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Abstract

We address the problem of developing a suite of mi-
crobenchmarking experiments aimed at providing the basic
functionalities of a measurement tool for a P2P-based glob-
ally distributed computing platform, usually referred to as
Overlay Computer. We argue that such a measuring system
should take into account the communication patterns gen-
erated by the applications in order to provide useful perfor-
mance insights.

1. Introduction

The impressive amount of computational resources po-
tentially available through the Internet has stimulated sev-
eral attempts at making them profitable for vast scale appli-
cations, the first and most popular being Peer-to-Peer (P2P)
file-sharing applications. The opportunity to exploit idle
cycles of connected computers has also led to the devel-
opment of several world-distributed applications, such as
SETI@Home [18], GIMPS [6], and others. While these
applications are essentially based upon a simple producer-
consumer paradigm, they are a witness of the potential of-
fered by wide-area network distributed computing also for
other, more general applications [13]. The parallel comput-
ing platform that would actually deploy the computing and
storage resources needed for this purpose, and whose net-
work topology is embedded within the Internet is generally
referred to as an Overlay Computer (OC).

To be successful, an OC must provide higher per-
formance and capabilities than the individual computing
equipment available to the user. To this purpose, it is neces-
sary to provide the user with tools for estimating the effec-
tiveness of design choices on such a distributed computer.
�
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The tools must rely upon performance metrics aimed at pro-
viding a guestimate of the key factors impacting perfor-
mance of a distributed application, such as interconnection
latency and bandwidth, and available computing power.

The approach pursued in this paper is the use of mi-
crobenchmarking techniques to measure basic performance
characteristics of a P2P-based OC. In turn, these techniques
can be employed for improving the topology of the OC
embedding onto the Internet, which yield high pay-offs in
terms of performance. Furthermore, it may be useful to
have a system which provides a quantitative assessment of
specific OC capabilities, e.g., the ability to efficiently route
prominent communications patterns. Finally, performance
measurements apply to application-side optimizations, e.g.,
for efficient spawning of a given application over a suitable
set of OC peers.

This paper offers two main contributions. The first is
to provide an overview on performance measurement tech-
niques for related parallel or distributed platforms such as
clusters, the Internet, and P2P systems. The second is to
provide a preliminary set of experimental results to serve as
proof-of-concept for the development of a more extensive
microbenchmarking tool for an OC. The proposed tests aim
at identifying both measurement techniques and key perfor-
mance factors that any such tool will have to embody.

The rest of the paper is structured as follows: Section 2
presents the above-mentioned overview. Section 3 presents
the tests implemented as a preliminary effort towards a more
complete microbenchmarking tool, together with results of
performance measurements executed on a local area net-
work running JXTA. Finally, Section 4 draws some con-
clusions and describes future work.

2. Techniques for Performance Measurement
and Improvement: an Overview

This section is dedicated to an overview of techniques
used in related systems to measure and/or improve per-



formance in contexts closely related to overlay computing,
such as clusters of workstations, the Internet, and P2P sys-
tems.

Overview of performance measurements techniques.
Several efforts have been done to provide accurate perfor-
mance measurement tools for parallel platforms using MPI.
The mpptest utility, developed in [7], consists of a suite
of programs that provide reproducible performance mea-
surements relative to low-level MPI primitives as well as to
more complex communication patterns. In [7] the authors
also point out the perils of badly designed tests that we tried
to avoid. The problem of obtaining accurate measurements
without incurring in long testing sessions is addressed in
[8] where the MPIBench tool is developed to measure per-
formance of MPI-based computations. The idea is based
on the use of high precision timers which, however, would
require substantial effort to be implemented in a OC.

The availability of high bandwidth over the Internet has
made possible the development of several kinds of dis-
tributed services, many of them relying on performance
metrics to achieve good performance. This has inspired nu-
merous research projects aiming at getting performance pa-
rameters out of the Internet, with the double objective of
minimizing the testing time while avoiding to overload the
network itself. Typically, measures of interest for the In-
ternet are latency and bandwidth, where latency is often re-
ferred to as distance and depends on the topology of the
network at a given instant.

