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Efficient Discovery of Association Rules and Frequent Itemsets
through Sampling with Tight Performance Guarantees

MATTEO RIONDATO and ELI UPFAL, Brown University

The tasks of extracting (top-K) Frequent Itemsets (FIs) and Association Rules (ARs) are fundamental prim-
itives in data mining and database applications. Exact algorithms for these problems exist and are widely
used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times.
High-quality approximations of FIs and ARs are sufficient for most practical uses. Sampling techniques
can be used for fast discovery of approximate solutions, but works exploring this technique did not provide
satisfactory performance guarantees on the quality of the approximation due to the difficulty of bounding the
probability of under- or oversampling any one of an unknown number of frequent itemsets. We circumvent
this issue by applying the statistical concept of Vapnik-Chervonenkis (VC) dimension to develop a novel tech-
nique for providing tight bounds on the sample size that guarantees approximation of the (top-K) FIs and
ARs within user-specified parameters. The resulting sample size is linearly dependent on the VC-dimension
of a range space associated with the dataset. We analyze the VC-dimension of this range space and show
that it is upper bounded by an easy-to-compute characteristic quantity of the dataset, the d-index, namely,
the maximum integer d such that the dataset contains at least d transactions of length at least d such that
no one of them is a superset of or equal to another. We show that this bound is tight for a large class of
datasets. The resulting sample size is a significant improvement over previous known results. We present
an extensive experimental evaluation of our technique on real and artificial datasets, demonstrating the
practicality of our methods, and showing that they achieve even higher quality approximations than what
is guaranteed by the analysis.
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1. INTRODUCTION

Discovery of Frequent Itemsets (FIs) and Association Rules (ARs) is a fundamental
computational primitive with application in data mining (market basket analysis),
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databases (histogram construction), networking (heavy hitters), and more [Han et al.
2007, Sect. 5]. Depending on the particular application, one is interested in finding
all itemsets with frequency greater than or equal to a user-defined threshold (FIs),
identifying the K most FIs (top-K), or computing all ARs with user-defined minimum
support and confidence level (see Sections 5.4 and 5.5 for additional criteria). Exact
solutions to these problems require scanning the entire dataset, possibly multiple
times. For large datasets that do not fit in main memory, this can be prohibitively
expensive. Furthermore, such extensive computation is often unnecessary because
high-quality approximations are sufficient for most practical applications. Indeed, a
number of recent papers (see Section 2 for more details) explored the application of
sampling for approximate solutions to these problems. However, the efficiency and
practicality of the sampling approach depends on a tight relation between the size
of the sample and the quality of the resulting approximation. Previous works do not
provide satisfactory solutions to this problem.

The technical difficulty in analyzing any sampling technique for FI discovery prob-
lems is that, a priori, any subset of items can be among the most frequent ones, and
the number of subsets is exponential in the number of distinct items appearing in
the dataset. A standard analysis begins with a bound on the probability that a given
itemset is either over- or underrepresented in the sample. Such a bound is easy to
obtain using a large deviation bound such as the Chernoff bound or the Central Limit
theorem [Mitzenmacher and Upfal 2005]. The difficulty is in combining the bounds for
individual itemsets into a global bound that holds simultaneously for all the itemsets.
A simple application of the union bound vastly overestimates the error probability
because of the large number of possible itemsets, a large fraction of which may not
be present in the dataset and therefore should not be considered. More sophisticated
techniques, developed in recent works [Chakaravarthy et al. 2009; Pietracaprina et al.
2010; Chuang et al. 2005], give better bounds only in limited cases. A loose bound on the
required sample size for achieving the user-defined performance guarantees decreases
the gain obtained from the use of sampling.

In this work, we circumvent this problem through a novel application of the Vapnik-
Chervonenkis (VC) dimension concept, a fundamental tool in statistical learning theory.
Roughly speaking, the VC-dimension of a collection of indicator functions (a range
space) is a measure of its complexity or expressiveness (see Section 3.2 for formal
definitions). A major result [Vapnik and Chervonenkis 1971] relates the VC-dimension
of a range space to a sufficient size for a random sample to simultaneously approximate
all the indicator functions within predefined parameters. The main obstacle in applying
the VC-dimension theory to particular computation problems is computing the VC-
dimension of the range spaces associated with these problems.

We apply the VC-dimension theory to FI problems by viewing the presence of an
itemset in a transaction as the outcome of an indicator function associated with the
itemset. The major theoretical contributions of our work are a complete characteriza-
tion of the VC-dimension of the range space associated with a dataset and a tight bound
to this quantity. We prove that the VC-dimension is upper bounded by a characteristic
quantity of the dataset that we call a d-index. The d-index is the maximum integer
d such that the dataset contains at least d different transactions of length at least d
such that no one of them is a subset of or equal to another in the considered set of
transactions (see Definition 4.4). We show that this bound is tight by demonstrating a
large class of datasets with a VC-dimension that matches the bound. Computing the
d-index can be done in polynomial time, but it requires multiple scans of the dataset.
We show how to compute an upper bound to the d-index with a single linear scan of
the dataset in an online greedy fashion.
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Table I. Required Sample Sizes (as Number of Transactions) for Various Approximations to FIs and ARs

Task/Approx. This work Best previous work
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†[Toivonen 1996; Jia and Lu 2005; Li and Gopalan 2005; Zhang et al. 2003], ‡[Chakaravarthy et al. 2009],
§[Scheffer and Wrobel 2002; Pietracaprina et al. 2010], ¶[Chakaravarthy et al. 2009].
The FIs and ARs are presented as functions of the VC-dimension v, the maximum transaction length
�, the number of items |I|, the accuracy ε, the failure probability δ, the minimum frequency θ , and the
minimum confidence γ . Note that v ≤ � ≤ |I| (but v < |I|). The constants c and c′ are absolute, with
c ≤ 0.5. See Section 5.4 for the sample sizes for approximations of the collection of ARs according to
interestingness measures other than confidence.

The VC-dimension approach provides a unified tool for analyzing the various FI and
AR problems (i.e., the market basket analysis tasks). We use it to prove tight bounds
on the required sample size for extracting FIs with a minimum frequency threshold,
for mining the top-K FIs, and for computing the collection of ARs with minimum fre-
quency and “interestingness” thresholds, where the interestingness can be expressed in
terms of confidence, leverage, lift, or other measure. Furthermore, we compute bounds
for both absolute and relative approximations (see Section 3.1 for definitions), and
our results extend to a variety of other measures proposed in the literature (see
Section 5.4). We show that high-quality approximations can be obtained by mining
a very small random sample of the dataset. Table I compares our technique to the best
previously known results for the various problems (see Section 3.1 for definitions). Our
bounds, which are linear in the VC-dimension associated with the dataset, are consis-
tently smaller than previous results and less dependent on other parameters of the
problem, such as the minimum frequency threshold and the dataset size. An extensive
experimental evaluation demonstrates the advantage of our technique in practice.

This work is the first to provide a characterization and an explicit bound for the
VC-dimension of the range space associated with a dataset and to apply the result to
the extraction of FIs and ARs from a random sample of the dataset. We believe that
this connection with statistical learning theory can be further exploited in other data
mining problems.

Outline. We review relevant previous work in Section 2. In Section 3 we formally
define the problem and our goals, and introduce definitions and lemmas used in the
analysis. The main part of the analysis with derivation of a strict bound to the VC-
dimension of ARs is presented in Section 4, while our algorithms and sample sizes for
mining FIs, top-K FIs, and ARs through sampling are presented in Section 5. Section 6
contains an extensive experimental evaluation of our techniques. A discussion of our
results and the conclusions can be found in Section 7.

2. RELATED WORK

Agrawal et al. [1993] introduced the problem of mining ARs in the basket data model,
formalizing a fundamental task of information extraction in large datasets. Almost any

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 4, Article 20, Publication date: July 2014.



20:4 M. Riondato and E. Upfal

known algorithm for the problem starts by solving an FI problem and then generates
the ARs implied by these FIs. Agrawal and Srikant [1994] presented Apriori, the most
well-known algorithm for mining FIs, and FastGenRules for computing ARs from a set
of itemsets. Various ideas for improving the efficiency of FI and AR algorithms have
been studied, and we refer the reader to the survey by Ceglar and Roddick [2006] for
a good presentation of recent contributions. However, the running times of all known
algorithms heavily depend on the size of the dataset.

Mannila et al. [1994] were the first to propose the use of sampling to efficiently
identify the collection of FIs, presenting some empirical results to validate the intuition.
Toivonen [1996] presents an algorithm that, by mining a random sample of the dataset,
builds a candidate set of FIs that contains all the FIs with a probability that depends
on the sample size. There are no guarantees that all itemsets in the candidate set are
frequent, but the set of candidates can be used to efficiently identify the set of FIs with
at most two passes over the entire dataset. This work also suggests a bound on the
sample size sufficient to ensure that the frequencies of itemsets in the sample are close
to their real ones. The analysis uses Chernoff bounds and the union bound. The major
drawback of this sample size is that it depends linearly on the number of individual
items appearing in the dataset.

Zaki et al. [1997] show that static sampling is an efficient way to mine a dataset, but
choosing the sample size using Chernoff bounds is too conservative, in the sense that
it is possible to obtain the same accuracy and confidence in the approximate results at
smaller sizes than what the theoretical analysis proves.

Other works tried to improve the bound to the sample size by using different tech-
niques from statistics and probability theory, like the central limit theorem [Zhang
et al. 2003; Li and Gopalan 2005; Jia and Lu 2005] or hybrid Chernoff bounds [Zhao
et al. 2006].

Because theoretically derived bounds to the sample size were too loose to be use-
ful, a corpus of works applied progressive sampling to extract FIs [John and Langley
1996; Chen et al. 2002; Parthasarathy 2002; Brönnimann et al. 2003; Chuang et al.
2005; Jia and Gao 2005; Wang et al. 2005a; Hwang and Kim 2006; Hu and Yu 2006;
Mahafzah et al. 2009; Chen et al. 2011; Chandra and Bhaskar 2011]. Progressive
sampling algorithms work by selecting a random sample and then trimming or enrich-
ing it by removing or adding new sampled transactions according to a heuristic or a
self-similarity measure that is fast to evaluate until a suitable stopping condition is
satisfied. The major downside of this approach is that it offers no guarantees on the
quality of the obtained results.

Another approach to estimating the required sample size is presented by Chuang
et al. [2008]. The authors give an algorithm that studies the distribution of frequencies
of the itemsets and uses this information to fix a sample size for mining FIs, but without
offering any theoretical guarantee.

A recent work by Chakaravarthy et al. [2009] gives the first analytical bound on a
sample size that is linear in the length of the longest transaction, rather than in the
number of items in the dataset. This work is also the first to present an algorithm that
uses a random sample of the dataset to mine approximated solutions to the AR problem
with quality guarantees. No experimental evaluation of their methods is presented, and
they do not address the top-K FI problem. Our approach gives better bounds for the
problems studied in Chakaravarthy et al. [2009] and applies to related problems such
as the discovery of top-K FIs and absolute approximations.

