
Apache Spark Fundamentals
Data Mining course 2016/2017

04/04/2017



An overview Spark

I Framework for the implementation of parallel/distributed
algorithms

I MapReduce & much more

I Fault tolerant

I Efficient implementation: in-memory caching



RDD: The fundamental abstraction

I Collection of elements of
uniform type

I Possibly distributed across
machines

I Java notation
JavaRDD<T> data = ...



Partitioning

I Data is partitioned, possibly across machines

I The number of partitions is usually 2x/3x the number of cores

I Data placement is controlled by using partitioners

I A partitioner is a function p(·) that, given an element x of the
RDD, returns an integer

I With P partitions, x will be placed in partition p(x) mod P

I The default partitioning is by hash code

I Should be tuned when data is imbalanced



Transformations



Transformations



Transformations

Narrow transformations

I map

I flatmap

I filter

I union

I . . .

Wide transformations

I reduceByKey

I groupByKey

I sort

I join

I . . .

http://spark.apache.org/docs/latest/

programming-guide.html#transformations

http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#transformations


Transformations, actions, lazyness, and caching

Transformation

I Yields another RDD

I Not computed immediately

I Defines a lineage

Action

I Returns a local result

I Forces the evaluation of all
the ancestors in the lineage

Caching

I Store RDDs in memory

I Without caching, the entire lineage is evaluated starting from
the input at every action.



And now, some practical examples!