The simplest way to measure the latency is through ping
time, which, however, may require a long time. Since
distances depend only on topology, many works try to
characterize the Internet using fictitious coordinate systems
whose aim is to allow the estimation of ping time without
prior communication, thus avoiding time-consuming prob-
ing. Coordinates can be evaluated by measuring distances
from some special hosts called landmarks, [14, 11], or in a
totally distributed fashion, as in [17, 3]. A well known co-
ordinate system for the Internet is Vivaldi [2], which is also
employed in some actual P2P implementations to improve
the quality of the overlay network [17, 3].

Measuring communication bandwidth appears more dif-
ficult than estimating latency, since the bandwidth available
between two hosts depends on several (global) aspects, such
as the quality of the path connecting the two nodes, the
amount of competing traffic along that path, the load at the
end-points, etc. Since the load of the network exhibits a
certain amount of regularity in its variability, instantaneous
measures of bandwidth could still produce results which are
valid for a certain time interval. In [10] an efficient strategy
is proposed to obtain the ���
	��� point-to-point (bottleneck
link) bandwidths on an 	 -node distributed system, exhibit-
ing an overhead linear in the number of nodes and requiring

limited cooperation among the nodes. However, the infras-
tructure to be provided is quite complex, and some of the
hypotheses upon which the whole approach relies may be
difficult to satisfy in an OC context.

Topology awareness techniques for performance im-
provement on P2P systems. P2P systems employ sev-
eral techniques to provide better performance by exploiting
topological characteristics of the underlying network. Re-
cent works have pursued a quantitative approach to mea-
sure the gains produced by Topology-awareness. The
work in [3] reports on an extensive experimentation of
DHash++,which implements a Distributed Hash Table
(DHT) based on Chord [21]. The authors experiment with
several different lookup algorithms and evaluate the re-
sulting performance in terms of lookup time and through-
put. Both measures result to be highly affected by locality-
awareness of the protocols, which can halve the average
time of a request. We remark that only latency is taken
into account as a measure of distance, since the data to be
retrieved is as little as 8KB in the application under exami-
nation.

Earlier works also tried to characterize P2P file shar-
ing application workloads in order to evaluate the improve-
ments that topology-awareness would provide if included in
the implementation. One such work is [9], which analyzes
the traces of Kazaa (uncached) traffic within the network of
the University of Washington. The results suggest that, if
content were cached then about 60% of external bandwidth
would be saved.

Trace analysis is also employed in [12], in the context
of the PeerMetric project. The paper suggests that last-hop
bandwidth is a major bottleneck and that latency-based op-
timization of the overlay embedding is somewhat a less im-
pacting issue, especially for bandwidth intensive P2P appli-
cations.

One of the first implementations of a topology-aware
P2P system is Pastry [17]. In Pastry, a node comes with
a random ID that identifies the position of the node in the
overlay topology. To allow for locality optimization, a node
can choose the nearest among � potential neighbors (nodes
whose ID is close to the node’s ID). The proximity metric
chosen by Pastry is the number of Internet hops (an approx-
imation of latency) in the path between two nodes.

The work presented in [16] proposes a strategy to in-
sert topology-awareness into CAN [15] (the idea is however
somewhat more general). In the proposed method, the node
set is partitioned into bins, and a new node wanting to join
must find a suitable bin where to fall. Then the node probes
a set of predefined unconscious landmarks (a web server, a
DNS server, etc.) in order to derive a bin identifier, that is,
the list of the landmarks sorted by increasing distance. By
looking for other nodes with the same bin identifier, perfor-



mance can be improved by placing the node in the best po-
sition among the nodes within its bin. The presented results
show that topology-awareness can significantly help in im-
proving performance (measured in terms of latency stretch).

