
Computational Frameworks

MapReduce

1

Computational challenges in data mining

• Computation-intensive algorithms: e.g., optimization
algorithms, graph algorithms

• Large inputs: e.g., web, social networks data.
Observation: For very large inputs, superlinear complexities
become unfeasible

• Parallel/distributed platforms are required
• Specialized high-performance architectures are costly and

become rapidly obsolete
• Fault-tolerance becomes serious issue: low MTBF (Mean-Time

Between Failures)
• Effective parallel/distributed programming requires high skills

Example: Web index

About 50 · 109 web pages are indexed. Considering 20KB per page,
this gives 1000TB of data. Just reading the whole index from
secondary storage takes a substantial amount of time.

2

MapReduce

• Introduced by Google in 2004 (see [DG08])

• Programming framework for handling big data

• Employed in many application scenarios on clusters of
commodity processors and cloud infrastructures

• Main features:
• Data centric view
• Inspired by functional programming (map, reduce functions)
• Ease of programming. Messy details (e.g., task allocation;

data distribution; fault-tolerance; load-balancing are hidden to
the programmer

• Main implementation: Apache Hadoop

• Hadoop ecosystem: several variants and extensions aimed at
improving Hadoop’s performance (e.g., Apache Spark)

3

Typical cluster architecture

• Racks of 16-64 compute nodes (commodity hardware),
connected (within each rack and among racks) by fast
switches (e.g., 10 Gbps Ethernet)

• Distributed File System
• Files divided into chunks (e.g., 64MB per chunk)
• Each chunk replicated (e.g., 2x o 3x) with replicas in different

nodes and, possibly, in different racks
• The distribution of the chunks of a file is represented into a

master node file which is also replicated. A directory (also
replicated) records where all master nodes are.

• Examples: Google File System (GFS); Hadoop Distributed File
System (HDFS)

4

MapReduce computation

• Computation viewed as a sequence of rounds. (In fact, the
original formulation considered only one round)

• Each round transforms a set of key-value pairs into another
set of key-value pairs (data centric view!), through the
following two phases

• Map phase: a user-specified map function is applied separately
to each input key-value pair and produces ≥ 0 other key-value
pairs, referred to as intermediate key-value pairs.

• Reduce phase: the intermediate key-value pairs are grouped by
key and a user-specified reduce function is applied separately
to each group of key-value pairs with the same key, producing
≥ 0 other key-value pairs, which is the output of the round.

• The output of a round is the input of the next round:

5

MapReduce round

• Input file is split into X chunks and each chunk is assigned as input
to a map task.

• The map task runs on a worker (a compute node) and applies the
map function to each key-value pair of its assigned chunk, buffering
the intermediate key-value pairs it produces in the local disk

• The intermediate key-values pairs are partitioned into Y buckets
(key k → bucket hash(k) mod Y) and each bucket is assigned to a
different reduce task. Note that each map task stores in its local
disk pieces of various buckets, hence a bucket is initially spread
among several disks.

• The reduce task runs on a worker (a compute node), sorts the
key-value pairs in its bucket by key, and applies the reduce function
to each group of key-value pairs with the same key (represented as
a key with a list of values), writing the output on the DFS. The
application of the reduce function to one group is referred to as a
reducer

6

MapReduce round (cont’d)

• The user program is forked into a master process and several
worker processes. The master is in charge of assigning map
and reduce tasks to the various workers, and to monitor their
status (idle, in-progress, completed).

• Input and output files reside on a Distributed File System,
while intermediate data are stored on the local disks of the
workers

• The round involves a data shuffle for moving the intermediate
key-value pairs from the compute nodes where they were
produced (by map tasks) to the compute nodes where they
must be processed (by reduce tasks).

N.B.: Typically, most expensive operation of the round

• The values X and Y can be defined by the user

7

MapReduce round (cont’d)

From the original paper:

8

Dealing with faults

• The Distributed File System is fault-tolerant

• Master pings workers periodically to detect failures

• Worker failure:
• Map tasks completed or in-progress at failed worker are reset

to idle and will be rescheduled. Note that even if a map task is
completed, the failure of the worker makes its output
unavailable to reduce tasks, hence it must be rescheduled.

