
The mathematics of RAID-6

H. Peter Anvin <hpa@zytor.com>

1 December 2004

RAID-6 supports losing any two drives. The way this is done is by computing
two syndromes, generally referred P and Q.

1 A quick summary of Galois field algebra

The algebra used for this is the algebra of a Galois field, GF(28). A smaller or
larger field could also be used, however, a smaller field would limit the number
of drives possible, and a larger field would require extremely large tables.

GF(28) allows for a maximum of 257 drives, 255 (28 − 1) of which can be
data drives; the reason for this is shown below.

The representation of GF(28) used is the same one as used by the Rijndael
(AES) cryptosystem. It has the following properties; this is not, however, an
exhaustive list nor a formal derivation of these properties; for more in-depth
coverage see any textbook on group and ring theory.

Note: A number in {} is a Galois field element (i.e. a byte) in hexadecimal
representation; a number without {} is a conventional integer.

1. The addition field operator (+) is represented by bitwise XOR.

2. As a result, addition and subtraction are the same operation: A + B =
A−B.

3. The additive identity element (0) is represented by {00}.

4. Thus, A + A = A−A = {00}.

5. Multiplication (·) by {02} is implemented by the following bitwise rela-
tions:

1



(x · {02})7 = x6

(x · {02})6 = x5

(x · {02})5 = x4

(x · {02})4 = x3 + x7

(x · {02})3 = x2 + x7

(x · {02})2 = x1 + x7

(x · {02})1 = x0

(x · {02})0 = x7

Hardware engineers will recognize this as a linear feedback shift register
(LFSR), and matematicians as boolean polynomial multiplication modulo
the irreducible polynomial x8 + x4 + x3 + x2 + 1.

6. The multiplicative identity element (1) is represented by {01}.

A · {01} = {01} ·A = A

7. The following basic rules of algebra apply:

Addition is commutative: A + B = B + A
Addition is associative: (A + B) + C = A + (B + C)
Multiplication is commutative: A ·B = B ·A
Multiplication is associative: (A ·B) · C = A · (B · C)
Distributive law: (A + B) · C = A · C + B · C

8. Any nonzero element can uniquely divide an element:

If A ·B = C then C/B = A for any B 6= {00}.
In particular, A/A = {01} for any A 6= {00}.

9. Multiplying by zero is zero:

A · {00} = {00}

10. Any value can be multiplied by observing that bits decompose the same
as in ordinary arithmetric, and applying the distributive law:

{02}2 = {02} · {02} = {04}
{02}3 = {04} · {02} = {08}
{02}4 = {08} · {02} = {10}
{02}5 = {10} · {02} = {20}
{02}6 = {20} · {02} = {40}
{02}7 = {40} · {02} = {80}

(Note, however: {02}8 = {1d}.)

2



For example:

{8d} = {80}+ {08}+ {04}+ {01}
= {02}7 + {02}3 + {02}2 + {01}

Thus:
A · {8d} = A · {02}7 + A · {02}3 + A · {02}2 + A

or, equivalently,

A · {8d} = (((A · {02}4) + A) · {02}+ A) · {02}2 + A

11. Raising to a power (repeated multiplication with the same value) is con-
gruent mod 255 (cardinality of all elements except {00}). Also note that
the exponent is an ordinary integer1 as opposed to a Galois field element.

A256 = {01} ·A = A
A255 = {01}
A254 = A255/A = {01}/A = A−1

 A 6= {00}

A−1 is called the inverse (or reciprocal) of A. {01} is its own inverse, {00}
lacks inverse, for all other elements A−1 6= A.

For any A, any B 6= {00}, A/B = A ·B−1. Accordingly, A/A = A ·A−1 =
{01} for any A 6= {00}.

12. There are elements (g), called generators, of the field such that gn doesn’t
repeat until they have exhausted all elements of the field except {00}. For
the AES field representation, {02} is such a generator.

13. Accordingly, any generator g defines a function from the nonzero elements
in GF(28) to the elements in Z255 (i.e. the integers 0-254, modulo 255)
called the logarithm with base g and written logg. For example, {02}4 =
{10}, so log{02} {10} = 4.

For any nonzero Galois field elements A and B:

A ·B = C ⇐⇒ logg A⊕ logg B = logg C

... where ⊕ represents conventional integer addition modulo 255. There-
fore:

C = g(logg A⊕logg B)

1Formally, an element in Z255.