GIA [1] implements a strategy to make unstructured P2P
systems topology-aware. Unlike structured P2P systems,
unstructured ones allow users to retrieve objects that match
partial queries, Gnutella being an example of this approach.
GIA adapts itself to the underlying network and to the peer’s
capacity, i.e., the number of queries that a peer can process
without being overloaded. Lookup protocols are then de-
signed to guarantee an even utilization of the capacities of
the peers involved. Results indicate that topology adapta-
tion improves performance by orders of magnitudes with
respect to the basic Gnutella system. From the point of
view of this report, it is important to note that this is one
of the few papers that also take into account the computa-
tional power of the peer, along with the traditional latency
and bandwidth parameters.

The idea to organize the network with emphasis on high-
capacity nodes is also adopted in [20]. The paper describes
a method to build a hierarchical overlay topology where
nodes are classified yet again in terms of their capacity.
The nodes with highest capacity form a backbone structure,
while lower capacity nodes refer hierarchically to higher ca-
pacity ones. The resulting topology is tree-like, reminiscent
of a fat-tree. Results indicate that substantial bandwidth
savings can be attained with respect to a random topology.

Another aspect impacting the overall performance of a
P2P system is churn, that is, the rate at which peers join
and leave the system, since maintenance overhead increases
with churn. The work in [20] includes a description of Bam-
boo, a DHT that explicitly addresses the problem of routing
performance under heavy churn. Results indicate that topol-
ogy awareness attains a lower latency under high churn.

Few works try to face the problem of topology-
awareness for P2P computing (rather than file-sharing) sys-
tems, since there are not yet many such platforms. Zorilla
[4] is one such prototype P2P supercomputing platform.
An algorithm similar to the one implemented in Gnutella is
used by Zorilla for discovering peers when allocating jobs.
The algorithm has been modified to be locality aware in a
way similar to the strategy employed in [1]. The result is
that the reached nodes are close to the node that initiates
the job submission, rather that being randomly distributed
as they are in Gnutella. As stated by the authors, this fea-
ture speeds-up the initial phase of moving input files from
the submitting node to the workers. While it may be rea-
sonable, it looks like a limitation to force the selected peers
to be closer to the origin rather than simply to one another
(consider, e.g., the case of very long computations not fea-
turing heavy I/O).

3. Design and implementation of initial tests

This section describes a preliminary suite of experiments
aimed at identifying the main characteristics that impact
performance in a P2P system based on JXTA [5], a P2P API
built over JAVA which is becoming popular as a de facto
standard for P2P platforms development. The tests have
been implemented using the JXTASocket interface, which
provides reliable bi-directional communications. Lower
level interfaces (e.g., Pipes), although faster, have not been
used because of their unreliability. Our objective is to
measure key performance quantities at the user level, such
as latency, bandwidth, and computing power. The ma-
chines employed during the experiments, that are connected
through a 100Mbit/s switched Ethernet, are identified as fast
( � 1.5GHz processors) or slow ( � 1GHz processors). This
distinction is necessary to evaluate the impact of the soft-
ware layers on performance.

To measure latency, the core of the experiment is a sim-
ple ping-test, where a peer sends a small packet (8 bytes)
to a selected peer, which then replies as soon as it receives
the message. To filter out noise this process is iterated sev-
eral times. The initiating peer then computes the round-trip
time by averaging over the iterations. Since JXTA is based
on Java, it is important to quantify the software overhead.
For this reason we have measured ping times between fast
and slow computers and also compared them against the
times obtained using the ICMP protocol. In Table 1 the la-
tency measurements are showed. The table reports two ping
times, the first is the JXTA level ping messages, the second
time is the time obtained by running the ping command be-
tween pairs of machines. It possible to note that the JXTA-
level ping is up to three orders of magnitude slower than the
ICMP one, because of the software overhead introduced by
JXTA, hence the fastest times are obviously those among
fast computers. It is also possible to note that the JXTA
ping time from slow to fast computers is lower than the one
from fast to slow. A similar phenomenon is visible also
in the uni-directional bandwidth measurement presented in
Figure 1.