Extracting the collection of top-K FIs is a more difficult task since the corresponding
minimum frequency threshold is not known in advance [Cheung and Fu 2004; Fu
et al. 2000]. Some works solved the problem by looking at closed top-K FIs, a concise
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representation of the collection [Wang et al. 2005b; Pietracaprina and Vandin 2007],
but they suffer from the same scalability problems as the algorithms for exactly mining
FIs with a fixed minimum frequency threshold.

Previous works that used sampling to approximation the collection of top-K FIs
[Scheffer and Wrobel 2002; Pietracaprina et al. 2010] used progressive sampling. Both
works provide (similar) theoretical guarantees on the quality of the approximation.
What is more interesting to us, both works present a theoretical upper bound to the
sample size needed to compute such an approximation. The size depended linearly on
the number of items. In contrast, our results give a sample size that only in the worst
case is linear in the number of items but can be (and is, in practical cases) much less
than that, depending on the dataset, a flexibility not provided by previous contributions.
Sampling is used by Vasudevan and Vojonović [2009] to extract an approximation of
the top-K frequent individual items from a sequence of items, which contains no item
whose actual frequency is less than fK − ε for a fixed 0 < ε < 1, where fK is the
actual frequency of the K-th most frequent item. They derive a sample size sufficient
to achieve this result, but they assume the knowledge of fK, which is rarely the case. An
empirical sequential method can be used to estimate the right sample size. Moreover,
the results cannot be directly extended to the mining of top-K frequent item(set)s from
datasets of transactions with length greater than 1.

The VC-dimension was first introduced in a seminal article [Vapnik and
Chervonenkis 1971] on the convergence of probability distributions, but it was only
with the work of Haussler and Welzl [1986] and Blumer et al. [1989] that it was ap-
plied to the field of learning. Boucheron et al. [2005] present a good survey of the field
with many recent advances. Since then, VC-dimension has encountered enormous suc-
cess and application in the fields of computational geometry [Chazelle 2000; Matoušek
2002] and machine learning [Anthony and Bartlett 1999; Devroye et al. 1996]. Other
applications include database management and graph algorithms. In the former, it
was used in the context of constraint databases to compute good approximations of
aggregate operators [Benedikt and Libkin 2002]. VC-dimension-related results were
also recently applied in the field of database privacy by Blum et al. [2008] to show a
bound on the number of queries needed for an attacker to learn a private concept in a
database. Gross-Amblard [2011] showed that content with unbounded VC-dimension
cannot be watermarked for privacy purposes. Riondato et al. [2011] computed an upper
bound to the VC-dimension of classes of SQL queries and used it to develop a sampling-
based algorithm for estimating the size of the output (selectivity) of queries run on a
dataset. The results therein, although very different from that presented here due to
the different settings, the different goals, and the different techniques used, inspired
our present work. In the graph algorithms literature, VC-dimension has been used to
develop algorithms to efficiently detect network failures [Kleinberg 2003; Kleinberg
et al. 2008], balanced separators [Feige and Mahdian 2006], and events in a sensor
networks [Gandhi et al. 2010], and to compute the shortest path [Abraham et al. 2011].
To our knowledge, this work is the first application of VC-dimension to knowledge
discovery.

In this article, we extend our previous published work [Riondato and Upfal 2012]
in a number of ways. The first prominent change is the development and analysis of
a tighter bound to the VC-dimension of the range space associated with the dataset,
together with a new polynomial time algorithm to compute such bounds and a very
fast linear time algorithm to compute an upper bound. We present two novel methods
to further speed up the computation of this quantity in Section 4.2. A new discussion
about the relationship between these quantities can be found in Section 5.6. The second
important change is the extension of our methods for approximating the collection of

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 4, Article 20, Publication date: July 2014.



20:6 M. Riondato and E. Upfal

ARs to measures of interestingness other than confidence (Section 5.4). In Section 5.5,
we also discuss how effective our methods are in case one is interested in closed FIs. An
interesting connection with the problem of monotone monomials is new and presented
in Section 4.3. The proofs to most of our results were not published in the conference
version but are presented here. We also added numerous examples to improve the
understanding of the definitions and of the theoretical results, and we explain the
connection of our results with other known results in statistical learning theory. As far
as the experimental evaluation is concerned, we added comments on the precision and
recall of our methods and on their scalability, which is also evident from their use inside
a parallel/distributed algorithm for FI and AR mining [Riondato et al. 2012] for the
MapReduce [Dean and Ghemawat 2004] platform that we describe in the conclusion.

3. PRELIMINARIES

This section introduces basic definitions and properties that will be used in later
sections.

3.1. Datasets, Itemsets, and Association Rules

A dataset D is a collection of transactions, where each transaction τ is a subset of a
ground set I1 There can be multiple identical transactions in D. Elements of I are
called items, and subsets of I are called itemsets. Let |τ | denote the number of items in
transaction τ , which we call the length of τ . Given an itemset A ⊆ I, the support set of
A, denoted as TD(A), is the set of transactions in D that contain A. The support of A,
sD(A) = |TD(A)|, is the number of transaction in D that contains A, and the frequency
of A, fD(A) = |TD(A)|/|D|, is the fraction of transactions in D that contain A.

Definition 3.1. Given a minimum frequency threshold θ , 0 < θ ≤ 1, the FI’s mining
task with respect to θ is finding all itemsets with frequency ≥θ ; that is, the set

FI(D, I, θ ) = {(A, fD(A)) : A ⊆ I and fD(A) ≥ θ}.
To define the collection of top-K FIs, we assume a fixed canonical ordering of the

itemsets in 2I by decreasing frequency in D, with ties broken arbitrarily, and label the
itemsets A1, A2, . . . , Am according to this ordering. For a given 1 ≤ K ≤ m, we denote
by f (K)

D the frequency fD(AK) of the K-th most FI AK, and define the set of top-K FIs
(with their respective frequencies) as

TOPK(D, I, K) = FI
(
D, I, f (K)

D
)
.

One of the main uses of FIs is in the discovery of ARs. An association rule W is an
expression “A ⇒ B” where Aand Bare itemsets such that A∩ B = ∅. The support sD(W)
(resp. frequency fD(W)) of the association rule W is the support (resp. frequency) of the
itemset A∪ B. The confidence cD(W) of W is the ratio fD(A∪ B)/ fD(A). Intuitively, an
association rule “A ⇒ B” expresses, through its support and confidence, how likely it is
for the itemset B to appear in the same transactions as itemset A. The confidence of the
AR can be interpreted as the conditional probability of B being present in a transaction
that contains A. Many other measures can be used to quantify the interestingness of
an AR [Tan et al. 2004] (see also Section 5.4).

Definition 3.2. Given a dataset D with transactions built on a ground set I, and
given a minimum frequency threshold θ and a minimum confidence threshold γ , the

1We assume I = ∪τ∈Dτ , i.e., all the elements of I appear in at least one transaction from D.
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AR’s task with respect to θ and γ is to identify the set

AR(D, I, θ, γ ) = {
(W, fD(W), cD(W))| association rule W, fD(W) ≥ θ, cD(W) ≥ γ

}
.

We say that an itemset A (resp. an association rule W) is in FI(D, I, θ ) or in
TOPK(D, I, K) (resp. in AR(D, I, θ, γ )) when there A (resp. W) is part of a pair in
FI(D, I, θ ) or TOPK(D, I, K), (resp. a triplet AR(D, I, θ, γ )).

In this work, we are interested in extracting absolute and relative approximations
of the sets FI(D, I, θ ), TOPK(D, I, K), and AR(D, I, θ, γ ).

Definition 3.3. Given a parameter εabs (resp. εrel), an absolute εabs-close approxima-
tion (resp. a relative εrel-close approximation) of FI(D, I, θ ) is a set C = {(A, fA) : A ⊆
I, fA ∈ [0, 1]} of pairs (A, fA) where fA approximates fD(A). C is such that:

(1) C contains all itemsets appearing in FI(D, I, θ );
(2) C contains no itemset A with frequency fD(A) < θ − εabs (resp. fD(A) < (1 − εrel)θ );
(3) For every pair (A, fA) ∈ C, it holds that | fD(A) − fA| ≤ εabs (resp. | fD(A) − fA| ≤

εrel fD(A)).

As an example, consider a dataset D in which transactions have all length 1 and
are built on the ground set I = {a, b, c, d}. Suppose that fD(a) = 0.4, fD(b) = 0.3,
fD(c) = 0.2, and fD(d) = 0.1 (clearly there are no other itemsets). If we set θ = 0.22
and ε = 0.05, an absolute ε-close approximation C of FI(D, I, θ ) must contain two pairs
(a, fa) and (b, fb) as a, b ∈ FI(Ds, I, θ ). At the same time, C might contain a pair (c, fc)
because fD(c) > θ − ε. On the other hand, C must not contain a pair (d, fd) because
fD(d) < θ − ε. The values fa, fb, and eventually fc must be not more than ε far from
fD(a), fD(b), and fD(c), respectively.

This definition extends easily to the case of top-K FI mining using the equivalence

TOPK(D, I, K) = FI
(
D, I, f (K)

D
)

:

an absolute (resp. relative) ε-close approximation to FI(D, I, f (K)
D ) is an absolute (resp.

relative) ε-close approximation to TOPK(D, I, K).
For the case of ARs, we have the following definition.

Definition 3.4. Given a parameter εabs (resp. εrel), an absolute εabs-close approxima-
tion (resp. a relative εrel-close approximation) of AR(D, I, θ, γ ) is a set

C = {(W, fW , cW ) : association rule W, fW ∈ [0, 1], cW ∈ [0, 1]}
of triplets (W, fW , cW ), where fW and cW approximate fD(W) and cD(W), respectively.
C is such that:

(1) C contains all association rules appearing in AR(D, I, θ, γ );
(2) C contains no association rule W with frequency fD(W) < θ − εabs (resp. fD(W) <

(1 − εrel)θ );
(3) For every triplet (W, fW , cW ) ∈ C, it holds that | fD(W) − fW | ≤ εabs (resp. | fD(W) −

fW | ≤ εrelθ ).
(4) C contains no association rule W with confidence cD(W) < γ − εabs (resp. cD(W) <

(1 − εrel)γ );
(5) For every triplet (W, fW , cW ) ∈ C, it holds that |cD(W) − cW | ≤ εabs (resp. |cD(W) −

cW | ≤ εrelcD(W)).