• Reduce tasks in-progress at failed worker are reset to idle and
will be rescheduled.

• Master failure: the whole MapReduce task is aborted

9

MapReduce performance

• Constraint: map and reduce functions must have polynomial
complexities. In many practical scenarios, they are applied on
to small subsets of the input and/or have linear complexity.
⇒ running time of a round is dominated by the data shuffle

• Key performance indicators (see [P+12]):
• Number of rounds R
• Local space ML: the maximum amount of space required by a

map/reduce function for storing input and temporary data
(does not the output of the function) Aggregate space MA:
the maximum space used in any round (aggregate space
required by all map/reduce functions executed in the round)

• The complexity of a MapReduce algorithm is specified through
R, which, in general, depends on the input size, on ML, and
on MA. In general, the larger ML and MA, the smaller R.

10

Word Count

Example

• INPUT: collection of text documents D1,D2, . . . ,Dk

containing N words overall (counting repetitions).

• OUTPUT: The set of pairs (w , c(w)) where w is a word
occurring in the documents, and c(w) is the number of
occurrences of w in the documents.

• MapReduce algorithm:
• Map phase: consider each document as a key-value pair, where

the key is the document name and the value is the document
content. Given a document Di , the map function applied to
this document produces the set of pairs (w , 1), one for each
occurrence of a word w ∈ Di .
N.B.: the word is the key of the pair.

• Reduce phase: group by key the intermediate pairs produced by
the map phase, and for each word w sum the values (1’s) of all
intermediate pairs with key w , emitting (w , c(w)) in output.

11

Word Count (cont’d)

12

Word Count (cont’d)

Analysis

• R=1 round

• ML = O (N) (recall that N is the input size, namely, the total
number of words in the documents). A bad case is when only
one word occurs repeated N times over all documents, hence
only one reducer is executed over a input of size O (N).

• MA = Θ (N)

Remark: The following simple optimization reduces the space
requirements. For each document Di , the map function produces one
pair (w , ci (w)) for each word w ∈ Di , where ci (w) is the number of
occurrences of w in Di . Let Ni be the number of words in Di

(⇒ N =
∑k

i=1 Ni). The map function requires local space
O (maxi=1,k Ni), and the reduce function requires local space O (k).
Hence, ML = O (maxi=1,k Ni + k).

13

Observations

Theorem

For every computational problem solvable in polynomial time with
space complexity S(|input|) there exists a 1-round MapReduce
algorithm with ML = MA = Θ (S(|input|))

The trivial solution implied by the above theorem is impractical for
large inputs. For efficiency, algorithm design typically aims at

• Few rounds (e.g., R = O (1))

• Sublinear local space (e.g., ML = O (|input|ε), for some
constant ε ∈ (0, 1))

• Linear aggregate space (i.e., MA = O (|input|)), or only
slightly superlinear

14

Observations (cont’d)

• In general, the domain of the keys (resp., values) in input to a
map or reduce function is different from the domain of the
keys (resp., values) produced by the function.

• The reduce phase of a round, can be merged with the map
phase of the following round.

• Besides the technicality of representing data as key-value pairs
(which is often omitted, when easily derivable) a MapReduce
algorithm aims at breaking the computation into a (hopefully
small) number of iterations that execute several tasks in
parallel, each task working on a (hopefully small) subset of
the data.

• The MapReduce complexity metric is somewhat rough since it
ignores the runtimes of the map and reduce functions and the
actual volume of data shuffled at each round. More
sophisticated metrics exist but are less usable.

15

Primitives: matrix-vector multiplication

Input: n × n matrix A and n-vector V

Output: W = A · V
N.B.: heavily used primitive for page-rank computation

Trivial MapReduce algorithm:

• Let A(i) denote row i of A, for 0 ≤ i < n.