3



2 Application to RAID-6

We treat each disk block as a vector of bytes, and will perform the same calcula-
tions on each byte in the vector. Symbols in boldface represent vectors (where
each byte has a different value); constants, or symbols in italics represent scalars
(same value across every data byte.)

In order to be able to suffer the loss of any two disks, we need to compute
two syndromes, here referred to as P and Q.

For n data disks D0, D1, D2, ... Dn−1 (n ≤ 255) compute:

P = D0 + D1 + D2 + ... + Dn−1 (1)
Q = g0 ·D0 + g1 ·D1 + g2 ·D2 + ... + gn−1 ·Dn−1 (2)

where g is any generator of the field (we use g = {02}.)
P is the ordinary XOR parity, since “addition” is XOR. Q is referred to as

a Reed-Solomon code.
If we lose one data drive, we can use the normal XOR parity to recover the

failed drive data, just as we would do for RAID-5. If we lose a non-data drive,
i.e. P or Q, then we can just recompute.

If we lose one data drive plus the Q drive, we can recalculate the data drive
using the XOR parity, and then recompute the Q drive.

If we lose one data drive plus the P drive, we can recompute the lost data
drive (Dx) from the Q drive by computing Qx as if Dx = {00}, and observing:

Qx + gx ·Dx = Q (3)

Here, x, Q and Qx are known. Since addition and subtraction is the same:

gx ·Dx = Q + Qx (4)

Dx = (Q + Qx)/gx = (Q + Qx) · g−x (5)

where, per the algebra rules, g−x = g255−x.
If we lose two data drives, Dx and Dy, but still have the P and Q values,

we compute Pxy and Qxy by setting the missing drives to {00}, and we get:

Pxy + Dx + Dy = P (6)
Qxy + gx ·Dx + gy ·Dy = Q (7)

x, y, P, Pxy, Q and Qxy are known.
Divide the second equation by gx:

g−x ·Qxy + Dx + gy−x ·Dy = g−x ·Q (8)

4



Remembering that addition equals subtraction in this algebra:

Dx + gy−x ·Dy = g−x ·Q + g−x ·Qxy (9)

Dx = g−x · (Q + Qxy) + gy−x ·Dy (10)

Substitute into the first equation, solve for Dy:

Dy = P + Pxy + Dx (11)

Dx = g−x · (Q + Qxy) + gy−x · (P + Pxy + Dx) (12)

Dx = g−x · (Q + Qxy) + gy−x(P + Pxy) + gy−x ·Dx (13)

Dx + gy−x ·Dx = g−x · (Q + Qxy) + gy−x · (P + Pxy) (14)

(gy−x + {01}) ·Dx = g−x · (Q + Qxy) + gy−x · (P + Pxy) (15)

If gy−x + {01} 6= {00}, we can divide by it. This requires gy−x 6= {01}; this
will be true as long as y 6= x, mod 255. Since we can have no more than 255
data disks, 0 ≤ x, y ≤ n − 1 < 255, this implies the only constraint is y 6= x,
which is true by assumption. Thus, we can divide:

Dx =
g−x · (Q + Qxy) + gy−x · (P + Pxy)

gy−x + {01}
(16)

For any particular data reconstruction, we can simplify this by precomputing
a few multiplication tables:

A =
gy−x

gy−x + {01}
= gy−x · (gy−x + {01})−1 (17)

B =
g−x

gy−x + {01}
= g−x · (gy−x + {01})−1 (18)

... which only depend on x and y as opposed to on the data bytes.
The expression then becomes:

Dx = A · (P + Pxy) + B · (Q + Qxy) (19)

We can then get Dy from the previous expression:

Dy = (P + Pxy) + Dx (20)

5



3 Making it go fast

The biggest problem with RAID-6 has historically been the high CPU cost of
computing the Q syndrome. The biggest cost is related to the cost of Galois field
multiplication, which doesn’t map conveniently onto standard CPU hardware,
and therefore has typically been done by table lookup.

Table lookups, however, are inherently serializing; it would be desirable to
make use of the wide datapaths of current CPUs.