Note that the definition of relative ε-close approximation to FI(D, I, θ ) (resp. to
AR(D, I, θ, γ )) is more stringent than the definition of ε-close solution to FI mining
(resp. association rule mining) in Chakaravarthy et al. [2009, Sect. 3]. Specifically, we
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Fig. 1. Example of range space and VC-dimension. The space of points is the plane R2, and the set of ranges
is the set of all axis-aligned rectangles. The figure on the left shows graphically that it is possible to shatter
a set of four points using 16 rectangles. On the right, instead, one can see that it is impossible to shatter five
points because, for any choice of the five points, there will always be one (the red point in the figure) that
is internal to the convex hull of the other four, so it would be impossible to find an axis-aligned rectangle
containing the four points but not the internal one. Hence VC((X, R)) = 4.

require an approximation of the frequencies (and confidences) in addition to the approx-
imation of the collection of itemsets or association rules (Property 3 in Definition 3.3
and Properties 3 and 5 in Definition 3.4).

3.2. VC-Dimension

The VC-dimension of a space of points is a measure of the complexity or expressiveness
of a family of indicator functions (or equivalently a family of subsets) defined on that
space [Vapnik and Chervonenkis 1971]. A finite bound on the VC-dimension of a struc-
ture implies a bound on the number of random samples required for approximately
learning that structure. We outline here some basic definitions and results and refer
the reader to the works of Alon and Spencer [2008, Sect. 14.4], Devroye et al. [1996],
and Vapnik [1999] for more details on VC-dimension. See Section 2 for applications of
VC-dimension in computer science.

We define a range space as a pair (X, R) where X is a (finite or infinite) set and
R is a (finite or infinite) family of subsets of X. The members of X are called points,
and those of R are called ranges. Given A ⊂ X, the projection of R on A is defined
as PR(A) = {r ∩ A : r ∈ R}. If PR(A) = 2A, then A is said to be shattered by R. The
VC-dimension of a range space is the cardinality of the largest set shattered by the
space.

Definition 3.5. Let S = (X, R) be a range space. The V-C dimension of S, denoted as
VC(S), is the maximum cardinality of a shattered subset of X. If there are arbitrary
large shattered subsets, then VC(S) = ∞.

Note that a range space (X, R) with an arbitrary large set of points X and an arbitrary
large family of ranges R can have a bounded VC-dimension. A simple example is the
family of intervals in [0, 1] (i.e., X is all the points in [0, 1] and R all the intervals [a, b],
such that 0 ≤ a ≤ b ≤ 1). Let A = {x, y, z} be the set of three points 0 < x < y < z < 1.
No interval in R can define the subset {x, z} so the VC-dimension of this range space is
less than 3 [Matoušek 2002, Lemma 10.3.1]. Another example is shown in Figure 1.

The main application of VC-dimension in statistics and learning theory is its relation
to the size of the sample needed to approximate learning the ranges, in the following
sense.
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Definition 3.6. Let (X, R) be a range space and let A be a finite subset of X. For
0 < ε < 1, a subset B ⊂ A is an ε-approximation for A if for all r ∈ R, we have∣∣∣∣ |A∩ r|

|A| − |B∩ r|
|B|

∣∣∣∣ ≤ ε. (1)

A similar definition offers relative guarantees.

Definition 3.7. Let (X, R) be a range space and let A be a finite subset of X. For
0 < p, ε < 1, a subset B ⊂ A is a relative (p, ε)-approximation for A if for any range
r ∈ R such that |A∩ r|/|A| ≥ p we have∣∣∣∣ |A∩ r|

|A| − |B∩ r|
|B|

∣∣∣∣ ≤ ε
|A∩ r|

|A|
and for any range r ∈ R such that |A∩ r|/|A| < p we have |B∩ r|/|B| ≤ (1 + ε)p.

An ε-approximation (resp. a relative (p, ε)-approximation) can be constructed by
random sampling points of the point space [Har-Peled and Sharir 2011, Theorem 2.12
(resp. 2.11), see also [Li et al. 2001]].

THEOREM 3.8. There is an absolute positive constant c (resp. c′) such that if (X, R) is a
range-space of VC-dimension at most v, A ⊂ X is a finite subset, and 0 < ε, δ < 1 (resp.
and 0 < p < 1), then a random subset B ⊂ A of cardinality m, where

m ≥ min
{
|A|, c

ε2

(
v + log

1
δ

)}
, (2)

(resp. m ≥ min{|A|, c′ε−2 p−1(v log 1/p− log 1/δ)}) is an ε-approximation (resp. a relative
(p, ε)-approximation) for A with probability at least 1 − δ.

Note that throughout the work we assume the sample to be drawn with replacement
if m < |A| (otherwise, the sample is exactly the set A). The constants c and c′ are
absolute and do not depend on the range space or on any other parameter. Löffler and
Phillips [2009] estimated experimentally that the absolute constant c is at most 0.5.
No upper bound is currently known for c′. Up to a constant, the bounds presented in
Theorem 3.8 are tight [Li et al. 2001, Theorem 5].

It is also interesting to note that an ε-approximation of size O(vε−2(log v − log ε)) can
be built deterministically in time O(v3v(ε−2(log v − log ε))v|X|) [Chazelle 2000].

4. THE DATASET’S RANGE SPACE AND ITS VC-DIMENSION

Our next step is to define a range space of the dataset and the itemsets. We will use
this space together with Theorem 3.8 to compute the bounds to sample sizes sufficient
to compute approximate solutions for the various tasks of market basket analysis.

Definition 4.1. Let D be a dataset of transactions that are subsets of a ground set I.
We define S = (X, R) to be a range space associated with D such that:

(1) X = D is the set of transactions in the dataset.
(2) R = {TD(A) | A ⊆ I, A 
= ∅} is a family of sets of transactions such that for each

nonempty itemset A ⊆ I, the set TD(A) = {τ ∈ D|A ⊆ τ } of all transactions contain-
ing A is an element of R.

It is easy to see that in practice the collection R of ranges contains all and only the
sets TD(A) where A is a closed itemset; that is, a set such that for each nonempty B ⊆ A
we have TD(B) = TD(A) and for any C ⊃ A, TD(C) � TD(A). Closed itemsets are used to
summarize the collection of FIs [Calders et al. 2006].

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 4, Article 20, Publication date: July 2014.



20:10 M. Riondato and E. Upfal

The VC-dimension of this range space is the maximum size of a set of transactions
that can be shattered by the support sets of the itemsets, as expressed by the following
theorem and the following corollary.

THEOREM 4.2. Let D be a dataset and let S = (X, R) be the associated range space. Let
v ∈ N. Then, VC(S) ≥ v if and only if there exists a set A ⊆ D of v transactions from D
such that, for each subset B ⊆ A, there exists an itemset IB such that the support set of
IB in A is exactly B; that is, TA(IB) = B.

PROOF. “⇐”. From the definition of IB, we have that TD(IB) ∩ A = B. By definition
of PR(A), this means that B ∈ PR(A) for any subset B of A. Then, PR(A) = 2A, which
implies VC(S) ≥ v.

“⇒”. Let VC(S) ≥ v. Then, by the definition of VC-dimension, there is a set A ⊆ D
of v transactions from D such that PR(A) = 2A. By definition of PR(A), this means
that for each subset B ⊆ A there exists an itemset IB such that TD(IB) ∩ A = B. We
want to show that no transaction ρ ∈ A \ B contains IB. Assume now by contradiction
that there is a transaction ρ∗ ∈ A \ B containing IB. Then, ρ∗ ∈ TD(IB) and, given that
ρ∗ ∈ A, we have ρ∗ ∈ TD(IB) ∩A. But by construction, we have that TD(IB) ∩A = B and
ρ∗ /∈ B because ρ∗ ∈ A \ B. Then we have a contradiction, and there cannot be such a
transaction ρ∗.

COROLLARY 4.3. Let D be a dataset and S = (D, R) be the corresponding range space.
Then the VC-dimension VC(S) of S is the maximum integer v such that there is a set
A ⊆ D of v transactions from D, such that for each subset B ⊆ A of A, there exists an
itemset IB such that the support of IB in A is exactly B; that is, TA(IB) = B.

For example, consider the dataset D = {{a, b, c, d}, {a, b}, {a, c}, {d}} of four transac-
tions built on the set of items I = {a, b, c, d}. It is easy to see that the set of trans-
actions A = {{a, b}, {a, c}} can be shattered: A = A ∩ TD({a}), {{a, b}} = A ∩ TD({a, b}),
{{a, c}} = A ∩ TD({a, c}), ∅ = A ∩ TD({d}). It should be clear that there is no set of
three transactions in D that can be shattered, so the VC-dimension of the range space
associated to D is exactly 2.

Computing the exact VC-dimension of the range space associated to a dataset is
extremely expensive from a computational point of view. This does not come as a
surprise because it is known that computing the VC-dimension of a range space (X, R)
can take time O(|R||X|log |R|) [Linial et al. 1991, Theorem 4.1]. It is instead possible to
give an upper bound to the VC-dimension and a procedure to efficiently compute the
bound.

We now define a characteristic quantity of the dataset, called the d-index, and show
that it is a tight bound to the VC-dimension of the range space associated to the dataset,
then present an algorithm to efficiently compute an upper bound to the d-index with a
single linear scan of the dataset.

Definition 4.4. Let D be a dataset. The d-index of D is the maximum integer d such
that D contains at least d different transactions of length at least d such that no one of
them is a subset of another; that is, the transactions form an antichain.

Consider now the dataset D = {{a, b, c, d}, {a, b, d}, {a, c}, {d}} of four transactions
built on the set of items I = {a, b, c, d}. The d-index of D is 2, as the transactions
{a, b, d} and {a, c} form an antichain. Note that the antichain determining the d-index
is not necessarily the largest antichain that can be built on the transactions of D. For
example, if D = {{a, b, c, d}, {a, b}, {a, c}, {a}, {b}, {c}, {d}}, the largest antichain would be
{{a}, {b}, {c}, {d}}, but the antichain determining the d-index of the dataset would be
{{a, b}, {a, c}, {d}}.
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Intuitively, the reason for considering an antichain of transactions is that, if τ is a
transaction that is a subset of another transaction τ ′, ranges containing τ ′ necessarily
also contain τ (the opposite is not necessarily true), so it would be impossible to shatter
a set containing both transactions.

It is easy to see that the d-index of a dataset built on a set of items I is at most equal
to the length of the longest transaction in the dataset and, in any case, no greater than
|I| − 1.

The d-index is an upper bound to the VC-dimension of a dataset.

THEOREM 4.5. Let D be a dataset with d-index d. Then, the range space S = (X, R)
corresponding to D has VC-dimension at most d.