• Map phase: Create n replicas of V : namely V0,V1, . . . ,Vn−1.

• Reduce phase: For every 0 ≤ i < n in parallel, compute
W [i] = A(i) · Vi

Analysis: R = 1 round; ML = Θ (n); MA = Θ
(
n2
)

(i.e., sublinear
local space and linear aggregate space).

Exercise: Specify input, intermediate and output key-value pairs

16

Primitives: matrix-vector multiplication (cont’d)

17

Primitives: matrix-vector multiplication (cont’d)

What happens if n is very large and the available local space is
ML = o(n)? Can we trade rounds for smaller local space?

More space-efficient MapReduce algorithm:

• Let k = n1/3 and assume, for simplicity, that k is an integer
and divides n. Consider A subdivided into (n/k)2 k × k blocks
(A(s,t), with 0 ≤ s, t < n/k), and V and W subdivided into
n/k segments of size k (V (t), W (s), with 0 ≤ t, s < n/k), in
such a way that

W (s) =

n/k−1∑
t=0

A(s,t) · V (t).

18

Primitives: matrix-vector multiplication (cont’d)

• Round 1:
• Map phase: For every 0 ≤ t < n/k , create n/k replicas of

V (t). Call these replicas V
(t)
s , with 0 ≤ s < n/k

• Reduce phase: For every 0 ≤ s, t < n/k in parallel, compute

W
(s)
t = A(s,t) · V (t)

s

• Round 2:
• Map phase: identity
• Reduce phase: For every 0 ≤ s < n/k and 0 ≤ t < n/k,

compute W (s) =
∑n/k−1

t=0 W
(s)
t . The summation can be

executed independently for each component of W (s)

Analysis: R = 2 rounds; ML = O
(
k2 + n/k

)
= Θ

(
n2/3

)
;

MA = Θ
(
n2
)
.

Exercise: Specify input, intermediate and output key-value pairs

Observation: Compared to the trivial algorithm, the local space
decreases from Θ (n) to Θ

(
n2/3

)
, at the expense of an extra round.

19

Primitives: matrix-vector multiplication (cont’d)

20

Primitives: matrix multiplication

Input: n × n matrices A,B

Output: C = A · B

Trivial MapReduce algorithm:

• Let A(i),B(j) denote row i of A and column j of B,
respectively, for 0 ≤ i , j < n.

• Map phase: Create n replicas of each row A(i) and of each

column B(j). Call these replicas A
(i)
t and B

(j)
t , with 0 ≤ t < n.

• Reduce phase: For every 0 ≤ i , j < n compute

C [i , j] = A
(i)
j · B

(j)
i .

Analysis: R = 1 round; ML = Θ (n); MA = Θ
(
n3
)

(i.e., sublinear
local space but superlinear aggregate space).

Exercise: Specify input, intermediate and output key-value pairs

21

Primitives: matrix multiplication (cont’d)

22

Primitives: matrix multiplication (cont’d)

Can we trade rounds for smaller local/aggregate space?

More space-efficient MapReduce algorithm:

• Let k = n1/3 and assume, for simplicity, that k is an integer
and divides n. Consider A,B and C subdivided into (n/k)2

k × k blocks (A(s,t), B(s,t), C (s,t), with 0 ≤ s, t < n/k), in
such a way that

C (s,t) =

n/k−1∑
`=0

A(s,`) · B(`,s).

23

Primitives: matrix multiplication (cont’d)

• Round 1:
• Map phase: For every 0 ≤ s, t < n/k , create n/k replicas of

A(s,t) and B(s,t). Call these replicas A
(s,t)
i and B

(s,t)
i , with

0 ≤ i < n/k
• Reduce phase: For every 0 ≤ s, t, ` < n/k in parallel, compute

C
(s,t)
` = A

(s,`)
t · B(`,t)

s

• Round 2:
• Map phase: identity
• Reduce phase: For every 0 ≤ s, t < n/k , compute

C (s,t) =
∑n/k−1

`=0 C
(s,t)
` . The summation can be executed

independently for each component of C (s,t)

Analysis: R = 2 rounds; ML = O
(
k2 + n/k

)
= Θ

(
n2/3

)
;

MA = Θ
(
n8/3

)
.

