)

50

Measures of centralities

• There are many alternative measures of centrality of a node in
a graph. The excellent survey [BV14] distinguishes among
different types of measures: geometric, which are
distance-based (e.g., closeness); and path-based (e.g.,
betweennes); spectral (e.g., page rank);

• While quite different from one another, most known
definitions of centrality stem from the natural idea that a
node at a center of a star is more central than the periphery

51

Degree centrality

Given a graph G = (V ,E) the simplest measure of centrality of
each node v ∈ V is its degree (if G is undirected) or in-degree (if
G is directed)

52

Closeness centrality

The notion of closeness centrality is similar to the one introduced
by Bavelas and is among the oldest and most popular ones.

(Undirected) graph G = (V ,E) with |V | = n and |E | = m.

For each v ∈ V

farness: f (v) =

∑
u∈V : u 6=v dist(u, v)

n − 1

centrality: c(v) =
1

f (v)
,

where dist(u, v) denotes again the shortest path length.

Remark: If G is not connected, f (v) =∞ and c(v) = 0 for each node,

hence the measure becomes uninteresting

53

Closeness centrality (cont’d)

The following generalization (a.k.a. Lin’s index) makes closeness
centrality meaningful also when G is not connected:

For each v ∈ V let n(v) = |{u ∈ V : u 6= v ∧ dist(u, v) <∞}|.

Then

farness: f (v) =

∑
u∈V : u 6=v∧dist(u,v)<∞ dist(u, v)

n(v)
· n − 1

n(v)

centrality: c(v) =
1

f (v)
.

Observations:

• If G is connected, f (v) and c(v) are as before (since
n(v) = n − 1 for each v)

• High c(v) ⇒ v is reached by many nodes through short paths

54

Closeness centrality (cont’d)

For simplicity, suppose that G = (V ,E) is connected

• Computing the closeness centrality c(v) for a given node v
can be done by running a BFS (or a SSSP in case G is
weighted) from v .

⇒ computing the closeness centralities of all nodes (e.g., to
rank them) requires n BFSes!

• Eppstein and Wang’s method [EW04] to efficiently estimate
all centralities: pick k < n random pivots v1, v2, . . . , vk ∈ V
and run BFS from each of them. Then, for each v ∈ V
compute the approximate closeness centrality

c̃(v) =

c(v) if v = vi , 1 ≤ i ≤ k

k(n−1)
n
∑k

i=1 dist(vi ,v)
otherwise

55

Closeness centrality (cont’d)

In [EW04], Eppstein and Wang show that:

1 1/c̃(v) is an unbiased estimator of 1/c(v), that is, its
expectation (over all possible selections of pivots) is 1/c(v)

2 For any ε ∈ (0, 1), using k = Ω
(
log n/ε2

)
pivots ensures that

with high probability, for each node v ∈ V the value 1/c̃(v)
approximates 1/c(v) within an additive factor at most εD(G),
where D(G) is the diameter of the graph.

Remark: Several recent works have developed more refined
methods to get tighter estimates of the closeness centralities, or to
identify the nodes with the top-K centralities.

56

MapReduce considerations

• It is difficult to devise MapReduce algorithms that perform
graph analytics on large, sparse graphs with low round
complexity.

• Straightforward implementations of HyperANF or of
BFS-based algorithms require Ω (diameter) rounds if sublinear
local space (and linear aggregate space) is desired.

• For diameter estimation, there exist clustering-based strategies
that attain a better round complexity at the expense of a
(theoretically) worse accuracy.

57

Other centrality measures: harmonic centrality

Let G = (V ,E) be an undirected graph with n nodes.

Harmonic centrality: for a node v ∈ V , its harmonic centrality is
defined as:

h(v) =
1

n − 1

∑
u∈V : u 6=v

1

dist(u, v)
,

where we assume that 1/∞ = 0.

Comment: it is a distance-based measure similar in spirit to the
closeness centrality but well defined also for disconnected graphs.

58

Other centrality measures: betweenness centrality

Betweenness centrality: for any three nodes u, v ,w , let σuw be the
number of distinct shortest paths from u to w , and let σuw (v) be
the number of such paths that pass through v . The betweenness
centrality of a node v ∈ V is defined as:

b(v) =
∑

u,w∈V : u 6=v 6=w

σuw (v)

σuw

Comment: the intuition behind this measure (which belongs to
the class of path-based centrality measures, is that a node that
belongs to many shortest paths is an important junction for the
graph and should therefore be considered more central.

59

Other centrality measures: page rank

Consider an abstract surfer than navigates a directed graph G
starting from an arbitrary node. Suppose that at some point the
surfer is positioned at node v ∈ V . If v has no outgoing edges,
then the surfer will move to a random node in V , uniformly
chosen. Otherwise, the surfer will move to a neighbor along any of
the dv > 0 outgoing edges, with probability α · 1/nv , or to an
arbitrary node in V , uniformly chosen, with probability 1− α, for
some α ∈ (0, 1).

Page rank: the page rank of a node v ∈ V is the probability, at
steady state, that the surfer is in node v .

Comment: This measure was originally proposed to rank web
pages and captures the idea that an important (i.e., central) page
should attract more the interest of a generic surfer. The factor α is
called damping factor and represents the chance that the web
surfer stops following hyperlinks and decides to restart navigation
from a random node.

60

Exercises

Exercise

Let G = (V ,E) be a connected, undirected graph with n nodes.
Suppose that a BFS is executed from each of k > 1 distinct nodes
v1, v2, . . . , vk ∈ V and that the following two values are computed:

R = max
u∈V

min
1≤i≤k

dist(u, vi)

∆ = max
1≤i ,j≤k

dist(vi , vj).

Determine a lower and an upper bound to the diameter of G as
functions of R and ∆. Justify your answer.

61

Exercises (cont’d)

Exercise

Let G = (V ,E) be a connected, undirected graph with n nodes
and let k be an integer, 1 ≤ k < n. For an arbitrary v ∈ V
consider its approximated closeness centrality c̃(v) computed with
the Eppstein and Wang’s method, using k random pivots
v1, v2, . . . , vk drawn from V independently, with replacement and
with uniform probability. Show that 1/c̃(v) is an unbiased
estimator of 1/c(v), i.e.,

E

[
1

c̃(v)

]
=

1

c(v)
,

where c(v) is the exact closeness centrality of v . For simplicity
assume that c̃(v) is computed as k(n − 1)/(n

∑k
i=1 dist(vi , v))

even if v is a pivot.

62

Theory questions

• Consider a weighted connected graph G = (V ,E) and let C
be a cycle in G . Argue that an edge e ∈ C with weight
strictly greater than any other edge of C cannot belong to any
MST of G .

• Let D(G) be the diameter of an undirected graph G . Define
what D(G) is and explain how an estimate
∆ ∈ [D(G), 2D(G)] can be computed in linear time.

• What are the characteristics of nodes with high closeness
centrality in a graph G?

63

References

L+11 S. Lattanzi et al. Filtering: a method for solving graph
problems in MapReduce. ACM-SPAA 2011: 85-94

B+16 S. Bhagat et al. Three and a half degrees of separation.
https://research.fb.com/three-and-a-half-degrees-of-
separation/

BRV11 P. Boldi, M. Rosa, S. Vigna. HyperANF: approximating the
neighbourhood function of very large graphs on a budget.
WWW 2011: 625-634.

BV14 P. Boldi, S. Vigna. Axioms for Centrality. Internet
Mathematics 10(3-4): 222-262 (2014)

EW04 D. Eppstein, J. Wang: Fast Approximation of Centrality. J.
Graph Algorithms Appl. 8: 39-45 (2004)

64