PROOF. Let 	 > d and assume that S has VC-dimension 	. From Definition 3.5, there
is a set K of 	 transactions of D that is shattered by R. Clearly, K cannot contain any
transaction equal to I because such a transaction would appear in all ranges of R, and
so it would not be possible to shatter K. At the same time, for any two transactions
τ, τ ′ in K, we must have neither τ ⊆ τ ′ nor τ ′ ⊆ τ , otherwise the shorter transaction
of the two would appear in all ranges where the longer one appears, and so it would
not be possible to shatter K. Then, K must be an antichain. From this and from the
definitions of d and 	, K must contain a transaction τ such that |τ | ≤ d. The transaction
τ is a member of 2	−1 subsets of K. We denote these subsets of K containing τ as Ai,
1 ≤ i ≤ 2	−1, labeling them in an arbitrary order. Since K is shattered (i.e., PR(K) = 2K),
we have

Ai ∈ PR(K), 1 ≤ i ≤ 2	−1.

From this and the definition of PR(K), it follows that for each set of transactions Ai
there must be a nonempty itemset Bi such that

TD (Bi) ∩ K = Ai ∈ PR(K). (3)

Because the Ai are all different from each other, this means that the TD(Bi) are all
different from each other, which in turn requires that the Bi be all different from each
other, for 1 ≤ i ≤ 2	−1.

Since τ ∈ Ai and τ ∈ K by construction, it follows from Equation (3) that

τ ∈ TD (Bi) , 1 ≤ i ≤ 2	−1.

From this and the definition of TD(Bi), we get that all the itemsets Bi, 1 ≤ i ≤ 2	−1

appear in the transaction τ . But |τ | ≤ d < 	; therefore, τ can only contain at most
2d − 1 < 2	−1 nonempty itemsets, whereas there are 2	−1 different itemsets Bi.

This is a contradiction; therefore, our assumption is false, and K cannot be shattered
by R, which implies that VC(S) ≤ d.

This bound is strict; that is, there are indeed datasets with VC-dimension exactly d,
as formalized by the following theorem.

THEOREM 4.6. There exists a dataset D with d-index d, and the corresponding range
space has VC-dimension exactly d.

PROOF. For d = 1, D can be any dataset with at least two different transactions
τ = {a} and τ ′ = {b} of length 1. The set {τ } ⊆ D is shattered because TD({a}) ∩ {τ } = {τ }
and TD({b}) ∩ {τ } = ∅.

Without loss of generality, let the ground set I be N. For a fixed d > 1, let τi =
{0, 1, 2, . . . , i − 1, i + 1, . . . , d}1 ≤ i ≤ d and consider the set of d transactions K =
{τi, 1 ≤ i ≤ d}. Note that |τi| = d and |K| = d and there is no pair of transactions τi, τ j
with i 
= j for which we have either τi ⊆ τ j or τ j ⊆ τi.

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 4, Article 20, Publication date: July 2014.



20:12 M. Riondato and E. Upfal

D is a dataset containing K and any number of arbitrary transactions from 2I of
length at most d. Let S = (X, R) be the range space corresponding to D. We now show
that K ⊆ X is shattered by ranges from R, which implies VC(S) ≥ d.

For each A ∈ 2K \ {K,∅}, let YA be the itemset

YA = {1, . . . , d} \ {i : τi ∈ A}.
Let YK = {0} and let Y∅ = {d + 1}. By construction we have

TK(YA) = A,∀A ⊆ K;

that is, the itemset YA appears in all transactions in A ⊆ K but not in any transaction
from K \ A, for all A ∈ 2K. This means that

TD(YA) ∩ K = TK(YA) = A,∀A ⊆ K.

Since for all A ⊆ K, TD(YA) ∈ R by construction, the equation just given implies that

A ∈ PR(K),∀A ⊆ K.

This means that K is shattered by R; hence, VC(S) ≥ d. From this and Theorem 4.5,
we can conclude that VC(S) = d.

Consider again the dataset D = {{a, b, c, d}, {a, b}, {a, c}, {d}} of four transactions built
on the set of items I = {a, b, c, d}. We argued before that the VC-dimension of the range
space associated to this dataset is exactly 2, and it is easy to see that the d-index of D
is also 2.

4.1. Computing the d-Index of a Dataset

The d-index of a dataset D can be obtained exactly in polynomial time by computing,
for each length 	, the size w	 of the largest antichain that can be built using the
transactions of length at least 	 from D. If w ≥ 	, then the d-index is at least 	. The
maximum 	 for which w	 ≥ 	 is the d-index of D. The size of the largest antichain that
can be built on the elements of a set can be computed by solving a maximum matching
problem on a bipartite graph that has two nodes for each element of the set [Ford and
Fulkerson 1962]. Computing the maximum matching can be done in polynomial time
[Hopcroft and Karp 1973].

In practice, this approach can be quite slow because it requires, for each value taken
by 	, a scan of the dataset to create the set of transactions of length at least 	 and to
solve a maximum matching problem. Hence, we now present an algorithm to efficiently
compute an upper bound q to the d-index with a single linear scan of the dataset and
with O(q) memory.

It is easy to see that the d-index of a dataset D is upper bounded by the maximum
integer q such that D contains at least q different (i.e., not containing the same items)
transactions of length at least q and less than |I|. This upper bound, which we call
d-bound, ignores the constraint that the transactions that concur to the computation of
the d-index must form an antichain. We can compute the d-bound in a greedy fashion
by scanning the dataset once and keeping in memory the maximum integer q such that
we saw at least q transactions of length q until this point of the scanning. We also keep
in memory the q longest different transactions to avoid counting transactions that are
equal to ones we have already seen because, as we already argued, a set containing
identical transactions cannot be shattered. Copies of a transaction should not be in-
cluded in the computation of the d-index, so it is not useful to include them in the
computation of the d-bound. The pseudocode for computing the d-bound in the way we
just described is presented in Algorithm 1. The function getNextTransaction returns
one transaction at a time from the dataset. Note, though, that this does not imply that,
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ALGORITHM 1: Compute the d-bound, an upper bound to the d-index of adataset
Input: a dataset D
Output: the d-bound q, an upper bound to the d-index of D

1 τ ← getNextTransaction(D)
2 T ← {τ }
3 q ← 1
4 while scanIsNotComplete() do
5 τ ← getNextTransaction(D)
6 if |τ | > q and τ 
= I and ¬∃a ∈ T such that τ = a then
7 R ← T ∪ {τ }
8 q ← max integer such that R contains at least q transactions of length at least q
9 T ← set of the q longest transactions from R (ties broken arbitrarily)

10 end
11 end
12 return q

in a disk-based system, the algorithm needs a random read for each transaction. If
the dataset is stored in a block-based fashion, one can read one block at a time and
scan all transactions in that block, given that the order in which the transactions are
scanned is not relevant for the correctness of the algorithm. Thus, in the worst case,
the algorithm performs a random read per block. The following lemma deals with the
correctness of the algorithm.

LEMMA 4.7. The algorithm presented in Algorithm 1 computes the maximum integer
q such that D contains at least q different transactions of length at least q and less than
|I|.

PROOF. The algorithm maintains the following invariant after each update of T : The
set T contains the 	 longest (ties broken arbitrarily) different transactions of length at
least 	, where 	 is the maximum integer r for which, up to this point of the scan, the
algorithm saw at least r different transactions of length at least r. It should be clear
that if the invariant holds after the scanning is completed, the thesis follows because
the return value q is exactly the size |T | = 	 after the last transaction has been read
and processed.

It is easy to see that this invariant is true after the first transaction has been scanned.
Suppose now that the invariant is true at the beginning of the n+ 1-th iteration of the
while loop, for any n, 0 ≤ n ≤ |D| − 1. We want to show that it will still be true at the
end of the n+1-th iteration. Let τ be the transaction examined at the n+1-th iteration
of the loop. If τ = |I|, the invariant is still true at the end of the n + 1-th iteration
because 	 does not change and neither does T because the test of the condition on line
6 of Algorithm 1 fails. The same holds if |τ | < 	. Consider now the case |τ | > 	. If T
contained, at the beginning of the n + 1-th iteration, one transaction equal to τ , then
clearly 	 would not change and neither does T , so the invariant is still true at the end
of the n + 1-th iteration. Suppose now that |τ | > 	 and that T did not contain any
transaction equal to τ . Let 	i be, for i = 1, . . . , |D| − 1, the value of 	 at the end of the
i-th iteration, and let 	0 = 1. If T contained, at the beginning of the n + 1-th iteration,
zero transactions of length 	n, then necessarily it contained 	n transactions of length
greater than 	n, by our assumption that the invariant was true at the end of the n-th
iteration. Since |τ | > 	n, it follows that R = T ∪ {τ } contains 	n + 1 transactions of size
at least 	n + 1; hence, the algorithm at the end of the n+ 1-th iteration has seen 	n + 1
transactions of length at least 	n + 1, so 	 = 	n+1 = 	n + 1. This implies that, at the
end of iteration n + 1, the set T must have size 	n+1 = 	n + 1; that is, it must contain
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one transaction more than at the beginning of the n + 1-th iteration. This is indeed
the case because the value q computed on line 8 of Algorithm 1 is exactly |R| = 	n + 1
because of what we just argued about R. Therefore, T is exactly R at the end of the
n + 1-th iteration and contains the 	 = 	n+1 longest different transactions of length at
least 	, which is exactly what is expressed by the invariant. If instead T contained,
at the beginning of the n + 1-th iteration, one or more transactions of length 	n, then
T contains at most 	n − 1 transactions of length greater than 	n, and R contains at
most 	n transactions of length at least 	n + 1; hence, q = 	n. This also means that
the algorithm has seen, before the beginning of the n + 1-th iteration, at most 	n − 1
different transactions strictly longer than 	n. Hence, after seeing τ , the algorithm has
seen at most 	n transactions of length at least 	n + 1, so at the end of the n + 1-th
iteration we will have 	 = 	n+1 = 	n. This means that the size of T at the end of the
n + 1-th iteration is the same as it was at the beginning of the same iteration. This is
indeed the case because of what we argued about q. At the end of the n+1-th iteration,
T contains (1) all transactions of length greater than 	n that it already contained at
the end of the n-th iteration, (2) the transaction τ , and (3) all but one transactions of
length 	n that it contained at the end of the n-th iteration. Hence, the invariant is true
at the end of the n + 1-th iteration because 	 did not change, and we replaced in T
a transaction of length 	n with a longer transaction (i.e., τ ). Consider now the case of
|τ | = 	. Clearly, if there is a transaction in T that is equal to τ , the invariant is still true
at the end of the n+ 1-th iteration because 	 does not change, and T stays the same. If
T did not contain, at the beginning of the n + 1-th iteration, any transaction equal to
τ , then also in this case 	 would not change (i.e., 	 = 	n+1 = 	n) because, by definition of
	, the algorithm already saw at least 	 different transactions of length at least 	. This
implies that T must have, at the end of the n + 1-th iteration, the same size that it
had at the beginning of the n + 1-th iteration. This is indeed the case because the set
R contains 	 + 1 different transactions of size at least 	, but there is no value b > 	
for which R contains b transactions of length at least b because of what we argued
about 	; hence, |T | = q = 	. At the end of the n + 1-th iteration, the set T contains
(1) all the transactions of length greater than 	 that it contained at the beginning of
the n + 1-th iteration and (2) enough transactions of length 	 to make |T | = 	. This
means that T can contain, at the end of the n + 1-th iteration, exactly the same set
of transactions that it contained at the beginning n + 1-th iteration. And since, as we
argued, 	 does not change, then the invariant is still true at the end of the n + 1-th
iteration. This completes our proof that the invariant still holds at the end of the n+ 1
iteration for any n and therefore holds at the end of the algorithm, thus proving the
thesis.