Exercise: Specify input, intermediate and output key-value pairs

Observation: Compared to the trivial algorithm, both local and
aggregate space decrease by a factor Θ

(
n1/3

)
, at the expense of

an extra round.
24

Primitives: matrix multiplication (cont’d)

25

Observations

What happens if the values of ML and MA are fixed and we must
adapt the algorithm to comply with the given space constraints?

The presented algorithms can be generalized (see [P+12]) to
require:

• Matrix-vector multiplication:

R : O

(
log n

logML

)
ML : any fixed value

MA : Θ
(
n2
)

(MINIMUM!).

⇒ matrix-vector multiplication can be performed in O (1)
rounds using linear aggregate space as long as ML = Ω (nε),
for some constant ε ∈ (0, 1).

26

Observations (cont’d)

• Matrix multiplication:

R : O

(
n3

MA

√
ML

+
log n

logML

)
ML : any fixed value

MA : any fixed value Ω
(
n2
)

⇒ matrix multiplication can be performed in O (1) rounds as
long as ML = Ω (nε), for some constant ε ∈ (0, 1), and
MA

√
ML = Ω

(
n3
)
.

• The total number of operations executed by the above
algorithms (referred to as work) is asymptotically the same as
the one of the straightforward sequential algorithms.

27

The power of sampling

28

Primitives: sorting

Input: Set S = {si : 0 ≤ i < N} of N distinct sortable objects
(each si represented as a pair (i , si))

Output: Sorted set {(i , sπ(i)) : 0 ≤ i < N}, where π is a
permutation such that sπ(1) ≤ sπ(2) ≤ · · · ≤ sπ(N).

MapReduce algorithm (Sample Sort):

• Let K ∈ (logN,N) be a suitable integral design parameter.

• Round 1:
• Map phase: Select each object as a splitter with probability

p = K/N, independently of the other objects, and replicate
each splitter K times. Let x1 ≤ x2 ≤ · · · xt be the selected
splitters in sorted order, and define x0 = −∞ and xt+1 =∞.
Also, partition S arbitrarily into K subsets S0,S1, . . .SK−1.
E.g., assign (i , si) to Sj with j = i mod K .

• Reduce phase: For 0 ≤ j < K gather Sj and the splitters, and

compute S
(i)
j = {s ∈ Sj : xi < s ≤ xi+1}, for every 0 ≤ i ≤ t

29

Primitives: sorting (cont’d)

• Assume the output of Round 1 consists of a key-value pair

(i , s) for each object s ∈ S
(i)
j (index j is irrelevant).

• Round 2:
• Map phase: identity
• Reduce phase: For every 0 ≤ i ≤ t gather

S (i) = {s ∈ S : xi < s ≤ xi+1} and compute Ni = |S (i)|.
• Round 3:

• Map phase: Replicate the vector (N0,N1, . . . ,Nt) t + 1 times.
• Reduce phase: For every 0 ≤ i ≤ t: gather S (i) and vector

(N0,N1, . . . ,Nt); sort S (i); and compute the final output pairs

for the objects in S (i) (ranks starts from 1 +
∑i−1

`=0 N`.)