In order to do this, we factor equation 2 as such:

Q = ((...Dn−1...) · g + D2) · g + D1) · g + D0 (21)

The only operations in this is addition, i.e. XOR, and multiplication by
g = {02}. Thus, we only need an efficient way to implement multiplication by
{02} in order to compute Q quickly, not arbitrary multiplication.

Multiplication by {02} for a single byte can be implemeted using the C code:

uint8_t c, cc;
cc = (c << 1) ^ ((c & 0x80) ? 0x1d : 0);

Now, we want to do this on multiple bytes in parallel. Assume for the
moment we are on a 32-bit machine (the extension to 64 bits should be obvious),
and separate these into two parts:

uint32_t v, vv;

vv = (v << 1) & 0xfefefefe;
vv ^= ((v & 0x00000080) ? 0x0000001d : 0) +

((v & 0x00008000) ? 0x00001d00 : 0) +
((v & 0x00800000) ? 0x001d0000 : 0) +
((v & 0x80000000) ? 0x1d000000 : 0);

The 0xfefefefe of the first statement masks any bits that get shifted into
the next byte. The second statement is clearly too complex to be efficiently
executed, however. If we can produce a mask based on the top bit in each byte,
we could just do:

uint32_t v, vv;

vv = (v << 1) & 0xfefefefe;
vv ^= MASK(v) & 0x1d1d1d1d;

In standard portable C, one implemenation of this MASK() function looks
like:

6



uint32_t MASK(uint32_t v)
{
v &= 0x80808080; /* Extract the top bits */
return (v << 1) - (v >> 7); /* Overflow on the top bit is OK */

}

The result is 0x00 for any byte with the top bit clear, 0xff for any byte
with the top bit set. This is the algorithm used in the file raid6int.uc.

For additional speed improvements, it is desirable to use any integer vec-
tor instruction set that happens to be available on the machine, such as MMX
or SSE-2 on x86, AltiVec on PowerPC, etc. These instruction sets typically
have quirks that may make them easier or harder to use than the integer im-
plementation, but usually easier. For example, the MMX/SSE-2 instruction
PCMPGTB conveniently implements the MASK() function when comparing against
zero, and the PADDB instruction implements the shift and mask in the first line
of the operations on vv when added with itself.

Note that none of this will avoid the arbitrary multiplications of equations
5 and 19. Thus, in 2-disk-degraded mode, performance will be very slow. How-
ever, it is expected that that will be a rare occurrence, and that performance
will not matter significantly in that case.

3.1 Special notes on AltiVec

The Altivec SIMD vector instruction set for PowerPC has a special instruction,
vperm, which does a parallel table lookup using the bottom five bits of each
byte in a vector.

This can be used to handle arbitrary scalar · vector multiplication (as in
equations 5 and 19) quickly, by decomposing the vector.

This decomposition is simply a matter of observing that, from the distribu-
tive law:

V = Va + Vb

A ·V = A ·Va + A ·Vb

For the decomposition to work, there can only be 32 possible values for each
byte in Va or Vb; the easiest such decomposition is simply Va being the low
four bits and Vb being the high four bits; since addition is XOR this is a valid
decomposition, and there are only 16 possible values of each.

Thus, for each multiplication (i.e. value of A) we need to set up a pair of
vector registers, one which contains (A · {00}, A · {01}, A · {02}, ... A · {0F})
and one which contains (A · {00}, A · {10}, A · {20}, ... A · {F0}).

If these vectors are in v12 and v13 respectively, and v14 set up to contain
({04}, {04}, ...), we can compute v1← A · v0 this way:

vsrb v1, v0, v14
vperm v2, v12, v12, v0

7



vperm v1, v13, v13, v1
vxor v1, v2, v1

On most Altivec processors, this will execute in three cycles. Note that we
don’t actually need to mask the top bits for the first vperm; since we repeat
v12 twice we effectively ignore bit 4, and bits 5-7 are ignored by the hardware
anyway.

4 Beyond RAID-6

Reed-Solomon coding can be exploited further to allow for any combination of n
data disks plus m redundancy disks allowing for any m failures to be recovered.
However, with increasing amount of redundancy, the higher the overhead both
in CPU time and I/O. The Linux RAID-6 work has been focused on handling
the case of m = 2 efficiently in order for it to be practically useful.

An excellent paper on implementing arbitrarily complex recovery sets using
Reed-Solomon coding can be found at:

http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.html

8