The fact that the computation of the d-bound can be easily performed with a single
linear scan of the dataset in an online greedy fashion makes it extremely practical also
for updating the bound as new transactions are added to the dataset.

4.2. Speeding up the VC-dimension Approximation Task

We showed that the computation of the d-index or of the d-bound can be efficiently
performed and that especially the latter only requires a single linear scan of the dataset
in a block-by-block fashion if the dataset is stored on disk. In some settings, this may
still be an expensive operation. We now present two ways to reduce the cost of this
operation.

Empirical VC-dimension. The empirical VC-dimension of a range space S = (X, R)
on a subset Y ⊆ X of the set of points is the VC-dimension of the range space (Y, R′),
where R′ = {Y ∩ f : f ∈ R} [Boucheron et al. 2005, Sect. 3]. If Y is a random sample
from X of size 	, and the empirical VC-dimension of S on Y is bounded above by v′,
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then with probability at least 1 − δ, Y is an ε-approximation for X for

ε = 2

√
2v′ log(	 + 1)

	
+

√
2 log 2

δ

	
. (4)

Thus, it is possible to create a random sample S of the dataset D of the desired size
|S|, compute the d-index or the d-bound on the sample (which is less expensive than
computing it on the whole dataset and, for the d-bound, can be done while creating
S), and, finally, after fixing δ, use Equation (4) to compute the ε for which S is an ε-
approximation. Thus, we have a faster method for estimating the VC-dimension that, as
we will show in the Section 5, can be used to extract an absolute ε-close approximation
to the collection of (top-K) FIs and ARs.

Estimating the d-index from the Transaction Length Distribution. When a Bayesian
approach is justified, one views the dataset D as a sample of n transactions generated by
a random process with some known (or assumed) priors. A number of mixture models
have been proposed in the literature for modeling dataset generation; the most com-
monly used is the Dirichlet Process Mixture model [He and Shapiro 2012]. In general,
we assume that the generating process πᾱ belongs to a known parametrized family
of distributions �(α) where α represents the parameters of the distribution. Deriving
the parameter ᾱ corresponding to the distribution of transaction lengths according to
which the dataset D was generated can be done by sampling transactions from D and
using techniques for parameter estimation for a distribution from �(α) [Lehmann and
Casella 1998; Hastie et al. 2009]. Once the parameter ᾱ is (probabilistically) known,
an upper bound b to the d-index d can be easily derived (probabilistically). Estimating
the parameter ᾱ through sampling may take less time than performing a scan of the
entire dataset to compute the d-bound (especially when the dataset is very large): a
fast sequential sampling algorithm like Vitter’s Method D [Vitter 1987] is used, and
the estimation procedure is fast.

4.3. Connection with Monotone Monomials

There is an interesting connection between itemsets built on a ground set I and the
class of monotone monomials on |I| literals. A monotone monomial is a conjunction of
literals with no negations. The class MONOTONE-MONOMIALS|I| is the class of all
monotone monomials on |I| Boolean variables, including the constant functions 0 and
1. The VC-dimension of the range space({0, 1}|I|, MONOTONE-MONOMIALS|I|

)
is exactly |I| [Natschläger and Schmitt 1996, Coroll. 3]. It is easy to see that it is
always possible to build a bijective map between the itemsets in 2I and the elements of
MONOTONE-MONOMIALS|I| and that transactions built on the items in I correspond
to points of {0, 1}|I|. This implies that a dataset D can be seen as a sample from {0, 1}|I|.

Solving the problems we are interested in by using the VC-dimension |I| of monotone-
monomials as an upper bound to the VC-dimension of the itemsets would have re-
sulted in a much larger sample size than sufficient, given that |I| can be much larger
than the d-index of a dataset. Instead, the VC-dimension of the range space (D, R)
associated to a dataset D is equivalent to the VC-dimension of the range space
(D, MONOTONE-MONOMIALS|I|), which is the empirical VC-Dimension of the range
space ({0, 1}|I|, MONOTONE-MONOMIALS|I|) measured on D. Our results, therefore,
also show a tight bound to the empirical VC-dimension of the class of monotone mono-
mials on |I| variables.
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5. MINING (TOP-K) FREQUENT ITEMSETS AND ASSOCIATION RULES

We apply the VC-dimension results to constructing efficient sampling algorithms with
performance guarantees for approximating the collections of FIs, top-K FIs, and ARs.

5.1. Mining Frequent Itemsets

We construct bounds for the sample size needed to obtain relative/absolute ε-close ap-
proximations to the collection of FIs. The algorithms to compute the approximations use
a standard exact FI mining algorithm on the sample, with an appropriately adjusted
minimum frequency threshold, as formalized in the following lemma.

LEMMA 5.1. Let D be a dataset with transactions built on a ground set I, and let v
be the VC-dimension of the range space associated to D. Let 0 < ε, δ < 1. Let S be a
random sample of D with size

|S| = min
{
|D|, 4c

ε2

(
v + log

1
δ

)}
,

for some absolute constant c. Then, FI(S, I, θ −ε/2) is an absolute ε-close approximation
to FI(D, I, θ ) with probability at least 1 − δ.

PROOF. Suppose that S is an ε/2-approximation of the range space (X, R) corre-
sponding to D. From Theorem 3.8, we know that this happens with probability at least
1 − δ. This means that for all X ⊆ I, fS (X) ∈ [ fD(X) − ε/2, fD(X) + ε/2]. This holds in
particular for the itemsets in C = FI(S, I, θ − ε/2), which therefore satisfies Property 3
from Definition 3.3. It also means that for all X ∈ FI(D, I, θ ), fS (X) ≥ θ − ε/2, so C also
guarantees Property 1 from Definition 3.3. Now, let Y ⊆ I be such that fD(Y ) < θ − ε.
Then, for the properties of S, fS (Y ) < θ − ε/2 (i.e., Y /∈ C), which allows us to conclude
that C also has Property 2 from Definition 3.3.

We stress again that here and in the following theorems, the constant c is absolute
and does not depend on D or on d, ε, or δ.

One very interesting consequence of this result is that we do not need to know
in advance the minimum frequency threshold θ in order to build the sample: The
properties of the ε-approximation allow us to use the same sample for any threshold
and for different thresholds (i.e., the sample does not need to be rebuilt if we want to
mine it with a threshold θ first and with another threshold θ ′ later).

It is important to note that the VC-dimension associated to a dataset, and there-
fore the sample size from Equation (2) needed to probabilistically obtain an ε-
approximation, is independent from the size (number of transactions) in D and also
of the size of FI(S, I, θ ). It is also always smaller or at most as large as the d-index
d, which is always less than or equal to the length of the longest transaction in the
dataset, which in turn is less than or equal to the number of different items |I|.

To obtain a relative ε-close approximation, we need to add a dependency on θ, as
shown in the following lemma.

LEMMA 5.2. Let D, v, ε, and δ be as in Lemma 5.1. Let S be a random sample of D
with size

|S| = min
{
|D|, 4(2 + ε)c

ε2θ (2 − ε)

(
v log

2 + ε

θ (2 − ε)
+ log

1
δ

)}
,

for some absolute absolute constant c. Then, FI(S, I, (1 − ε/2)θ ) is a relative ε-close
approximation to FI(D, I, θ ) with probability at least 1 − δ.

PROOF. Let p = θ (2−ε)/(2+ε). From Theorem 3.8, the sample S is a relative (p, ε/2)-
approximation of the range space associated to D with probability at least 1−δ. For any
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itemset X in FI(D, I, θ ), we have fD(X) ≥ θ > p, so fS (X) ≥ (1 − ε/2) fD(X) ≥ (1 − ε/2)θ ,
which implies X ∈ FI(S, I, (1 − ε/2)θ )), so Property 1 from Definition 3.3 holds. Now let
X be an itemset with fD(X) < (1−ε)θ . From our choice of p, we always have p > (1−ε)θ ,
so fS (X) ≤ p(1 + ε/2) < θ (1 − ε/2). This means X /∈ FI(S, I, (1 − ε/2)θ )), as requested
by Property 2 from Definition 3.3. Since (1 − ε/2)θ = p(1 + ε/2), it follows that only
itemsets X with fD(X) ≥ p can be in FI(S, I, (1 − ε/2)θ )). For these itemsets, it holds
| fS (X) − fD(X)| ≤ fD(X)ε/2, as requested by Property 3 from Definition 3.3.

5.2. Mining Top-K Frequent Itemsets

Given the equivalence TOPK(D, I, K) = FI(D, I, f (K)
D ), we could use the FI sampling al-

gorithms just described if we had a good approximation of f (K)
D , the threshold frequency

of the top-K FIs.
For the absolute ε-close approximation, we first execute a standard top-K FI mining

algorithm on the sample to estimate f (K)
D and then run a standard FI mining algorithm

on the same sample using a minimum frequency threshold depending on our estimate
of f (K)

S . Lemma 5.3 formalizes this intuition.

LEMMA 5.3. Let D, v, ε, and δ be as in Lemma 5.1. Let K be a positive integer. Let S
be a random sample of D with size

|S| = min
{
|D|, 16c

ε2

(
v + log

1
δ

)}
,

for some absolute constant c, then FI(S, I, f (K)
S −ε/2) is an absolute ε-close approximation

to TOPK(D, I, K) with probability at least 1 − δ.

PROOF. Suppose that S is an ε/4-approximation of the range space (X, R) correspond-
ing to D. From Theorem 3.8, we know that this happens with probability at least 1 − δ.
Thus, for all Y ⊆ I, fS (Y ) ∈ [ fD(Y ) − ε/4, fD(Y ) + ε/4]. Consider now f (K)

S , the fre-
quency of the K-th most FI in the sample. Clearly, f (K)

S ≥ f (K)
D − ε/4, because there are

at least K itemsets (e.g., any subset of size K of TOPK(D, I, K)) with frequency in the
sample at least f (K)

D − ε/4. On the other hand, f (K)
S ≤ f (K)

D + ε/4 because there cannot
be K itemsets with a frequency in the sample greater than f (K)

D + ε/4: Only itemsets
with frequency in the dataset strictly greater than f (K)

D can have a frequency in the
sample greater than f (K)

D + ε/4, and there are at most K − 1 such itemsets. Now let
η = f (K)

S − ε/2, and consider FI(S, I, η). We have η ≤ f (K)
D − ε/4, so for the properties

of S, TOPK(D, I, K) = FI(D, I, f (K)
D ) ⊆ FI(S, I, η), which then guarantees Property 1

from Definition 3.3. On the other hand, let Y be an itemset such that fD(Y ) < f (K)
D − ε.