30

Example

N = 32

S = 16, 32, 1, 15, 14, 7, 28, 20, 12, 3, 29, 17, 11, 10, 8, 2,

25, 21, 13, 5, 19, 23, 30, 26, 31, 22, 9, 6, 27, 24, 4, 18

Round 1: Determine partition and splitters

S0 = 16, 32, 1, 15, 14, 7, 28, 20

S1 = 12, 3, 29, 17, 11, 10, 8, 2

S2 = 25, 21, 13, 5, 19, 23, 30, 26

S3 = 31, 22, 9, 6, 27, 24, 4, 18

The t = 5 splitters (highlighted in blue) are: 16, 29, 21, 9, 4

31

Example (cont’d)

Round 1 (cont’d): Compute the S
(i)
j ’s

j S
(0)
j S

(1)
j S

(2)
j S

(3)
j S

(4)
j S

(5)
j

0 1 7 14,15,16 20 28 32
1 2,3 8 10,11,12 17 29
2 5 13 19,21 23,25,26 30
3 4 6,9 18 22,24,27 31

Round 2 Gather the S (i)’s and compute the Ni ’s

S (0) = 1, 2, 3, 4 N0 = 4

S (1) = 5, 6, 7, 8, 9 N1 = 5

S (2) = 10, 11, 12, 13, 14, 15, 16 N2 = 7

S (3) = 17, 18, 19, 20, 21 N3 = 5

S (4) = 22, 23, 24, 25, 26, 27, 28, 29 N4 = 8

S (5) = 30, 31, 32 N5 = 3

32

Example (cont’d)

Round 3: Compute the final output

• S (0) in sorted order from rank 1

• S (1) in sorted order from rank N0 + 1 = 5

• S (2) in sorted order from rank N0 + N1 + 1 = 10

• S (3) in sorted order from rank N0 + N1 + N2 + 1 = 17

• S (4) in sorted order from rank N0 + N1 + N2 + N3 + 1 = 22

• S (5) in sorted order from rank N0 + · · ·+ N4 + 1 = 30

33

Analysis of SampleSort

• Number of rounds: R = 3

• Local Space ML:
• Round 1: Θ (t + N/K), since each reducer must store the

entire set of splitters and one subset Sj
• Round 2: Θ (max{Ni ; 0 ≤ i ≤ t}) since each reducer must

gather one S (i).
• Round 3: Θ (t + max{Ni ; 0 ≤ i ≤ t}), since each reducer

must store all Ni ’s and one S (i).

⇒ overall ML = Θ (t + N/K + max{Ni ; 0 ≤ i ≤ t})
• Aggregate Space MA: O

(
N + t · K + t2)

)
, since in Round 1

each splitter is replicated K times, and in Round 3 the vector
(N0,N1, . . . ,Nt) is replicated t + 1 times, while the objects
are never replicated

34

Analysis of SampleSort (cont’d)

Lemma

For a suitable constant c > 1, the following two inequalities hold
with high probability (i.e., probability at least 1− 1/N):

1 t ≤ cK, and

2 max{Ni ; 0 ≤ i ≤ t} ≤ c(N/K) logN.

Proof.

Deferred.

Theorem

By setting K =
√
N, the above algorithm runs in 3 rounds, and

requires local space ML = O
(√

N logN
)

and aggregate space

MA = O (N), with high probability.

Proof.

Immediate from lemma.
35

Analysis of SampleSort (cont’d)

Chernoff bound (see [MU05])

Let X1,X2, . . . ,Xn be n i.i.d. Bernoulli random variables, with
Pr(Xi = 1) = p, for each 1 ≤ i ≤ n. Thus, X =

∑n
i=1 Xi is a

Binomial(n, p) random variable. Let µ = E [X] = n · p. For every
δ1 ≥ 5 and δ2 ∈ (0, 1) we have that

Pr(X ≥ (1 + δ1)µ) ≤ 2−(1+δ1)µ

Pr(X ≤ (1− δ2)µ) ≤ 2−µδ
2
2/2

36

Analysis of SampleSort (cont’d)

Proof of Lemma

We show that each inequality holds with probability at least 1− 1/(2N).

1 t is a Binomial(N,K/N) random variable with E [t] = K > logN.
By choosing c large enough, the Chernoff bound shows that t > cK
with probability at most 1/(2N). For example, choose c ≥ 6 and
apply the Chernoff bound with δ1 = 5.