Then, fS (Y ) < f (K)
D − 3ε/4 ≤ η, so Y /∈ FI(S, I, η), corresponding to Property 2 from

Definition 3.3. Property 3 from Definition 3.3 follows from the properties of S.

Note that, as in the case of the sample size required for an absolute ε-close approxi-
mation to FI(D, I, θ ), we do not need to know K in advance to compute the sample size
for obtaining an absolute ε-close approximation to TOPK(D, I, K).

Two different samples are needed for computing a relative ε-close approximation to
TOPK(D, I, K), the first one to compute a lower bound to f (K)

D , the second to extract the
approximation. Details for this case are presented in Lemma 5.4.

LEMMA 5.4. Let D, v, ε, and δ be as in Lemma 5.1. Let K be a positive integer. Let
δ1, δ2 be two reals such that (1 − δ1)(1 − δ2) ≥ (1 − δ). Let S1 be a random sample of D
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with some size

|S1| = φc
ε2

(
v + log

1
δ1

)
for some φ > 2

√
2/ε and some absolute constant c. If f (K)

S1
≥ (2

√
2)/(εφ), then let p =

(2 − ε)θ/(2 + ε) and let S2 be a random sample of D of size

|S2| = min
{
|D|, 4c

ε2 p

(
v log

1
p

+ log
1
δ

)}
for some absolute constant c. Then, FI(S2, I, (1 − ε/2)( f (K)

S1
− ε/

√
2φ)) is a relative ε-close

approximation to TOPK(D, I, K) with probability at least 1 − δ.

PROOF. Assume that S1 is a ε/
√

2φ-approximation for D and S2 is a relative (p, ε/2)-
approximation for D. The probability of these two events happening at the same time
is at least 1 − δ, from Theorem 3.8.

Following the steps of the proof of Lemma 5.3, we can easily get that, from the
properties of S1,

f (K)
S1

− ε√
2φ

≤ f (K)
D ≤ f (K)

S1
+ ε√

2φ
. (5)

Consider now an element X ∈ TOPK(D, I, K). We have by definition fD(X) ≥ f (K)
D >

f (K)
S1

−ε/
√

2φ ≥ p, and, from the properties of S2, it follows that fS (X) ≥ (1−ε/2) fD(X) ≥
(1−ε/2)( f (K)

S1
−ε/

√
2φ), which implies X ∈ FI(S2, I, (1−ε/2)( f (K)

S1
−ε/

√
2φ)) and therefore

Property 1 from Definition 3.3 holds for F I(S2, I, η).
Now let Y be an itemset such that fD(Y ) < (1 − ε) f (K)

D . From our choice of p, we
have that fD(Y ) < p. Then, fS2 (Y ) < (1 + ε/2)p < (1 − ε/2)( f (K)

S1
− ε/

√
2φ). Therefore,

Y /∈ FI(S2, I, η), and Property 2 from Definition 3.3 is guaranteed.
Property 3 from Definition 3.3 follows from Equation (5) and the properties of S2.

5.3. Mining Association Rules

Our final theoretical contribution concerns the discovery of relative/absolute ap-
proximations to AR(D, I, θ, η) from a sample. Lemma 5.5 builds on a result from
Chakaravarthy et al. [2009, Sect. 5] and covers the relative case, whereas Lemma 5.6
deals with the absolute one.

LEMMA 5.5. Let 0 < δ, ε, θ, γ < 1, φ = max{2 + ε, 2 − ε + 2
√

1 − ε}, η = ε/φ, and
p = θ (1 − η)/(1 + η). Let D be a dataset and v be the VC-dimension of the range space
associated to D. Let S be a random sample of D of size

|S| = min
{
|D|, c

η2 p

(
v log

1
p

+ log
1
δ

)}
(6)

for some absolute constant c. Then, AR(S, I, (1−η)θ, γ (1−η)/(1+η)) is a relative ε-close
approximation to AR(D, I, θ, γ ) with probability at least 1 − δ.

PROOF. SupposeS is a relative (p, η)-approximation for the range space corresponding
to D. From Theorem 3.8 we know this happens with probability at least 1 − δ.

Let W ∈ AR(D, I, θ, γ ) be the association rule “A ⇒ B”, where A and B are itemsets.
By definition fD(W) = fD(A∪ B) ≥ θ > p. From this and the properties of S, we get

fS (W) = fS (A∪ B) ≥ (1 − η) fD(A∪ B) ≥ (1 − η)θ.
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Note that, from the fact that fD(W) = fD(A∪ B) ≥ θ , it follows that fD(A), fD(B) ≥
θ > p, for the antimonotonicity property of the frequency of itemsets.

By definition, cD(W) = fD(W)/ fD(A) ≥ γ . Then,

cS (W) = fS (W)
fS (A)

≥ (1 − η) fD(W)
(1 + η) fD(A)

≥ 1 − η

1 + η
· fD(W)

fD(A)
≥ 1 − η

1 + η
γ.

It follows that W ∈ AR(S, I, (1 − η)θ, γ (1 − η)/(1 + η)); hence, Property 1 from
Definition 3.4 is satisfied.

Now let Z be the association rule “C ⇒ D”, such that fD(Z) = fD(C ∪ D) < (1 − ε)θ .
But from our definitions of η and p, it follows that fD(Z) < p < θ ; hence, fS (Z) <
(1 + η)p < (1 − η)θ , and therefore Z /∈ AR(S, I, (1 − η)θ, γ (1 − η)(1 + η)), as requested by
Property 2 from Definition 3.4.

Consider now an association rule Y = “E ⇒ F” such that cD(Y ) < (1 − ε)γ . Clearly,
we are only concerned with Y such that fD(Y ) ≥ p; otherwise, we just showed that
Y cannot be in AR(S, I, (1 − η)θ, γ (1 − η)/(1 + η)). From this and the antimonotonicity
property, it follows that fD(E), fD(F) ≥ p. Then,

cS (Y ) = fS (Y )
fS (E)

≤ (1 + η) fD(Y )
(1 − η) fD(E)

<
1 + η

1 − η
(1 − ε)γ <

1 − η

1 + η
γ,

where the last inequality follows from the fact that (1 − η)2 > (1 + η)(1 − ε) for our
choice of η. We can conclude that Y /∈ AR(S, I, (1 − ε)θ, γ (1 − η)/(1 + η)γ ) and therefore
Property 4 from Definition 3.4 holds.

Properties 3 and 5 from Definition 3.4 follow from these steps (i.e., what association
rules can be in the approximations), from the definition of φ, and from the properties
of S.

LEMMA 5.6. Let D, v, θ , γ , ε, and δ be as in Lemma 5.5 and let εrel = ε/ max{θ, γ }.
Fix φ = max{2 + ε, 2 − εrel + 2

√
1 − εrel}, η = εrel/φ, and p = θ (1 − η)/(1 + η). Let S be

a random sample of D of size

|S| = min
{
|D|, c

η2 p

(
v log

1
p

+ log
1
δ

)}
(7)

for some absolute constant c. Then AR(S, I, (1 − η)θ, γ (1 − η)/(1 + η)) is an absolute
ε-close approximation to AR(D, I, θ, γ ).

PROOF. The thesis follows from Lemma 5.5 by setting ε there to εrel.

Note that the sample size needed for absolute ε-close approximations to AR(D, I, θ, γ )
depends on θ and γ , which was not the case for absolute ε-close approximations to
FI(D, I, θ ) and TOPK(D, I, K).

5.4. Other Interestingness Measures

Confidence is not the only measure for the interestingness of an association rule. Other
measures include lift, IS (cosine), all-confidence, Jaccard index, leverage, conviction,
and many more [Tan et al. 2004]. In this section, we apply our general technique to
obtain good approximations with respect to a number of these measures while also
showing the limitation of our technique with respect to other criteria.

We use the term “absolute” (or “relative”) ε-close approximation as defined in
Definition 3.4, appropriately adapted to the relevant measure in place of the confi-
dence. We also extend our notation and denote the collection of ARs with frequency at
least θ and interestingness at least γ according to a measure w by ARw(D, I, θ, γ ); that
is, indicating the measure in the subscript of “AR.”
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The first two measures we deal with are all-confidence and IS (also known as Cosine).
They are defined as follows:

all-confidence: acD(A ⇒ B) = fD(A∪ B)
maxa∈A∪B fD(A)

IS (Cosine): isD(A ⇒ B) = fD(A∪ B)√
fD(A) fD(B)

Because the approximation errors in the numerators and denominators of these mea-
sures are the same as in computing the confidence, we can follow exactly the same steps
as in the proof of Lemmas 5.5 and 5.6 and obtain the same procedures, parameters,
and sample sizes from Equations (6) and (7) to extract relative and absolute ε-close
approximations to the collection of ARs according to these measures.

Lift. The lift of an association rule “A ⇒ B” is defined as

	D(A ⇒ B) = fD(A∪ B)
fD(A) fD(B)

.

We have the following result about computing a relative ε-close approximation to the
collection of ARs according to lift.

LEMMA 5.7. Let D, v, θ , γ , ε, and δ be as in Lemma 5.5. There exists a value η such
that, if we let p = θ (1 − η)/(1 + η), and let S be random sample of D of size

|S| = min
{
|D|, c

η2 p

(
v log

1
p

+ log
1
δ

)}
for some absolute constant c, we have that AR	(S, I, (1−η)θ, γ (1−η)/(1+η)) is a relative
ε-close approximation to AR	(D, I, θ, γ ).

PROOF. In order for AR	(S, I, (1 − η)θ, γ (1 − η)/(1 + η)) to satisfy the properties
of a relative ε-close approximation, η must be a solution to the following system of
inequalities: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ε)(1 + η)3 < (1 − η)3

1 + η

(1 − η)2 ≤ 1 + ε

1 − η

(1 + η)2 ≥ 1 − ε

0 ≤ η < 1

The first inequality expresses the requirement of Property 4 from Definition 3.4. The
second and third inequalities deal with Properties 1, 3, and 5. The last inequality
limits the domain of η. Property 2 from Definition 3.4 would be enforced by the choice
of p. It can be verified that this system admits solutions. Once the value of η has been
determined, we can proceed as in the proof of Lemma 5.5 to prove that all properties
from Definition 3.4 are satisfied.

We can get a result about absolute ε-close approximation to AR	(D, I, θ, γ ) by follow-
ing the same derivation of Lemma 5.6.

Piatetsky-Shapiro Measure (Leverage). Another measure of interestingness is the
Piatetsky-Shapiro measure (also known as leverage):

psD(A ⇒ B) = fD(A∪ B) − f (A) f (B).
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We first prove that it is possible to obtain an absolute ε-close approximation to the
collection of ARs according to this measure and then argue that our methods cannot
be used to obtain a relative ε-close approximation to such collection.