2 View the sorted sequence of objects as divided into K/(α logN)
contiguous segments of length N ′ = α(N/K) logN each, for a
suitably large constant α > 0, and consider one such segment. The
number of splitters that fall in the segment is a Binomial(N ′,K/N)
random variable, whose mean is α logN. By using Chernoff bound
we can show that the probability that no splitter falls in the
segment is at most 1/N2. For example, choose α = 16 and apply
the Chernoff bound with δ2 = 1/2.

37

Analysis of SampleSort (cont’d)

Proof of Lemma.

2 (cont’d) So, there are K/(α logN) segments and we know
that, for each segment, the event “no splitter falls in the
segment” occurs with probability ≤ 1/N2. Hence, the
probability that at least one of these K/(α logN) events
occur is ≤ K/(N2α logN) ≤ 1/(2N) (union bound!).
Therefore, with probability at least (1− 1/(2N))), at least 1
splitter falls in each segment, which implies that each Ni

cannot be larger than 2α(N/K) logN. Hence, by choosing
c ≥ 2α we have that the second inequality stated in the
lemma holds with probability at least (1− 1/(2N))).

In conclusion, by setting c = max{6, 2α} = 32 we have that the
probability that at least one of the two inequalities does not hold,
is at most 2 · 1/(2N) = 1/N, and the lemma follows.

38

Primitives: frequent itemsets

Input: Set T of N transactions over a set I of items, and support
threshold minsup. Each transaction represented as a pair (i , ti),
where i is the TID (0 ≤ i < N), and ti ⊆ I

Output: Set of frequent itemsets w.r.t. T and minsup, and their
supports.

MapReduce algorithm (based on SON algorithm [VLDB’95]):

• Let K be an integral design parameter, with 1 < K < N.

• Round 1:
• Map phase: Partition T arbitrarily into K subsets

T0,T1, . . .TK−1 of O (N/K) transactions each. E.g., assign
transaction (i , ti) to Tj with j = i mod K .

• Reduce phase: For 0 ≤ j ≤ K − 1 gather Tj and minsup, and
compute the set of frequent itemsets w.r.t. Tj and minsup.
Each such itemset X will be represented by a pair (X , null)

39

Primitives: frequent itemsets (cont’d)

• Round 2:
• Map phase: identity
• Reduce phase: Eliminate duplicate pairs from the output of

Round 1. Let Φ be the resulting set of pairs

• Round 3:
• Map phase: Replicate K times each pair of Φ
• Reduce phase: For every 0 ≤ j < K gather Φ and Tj and, for

each (X , null) ∈ Φ, compute a pair (X , s(X , j)) with
s(X , j) = SuppTj

(X).

• Round 4:
• Map phase: identity
• Reduce phase: For each X ∈ Φ compute

s(X) = (1/N)
∑K−1

j=0 (|Tj | · s(X , j)), and output (X , s(X)) if
s(X) ≥ minsup.

40

Analysis of SON algorithm

• Correctness: it follows from the fact that each itemset frequent in
T must be frequent in some Tj .

• Number of rounds: 4.

• Space requirements: Assume that each transaction has length Θ (1)
(the analysis of the general case is left as an exercise). Let
µ = Ω (N/K) be the maximum local space used in Round 1, and let
|Φ| denote the number of itemsets in Φ, The following bounds are
easily established

• Local space ML = O (K + µ+ |Φ|)
• Aggregate space MA = O (N + K · (µ+ |Φ|))

Observations:

• The values µ and |Φ| depend on several factors: the partition of T ,
the support threshold, the algorithm used to extract frequent
itemsets from each Tj . If A-Priori is used, we know that
µ = O

(
|I |+ |Φ|2

)
• In any case, Ω

(√
N
)

local space is needed, which can be a lot

41

Primitives: frequent itemsets (cont’d)

Do we really need to process the entire dataset?

No, if we are happy with some

approximate set of frequent itemsets

(but quality of approximation under control)

What follows is based on [RU14]

42

Primitives: frequent itemsets (cont’d)

Definition (Approximate frequent itemsets)

Let T be a dataset of transactions over the set of items I and
minsup ∈ (0, 1] a support threshold. Let also ε > 0 be a suitable
parameter. A set C of pairs (X , sX), with X ⊆ I and sx ∈ (0, 1], is
an ε-approximation of the set of frequent itemsets and their
supports if the following conditions hold:

1 For each X ∈ FT ,minsup there exists a pair (X , sX) ∈ C

2 For each (X , sX) ∈ C ,

• Supp(X) ≥ minsup− ε

• |Supp(X)− sX | ≤ ε,

where FT ,minsup is the true set of frequent itemsets w.r.t. T and
minsup.

43

Primitives: frequent itemsets (cont’d)

Observations

• Condition (1) ensures that the approximate set C comprises
all true frequent itemsets

• Condition (2) ensures that: (a) C does not contain itemsets
of very low support; and (b) for each itemset X such that
(X , sX) ∈ C , sX is a good estimate of its support.

44

Primitives: frequent itemsets (cont’d)

Simple sampling-based algorithm

Let T be a dataset of N transactions over I , and minsup ∈ (0, 1] a
support threshold. Let also θ(minsup) < minsup be a suitably
lower support threshold

• Let S ⊆ T be a sample drawn at random with replacement
(uniform probability)

• Return the set of pairs

C =
{

(X , sx = SuppS(X)) : X ∈ FS ,θ(minsup)

}
,

where FS ,θ(minsup) is the set of frequent itemsets w.r.t. S

and θ(minsup).

How well does C approximate the true frequent itemsets
and their supports?

45

Primitives: frequent itemsets (cont’d)

Theorem (Riondato-Upfal)

Let h be the maximum transaction length and let ε, δ be suitable
design parameters in (0, 1). There is a constant c > 0 such that if

θ(minsup) = minsup− ε

2
AND |S | =

4c

ε2

(
h + log

1

δ

)
then with probability at least 1− δ the set C returned by the

algorithm is an ε-approximation of the set of frequent itemsets and
their supports.

The proof of the theorem requires the notion of VC-dimension.

46

VC-dimension [Vapnik,Chervonenkis 1971]

Powerful notion in statistics and learning theory

Definition

A Range Space is a pair (D,R) where D is a finite/infinite set
(points) and R is finite/infinite family of subsets of D (ranges).
Given A ⊂ D, we say that A is shattered by R if the set
{r ∩ A : r ∈ R} contains all possible subsets of A. The
VC-dimension of the range space is the cardinality of the largest
A ⊂ D which is shattered by R.

47

VC-dimension: examples

Let D = [0, 1] and let R be the family of intervals [a, b] ⊆ [0, 1]. It
is easy to see that the VC-dimension of (D,R) is ≥ 2. Consider
any 3 points 0 ≤ x < y < z ≤ 1. The following picture show that
it is < 3, hence it must be equal to 2.

48

VC-dimension: examples (cont’d)

Let D = <2 and let R be the family of axis-aligned rectangles.

⇒ the VC-dimension of (D,R) is 4.

49

Primitives: frequent itemsets (cont’d)

Lemma (Sampling Lemma)

Let (D,R) be a range space with VC-dimension v with D finite
and let ε1, δ ∈ (0, 1) be two parameters. For a suitable constant
c > 0, we have that given a random sample S ⊆ D (drawn from D
with replacement and uniform probability) of size

m ≥ min

{
|D|, c

ε21

(
v + log

1

δ

)}
with probability at least 1− δ, we have that for any r ∈ R∣∣∣∣ |r ||D| − |S ∩ r |

|S |

∣∣∣∣ ≤ ε1
We will not prove the lemma. See [RU14] for pointers to proof.

50

Primitives: frequent itemsets (cont’d)

A dataset T of transactions over I can be seen as a range space
(D,R):

• D = T

• R = {TX : X ⊆ I ∧ X 6= ∅}, where TX is the set of
transactions that contain X .

It can be shown that the VC-dimension of (D,R) is ≤ h, where h
is the maximum transaction length.