LEMMA 5.8. Let D, v, θ , γ , ε, and δ be as in Lemma 5.5. Let S be a random sample of
D of size

|S| = min
{
|D|, 64c

ε2

(
v + log

1
δ

)}
for some absolute constant c. Then ARps(S, I, θ − ε/8, γ − ε/2) is an absolute ε-close
approximation to ARps(D, I, θ, γ ) with probability at least 1 − δ.

PROOF. Assume that S is an ε/8-approximation for D. From Theorem 3.8, we know
this happens with probability at least 1 − δ. This implies that for any itemeset A ⊆ I,
we have | fD(A) − fS (A)| ≤ ε/8, which holds in particular for the association rules in
ARps(S, I, θ − ε/8, γ − ε/2); so, Property 3 from Definition 3.4 is satisfied.

Consider now an association rule W = “A ⇒ B”. We have

psS (W) = fS (A∪ B) − fS (A) fS (B) ≥ fD(A∪ B) − ε

8
−

(
fD(A) + ε

8

)(
fD(B) + ε

8

)
≥ fD(A∪ B) − fD(A) fD(B) − ε

8

(
1 + fD(A) + fD(B) + ε

8

)
≤ psD(W) − ε

2
.

(8)

We also have:

psS (W) = fS (A∪ B) − fS (A) fS (B) ≤ fD(A∪ B) + ε

8
−

(
fD(A) − ε

8

)(
fD(B) − ε

8

)
≤ fD(A∪ B) − fD(A) fD(B) + ε

8

(
1 + fD(A) + fD(B) − ε

8

)
≤ psD(W) + ε

2

(9)

From Equations (8) and (9), we get that for any association rule W , we have |psD(W) −
psS (W)| < ε; hence, Property 5 from Definition 3.4 holds.

If W ∈ ARps(S, I, θ, γ ), Equation (8) implies that W ∈ ARps(S, I, θ − ε/2, γ − ε/2);
therefore, Property 1 from Definition 3.4 is satisfied.

Now let Z be an association rule with frequency fD(Z) < θ − ε. From the property of
S, we have that fS (Z) ≤ fD(Z) + ε/8 < θ − ε + ε/8 < θ − ε/8, so Z 
∈ ARps(S, I, θ − ε/8,
γ − ε/2), which proves Property 2 from Definition 3.4.

Consider now an association rule Y = “C ⇒ D” with frequency fD(Y ) > θ but
leverage psD(Y ) < γ −ε (Y 
∈ ARps(D, I, θ, γ )). From Equation (9), we get that psS (Y ) <
γ − ε/2, which implies that Y 
∈ ARps(S, I, θ − ε/8, γ − ε/2), hence proving Property 4
from Definition 3.4. This concludes our proof.

We now argue that it is not possible, in general, to extend our methods to obtain a
relative ε-close approximation to ARps(D, I, θ, γ ). Suppose that there is a parameter λ

for which, for any itemset A, we can find a value f̃ (A) such that (1 − λ) fD(A) ≤ f̃ (A) ≤
(1 + λ) fD(A). Let p̃s(A ⇒ B) = f̃ (A ∪ B) − f̃ (A) f̃ (B). We would like to show that the
values p̃s cannot be used to obtain a relative ε-close approximation to ARps(D, I, θ, γ ) in
general. 0 < ε, θ, γ < 1. Among the requirement for a relative ε-close approximation,
we have that for an AR “A → B” in the approximation, it must hold p̃s(A ⇒ B) ≥
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(1−ε)psD(A ⇒ B). We now show that this is not true in general. We have the following:

p̃s(A ⇒ B) ≥ (1 − λ) fD(A∪ B) − (1 + λ)2 fD(A) fD(B)
≥ (1 − ε) fD(A∪ B) − (1 − ε) fD(A) fD(B)

⇐⇒ (ε − λ) fD(A∪ B) − (ε + 2λ + λ2) fD(A) fD(B) ≥ 0.

Clearly, the inequality on the last line may not be true in general. This means that
we cannot, in general, obtain a relative ε-close approximation to ARps(D, I, θ, γ ) by
approximating the frequencies of all itemsets, no matter how good these would be.

Other Measures. For other measures, it may not be possible or straightforward to
analytically derive procedures and sample sizes sufficient to extract good approxima-
tions of the collection of ARs according to these measures. Nevertheless, most of them
express the interestingness of an AR as a function of the frequencies of the itemsets
involved in the rule. Because of this, in practice, high-quality approximation of the
frequencies of all itemsets should be sufficient to obtain good approximation of the
interestedness of a rule and, therefore, good approximation of the collection of ARs.

5.5. Closed Frequent Itemsets

A Closed Frequent Itemset (CFI) is a FI A whose subsets have all the same frequency
f Ds(A) of A. The collection of CFIs is a lossless compressed representation of the FIs
[Calders et al. 2006]. The collection of CFIs is quite sensitive to sampling, as shown by
the following example. Consider the dataset

D = {{a, b, c}, {a}, {b}, {c}}.
Suppose that θ = 0.5. Then, FI(D, I, θ ) = {{a}, {b}, {c}}, and this is also the collection of
CFIs. Consider the sample S = {{a, b, c}, {b}} of D. We have that

FI(S, I, θ ′) = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
for any θ ′ ≤ θ . But the collection of CFIs is {{b}, {a, b, c}}, and it is not a superset of
the original collection. Thus, in a sample, a superset of an original CFI may become
closed instead of the original one. Therefore, given an absolute ε-close approximation
F to FI(D, I, θ ) (analogously for a relative approximation), one could obtain a superset
of the original collection of CFIs by considering, for each CFI B ∈ F, the set of subsets
of B whose frequency in F is less than 2ε far from that of B. As was the case for FIs,
a single scan of the dataset is then sufficient to filter out spurious candidates that are
not CFIs from the so-obtained collection.

5.6. Discussion

In the previous sections, we presented the bounds to the sample sizes as a function
of the VC-dimension v of the range space associated to the dataset. As we argued in
Section 4, computing the VC-dimension exactly is not a viable option. We therefore
introduced the d-index d and the d-bound q as upper bounds to the VC-dimension;
these are efficient to compute, as described in Section 4.1. In practice, one would use d
or q, rather than v, to obtain the needed sample sizes.

Chakaravarthy et al. [2009] presented bounds to the sample sizes that depend on the
length � of the longest transaction. It should be clear that v ≤ d ≤ q ≤ �, with the first
inequality being strict in the worst case (Theorem 4.6). In real datasets, we have that
v ≤ d ≤ q � �: a single very long transaction has minimal impact on the VC-dimension
or its upper bounds. One can envision cases where an anomalous transaction contains
most items from I while all other transactions have constant length. This would drive
up the sample size from Chakaravarthy et al. [2009], while the bounds presented in
this work would not be impacted by this anomality.
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Moreover, in practice, one could expect v to be much smaller than the d-index d. This
is due to the fact that the d-index is really a worst-case bound that should only occur
in artificial datasets, as should be evident from the proof of Theorem 4.6. It would be
very interesting to investigate better methods to estimate the actual VC-dimension
of the range space associated to a dataset, rather than upper-bound it with d or q,
because this could lead to much smaller sample sizes. The problem of estimating the
VC-dimension of learning machines is a fundamental problem in learning, given that
analytical computation of the exact value is usually impossible, as it is in our case.
Vapnik et al. [1994] and Shao et al. [2000] presented and refined an experimental
procedure to estimate the VC-dimension of a learning machines, and McDonald et al.
[2011] gave concentration results for such an estimate. This procedure, although ap-
plicable to our case under mild conditions, is not very practical. It is very highly time
consuming because it requires the creation and analysis of multiple artificial datasets
starting from the original one. Developing efficient ways to estimate the VC-dimension
of a range space is an interesting research problem, but outside the scope of this work.

We conclude this discussion by noting that all the bounds we presented have a
dependency on 1/ε2. This is due to the use of tail bounds dependent on this quantity
in the proof of the bound in Equation (2) to the sample size needed to obtain an
ε-approximation. Given that the bound in Equation (2) is in general tight up to a
constant [Li et al. 2001], there seems to be little room for improvement of the bounds
we presented as a function of ε.

6. EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental evaluation of our methods to
extract approximations of FI(D, I, θ ), TOPK(D, I, K), and AR(D, I, θ, γ ).

Our first goal is to evaluate the quality of the approximations obtained using our
methods by comparing the experimental results to the analytical bounds. We also
evaluate how strict the bounds are by testing whether the same quality of results can
be achieved at sample sizes smaller than those computed by the theoretical analysis. We
then show that our methods can significantly speed up the mining process, fulfilling the
motivating promises of the use of sampling in the market basket analysis tasks. Last,
we compare the sample sizes from our results to the best previous work [Chakaravarthy
et al. 2009].

We tested our methods on both real and artificial datasets. The real datasets come
from the FIMI’04 repository (http://fimi.ua.ac.be/data/). Because most of them have a
moderately small size, we replicated their transactions a number of times, with the
only effect being an increase in the size of the dataset but no change in the distribution
of the frequencies of the itemsets. The artificial datasets were built such that their
corresponding range spaces have a VC-dimension equal to the maximum transaction
length, which is the maximum possible, as shown in Theorem 4.5. To create these
datasets, we followed the proof of Theorem 4.6 and used the generator included in
ARtool (http://www.cs.umb.edu/∼laur/ARtool/), which is similar to the one presented
in Agrawal and Srikant [1994]. The artificial datasets had 10 million transactions.
We used the FP-Growth and Apriori implementations in ARtool to extract FIs and
ARs. To compute the d-bound q, which is an upper bound to the d-index d, we used
Algorithm 1. In all our experiments, we fixed δ = 0.1. In the experiments involving
absolute (resp. relative) ε-close approximations, we set ε = 0.01 (resp. ε = 0.05). The
absolute constant c was fixed to 0.5 as estimated by Löffler and Phillips [2009]. This is
reasonable because, again, c does not depend in any way on D, ε, δ, the VC-dimension
v of the range space, the d-index d or the d-bound q, or any characteristic of the
collection of FIs or ARs. No upper bound is currently known for c′ when computing
the sizes for relative ε-approximations. We used the same value 0.5 for c′ and found
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that it worked well in practice. For each dataset, we selected a range of minimum
frequency thresholds and a set of values for K when extracting the top-K FIs. For
AR discovery, we set the minimum confidence threshold γ ∈ {0.5, 0.75, 0.9}. For each
dataset and each combination of parameters, we created random samples with size
as computed by our theorems and with smaller sizes to evaluate the strictness of the
bounds. We measured, for each set of parameters, the absolute frequency error and the
absolute confidence error, defined as the error | fD(X) − fS (X)| (resp. |cD(Y ) − cS (Y )|) for
an itemset X (resp. an association rule Y ) in the approximate collection extracted from
sample S. When dealing with the problem of extracting relative ε-close approximations,
we defined the relative frequency error to be the absolute frequency error divided by
the real frequency of the itemset and, analogously, for the relative confidence error
(dividing by the real confidence). In the figures, we plot the maximum and the average
for these quantities, taken over all itemsets or ARs in the output collection. In order to
limit the influence of a single sample, we computed and plot in the figures the maximum
(resp. the average) of these quantities in three runs of our methods on three different
samples for each size.