51

Primitives: frequent itemsets (cont’d)

Proof of Theorem (Riondato-Upfal).

Regard T as a range space (D,R) of VC-dimension h, as explained
before. The Sampling Lemma with ε1 = ε/2 shows that with probability
≥ 1− δ for each itemset X it holds |SuppT (X)− SuppS(X)| ≤ ε/2.
Assume that this is the case. Therefore:

• For each frequent itemset X ∈ FT ,minsup

SuppS(X) ≥ SuppT (X)− ε/2 ≥ minsup− ε/2 = θ(minsup),

hence, the pair (X , sX = SuppS(X)) is returned by the algorithm;

• For each pair (X , sX = SuppS(X)) returned by the algorithm

SuppT (X) ≥ sX − ε/2 ≥ θ(minsup)− ε/2 ≥ minsup− ε

and |SuppT (X)− SuppS(X)| ≤ ε/2 < ε.

Hence, the output of the algorithm is an ε-approximation of the true

frequent itemsets and their supports.

52

Observations

• The size of the sample is independent of the support threshold
minsup and of the number N of transactions. It only depends on
the approximation guarantee embodied in the parameters ε, δ, and
on the max transaction length h, which is often quite low.

• There are bounds on the VC-dimension of the range space tighter
than h.

• The sample-based algorithm yields a 2-round MapReduce algorithm:
in first round the sample of suitable size is extracted (see exercise
5); in the second round the frequent itemsets are extracted from the
sample with one reducer.

• The sampling approach can be boosted by extracting frequent
itemsets from several smaller samples, returning only itemsets that
are frequent in a majority of the samples. In this fashion we may
end up doing globally more work but in less time because the
samples can be mined in parallel.

53

Theory questions

• In a MapReduce computation, each round transforms a set of
key-value pairs into another set of key-value pairs, through a
Map phase and a Reduce phase. Describe what the
Map/Reduce phases do.

• What is the goal one should target when devising a
MapReduce solution for a given computational problem?

• Briefly describe how to compute the product of an n × n
matrix by an n-vector in two rounds using o(n) local space

• Let T be a dataset of N transactions, partitioned into K
subsets T0,T1, . . . ,TK−1. For a given support threshold
minsup, show that any frequent itemset w.r.t. T and minsup
must be frequent w.r.t. some Ti and minsup.

54

Exercises

Exercise 1

Let T be a huge set of web pages gathered by a crawler. Develop
an efficient MapReduce algorithm to create an inverted index for T
which associates each word w to the list of URLs of the pages
containing w .

Exercise 2

Exercise 2.3.1 of [LRU14] trying to come up with interesting
tradeoffs between number of rounds and local space.

Exercise 3

Generalize the matrix-vector and matrix multiplication algorithms
to handle rectangular matrices

55

Exercises (cont’d)

Exercise 4

Generalize the analysis of the space requirements of SON
algorithm to the case when transactions have arbitrary length. Is
there a better way to initially partition T?

Exercise 5

Consider a dataset T of N transactions over I given in input as in
algorithm SON. Show how to draw a sample S of K transactions
from T , uniformly at random with replacement, in one MapReduce
round. How much local space is needed by your method?

56

References

LRU14 J. Leskovec, A. Rajaraman and J. Ullman. Mining Massive Datasets.
Cambridge University Press, 2014. Chapter 2 and Section 6.4

DG08 J. Dean and A. Ghemawat. MapReduce: simplified data processing
on large clusters. OSDI’04 and CACM 51,1:107113, 2008

MU05 M. Mitzenmacher and E. Upfal. Proability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005. (Chernoff bounds: Theorems 4.4 and 4.5)

P+12 A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, E. Upfal:
Space-round tradeoffs for MapReduce computations. ACM ICS’112.

RU14 M. Riondato, E. Upfal: Efficient Discovery of Association Rules and
Frequent Itemsets through Sampling with Tight Performance
Guarantees. ACM Trans. on Knowledge Discovery from Data, 2014.

57