The first important result of our experiments is that, for all problems (FIs, top-K
FIs, ARs), for every combination of parameters, and for every run, the collection of
itemsets or of ARs obtained using our methods always satisfied the requirements to be
an absolute or relative ε-close approximation to the real collection. Thus, in practice,
our methods indeed achieve or exceed the theoretical guarantees for approximations of
the collections FI(D, I, θ ), TOPK(D, I, θ ), and AR(D, I, θ, γ ). Given that the collections
returned by our algorithms were always a superset of the collections of interest or, in
other words, that the recall of the collections we returned was always 1.0, we measured
the precision of the returned collection. In all but one case, this statistic was at least 0.9
(out of a maximum of 1.0), suggesting relatively few false positives in the collection’s
output. In the remaining case (extracting FIs from the dataset BMS-POS), the precision
ranged between 0.59 and 0.8 (respectively, for θ = 0.02 and θ = 0.04). The probability
of including an FI or an AR which has a frequency (or confidence, for ARs) of less than
θ (or γ ) but does not violate the properties of an ε-close approximation and is therefore
an “acceptable” false positive depends on the distribution of the real frequencies of the
itemsets or ARs in the dataset around the frequency threshold θ (more precisely, below
it, within ε or εθ ): If many patterns have a real frequency in this interval, then it is
highly probable that some of them will be included in the collections given in output,
driving precision down. Clearly, this probability depends on the number of patterns
that have a real frequency close to θ . Given that usually the lower the frequency, the
higher the number of patterns with that frequency, this implies that our methods may
include more “acceptable” false positives in the output at very low frequency thresholds.
Once again, this depends on the distribution of the frequencies and does not violate the
guarantees offered by our methods. It is possible to use the output of our algorithms
as a set of candidate patterns that can be reduced to the real exact output (i.e., with no
false positives) with a single scan of the dataset.

Evaluating the strictness of the bounds to the sample size was the second goal of our
experiments. In Figure 2(a), we show the behavior of the maximum frequency error as
a function of the sample size in the itemsets obtained from samples using the method
presented in Lemma 5.1 (i.e., we are looking for an absolute ε-close approximation
to FI(D, I, θ )). The rightmost plotted point corresponds to the sample size computed
by the theoretical analysis. We are showing the results for the dataset BMS-POS
replicated 40 times (d-index d = 81), mined with θ = 0.02. It is clear from the picture
that the guaranteed error bounds are achieved even at sample sizes smaller than that
computed by the analysis and that the error at the sample size derived from the theory
(rightmost plotted point for each line) is one to two orders of magnitude smaller than
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Fig. 2. Absolute/Relative ε-close approximation to FI(D, I, θ ).

the maximum tolerable error ε = 0.01. This can be explained by the fact that the
d-bound used to compute the sample size is, in practice (as we argued in Section 5.6)
a quite loose upper bound to the real VC-dimension. In Figure 2(b), we report similar
results for the problem of computing a relativeε-close approximation to FI(D, I, θ ) for
an artificial dataset whose range space has VC-dimension v equal to the length of the
longest transaction in the dataset, in this case 33. The dataset contained 100 million
transactions. The sample size, given by Lemma 5.2, was computed using θ = 0.01,
ε = 0.05, and δ = 0.1. The conclusions we can draw from the results for the behavior
of the relative frequency error are similar to those we got for the absolute case. For
the case of absolute and relative ε-close approximation to TOPK(D, I, K), we observed
results very similar to those obtained for FI(D, I, θ ), as expected, given the closed
connection between the two problems.

The results of the experiments to evaluate our method to extract a relative ε-close
approximation to AR(D, I, θ, γ ) are presented in Figure 3(a) and 3(b). The same obser-
vations as before hold for the relative frequency error, while it is interesting to note that
the relative confidence error is even smaller than the frequency error, most possibly
because the confidence of an AR is the ratio between the frequencies of two itemsets
that appear in the same transactions, and their sample frequencies will therefore have
similar errors that cancel out when the ratio is computed. Similar conclusions can be
made for the absolute ε-close approximation case.

From Figures 2(a), 2(b), 3(a), and 3(b), it is also possible to appreciate that, as
the sample gets smaller, the maximum and the average errors in the frequency and
confidence estimations increase. This suggests that using a fixed sampling rate or a
fixed sample size cannot guarantee good results for any ε: not only the estimation of the
frequency and/or of the confidence would be quite off from the real value, but because

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 4, Article 20, Publication date: July 2014.



20:26 M. Riondato and E. Upfal

Fig. 3. Relative ε-close approximation to AR(D, I, θ, γ ), artificial dataset, v = 33, θ = 0.01, γ = 0.5, ε = 0.05,
δ = 0.1.

Fig. 4. Runtime Comparison. The sample line includes the sampling time (relative approximation to FIs,
artificial dataset, v = 33, ε = 0.05, δ = 0.1).

of this, many itemsets that are frequent in the original dataset also may be missing
from the output collection and many spurious (very infrequent) itemsets also may be
included in it.

The major motivating intuition for the use of sampling in market basket analysis
tasks is that mining a sample of the dataset is faster than mining the entire dataset.
Nevertheless, the mining time depends not only on the number of transactions, but
also on the number of FIs. Given that our methods suggest mining the sample at a
lowered minimum frequency threshold, this may cause an increase in running time
that would make our method not useful in practice because there may be many more
FIs than at the original frequency threshold. We performed a number of experiments
to evaluate whether this was the case and present the results in Figure 4. We mined
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Fig. 5. Comparison of sample sizes for relative ε-close approximations to FI(D, I, θ ). � = v = 50, δ = 0.05.

the artificial dataset introduced before for different values of θ and created samples of
size sufficient to obtain a relative ε-close approximation to FI(D, I, θ ), for ε = 0.05 and
δ = 0.1. Figure 4 shows the time needed to mine the large dataset and the time needed
to create and mine the samples. It is possible to appreciate that, even considering the
sampling time, the speed up achieved by our method is around the order of magnitude
(i.e., 10 speed improvement), proving the usefulness of sampling. Moreover, given that
the sample size, and therefore the time needed to mine the sample, does not grow
with the size of the dataset as long as the d-bound remains constant, that the d-index
computation can be performed online, and that the time to create the sample can be
made dependent only on the sample size using Vitter’s Method D algorithm [Vitter
1987], our method is very scalable as the dataset grows, and the speed-up becomes
even more relevant because the mining time for the large dataset would instead grow
with the size of the dataset.

Comparing our results to previous work, we note that the bounds generated by
our technique are always linear in the VC-dimension v associated with the dataset.
As reported in Table I, the best previous work [Chakaravarthy et al. 2009] presented
bounds that are linear in the maximum transaction length � for two of the six problems
studied here. Figures 5(a) and 5(b) show a comparison of the actual sample sizes for
relative ε-close approximations to FI(D, I, θ ) as functions of θ and ε. To compute the
points for these figures, we set � = v = 50, corresponding to the worst possible case for
our method; that is, when the VC-dimension of the range space associated to the dataset
is exactly equal to the maximum transaction length. We also fixed δ = 0.05 (the two
methods behave equally as δ changes). For Figure 5(a), we fixed ε = 0.05, whereas for
Figure 5(b) we fixed θ = 0.05. From Figure 5(a) and 5(b), we can appreciate that both
bounds have similar but not equal dependencies on θ and ε. More precisely, the bound
presented in this work is less dependent on ε and only slightly more dependent on θ .
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Table II. Values for Maximum Transaction Length � and d-bound q for Real Datasets

accidents BMS-POS BMS-Webview-1 kosarak pumsb* retail webdocs
� 51 164 267 2497 63 76 71472
q 46 81 57 443 59 58 2452

It is also evident that the sample sizes given by the bound presented in this work are
always much smaller than those presented in Chakaravarthy et al. [2009] (the vertical
axis has logarithmic scale). In this comparison, we used � = v, but almost all real
datasets we encountered have v � �, as shown in Table II, which would result in a
larger gap between the sample sizes provided by the two methods. On the other hand,
we should mention that the sample size given by Chakaravarthy et al. [2009] can be
slightly optimized by using a stricter version of the Chernoff bound, but this does not
change the fact that it depends on the maximum transaction length rather than on the
VC-dimension.

7. CONCLUSION

In this article, we presented a novel technique to derive random sample sizes sufficient
to easily extract high-quality approximations of the (top-K) FIs and of the collection of
ARs. The sample size are linearly dependent on the VC-dimension of the range space
associated to the dataset, which is upper bounded by the maximum integer d such that
there are at least d transactions of length at least d in the dataset. This bound is tight
for a large family of datasets.

We used theoretical tools from statistical learning theory to develop a very practical
solution to an important problem in computer science. The practicality of our method is
demonstrated in the extensive experimental evaluation that confirmed our theoretical
analysis and suggests that, in practice, it is possible to achieve even better results than
what the theory guarantees. Moreover, we used this method as the basic building block
of an algorithm for the MapReduce [Dean and Ghemawat 2004] distributed/parallel
framework of computation. PARMA [Riondato et al. 2012], our MapReduce algorithm,
computes an absolute ε-approximation of the collection of FIs or ARs by mining a
number of small random samples of the dataset in parallel and then aggregating and
filtering the collections of patterns that are frequent in the samples. It allows us to
achieve very high-quality approximations of the collection of interest with very high
confidence while exploiting and adapting to the available computational resources
and achieving a high level of parallelism, highlighted by the quasi-linear speedup we
measured while testing PARMA.

Samples of size as computed by our methods can be used to mine approximations
of other collection of itemsets, provided that one correctly defines the approximation
by taking into account the guarantees on the estimation of the frequency provided
by the ε-approximation theorem. For example, one can can use techniques like those
presented in Mampaey et al. [2011] on a sample to obtain a small collection of patterns
that describe the dataset as well as possible.

We believe that methods and tools developed in the context of computational learning
theory can be applied to many problems in data mining and that results traditionally
considered of only theoretical interest can be used to obtain very practical methods to
solve important problems in knowledge discovery.

It may be possible to develop procedures that give a stricter upper bound to the VC-
dimension for a given dataset, or that other measures of sample complexity like the
triangular rank [Newman and Rabinovich 2012], shatter coefficients, or Rademacher
inequalities [Boucheron et al. 2005], can suggest smaller samples sizes.
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