Bandwidth is measured through several tests. Each peer
involved in the benchmark measures the time for receiving
and/or sending the amount of data assigned to it. Measur-
ing communication times requires some attention. Since
receives are posted before the actual data arrives, receiving
time is measured from the reception of the first bytes till the
end of communication, which are clearly identified instants.
Since the IP protocol stack in fact does not allow the buffer-
ing of a large amount of data before actual transmission,
a send can be considered to be blocking. Hence, sending
times are measured by timing the beginning and the end of
the application-level send operations. Communication time
is the time a peer spends executing sends and/or receives.



Bandwidth is then computed as the sum of the outgoing
and incoming bytes divided by the measured communica-
tion time. This bandwidth measure captures both the capa-
bility of the peer, the state of congestion of the network, and
provides a uniform measure of bandwidth and a clear way
to compare results of different communication patterns.

Table 1. Application level vs ICMP ping times
Sender Receiver Time (ms) ICMP (ms)

Fast Fast 17.2 0.24
Fast Slow 70.4 0.16
Slow Fast 57.6 0.14
Slow Slow 85.5 0.22

When measuring bandwidth, a simple clock alignment
algorithm is employed to ensure that peers start the mea-
surement roughly at the same time to stress the network. To
perform clock alignment, a selected peer measures laten-
cies from itself to all other peers involved in the test, and
then sends them the time they have to wait before starting
the experiment. Although quite naive, this simple algorithm
has been deemed sufficient in our preliminary experiments
to provide a lightweight synchronization of the peers.

The first measurement concerns point-to-point band-
width and is implemented by letting one peer send a given
amount of data to another peer and wait for the acknowl-
edgement from the receiver. Several message sizes have
been employed to identify the point where the bandwidth
saturates. Results are depicted in Figure 1, that shows a
high dependency on the underlying architecture. When em-
ploying fast computers, the bandwidth is quite close to the
peak bandwidth of LAN (i.e., 12.5MB/s) while slow com-
puters dramatically affect communication speed. We note
that fast-to-slow communication is faster than slow-to-fast.
This phenomenon, also visible in latency measures, will be
investigated in future research.

We also measure the execution times of gather (i.e., all-
to-one) and scatter (i.e., one-to-all) communication pat-
terns, to evaluate the OC communication capabilities with
respect to typical patterns arising in distributed applications.
To measure the execution time of the gather pattern, the
alignment algorithm is used to make all peers send the data
to the collector roughly at the same time. The collector
uses a number of receiving threads equal to the number of
peers sending data to it. Similar considerations are valid
for scatter: a distributor sends data to a number of involved
peers and measures the elapsed time after the last send ter-
minates. The distributor employs a number of threads equal
to the number of receiving peers. All the bandwidth mea-
surements have been carried out with different configura-
tions involving fast and slow machines to provide insights

over the software overheads.
Results for scatter are shown in Figures 2, as the size of

the sent messages vary. Figure 2.a shows the results of a
scatter performed from a slow sender to the others, while
Figure 2.b depicts the scatter from a fast sender. Both the
graphs exhibit the same trend. The difference in the graphs
between the bars of the sender and the receivers is justi-
fied by the fact that the sender sends much more data than
the data received by the receivers. On the other hand, the
bandwidths for scattering 1MB of data are all comparable.
This is due to the fact that the packet size is too short to
create congestion in the network. Hence, on our testbed
platform, any direct measure of bandwidth must require at
least 10MB of data. The same conclusion can be reached by
looking at the unidirectional bandwidth experiments, not-
ing that the bandwidth saturates when the messages reach a
size of 10MB. Clearly these observations are only valid in
the context of our toy experiments, where the underlying in-
terconnection is a homogeneous LAN. Different thresholds
(but likely similar behaviors) are to be expected when per-
forming the experiments on a wide-area network. Gather
measurements involve similar considerations as scatter.

A global measure of bandwidth can be provided by run-
ning an all-to-all communication pattern, where every peer
sends the same amount of data to all the other peers. We re-
mark that applications heavily employing this pattern may
prove less attractive for execution on an OC, since, most
likely, the availability of large network bandwidth would be
required for the OC execution to be competitive. Figure 3
shows the result for an all-to-all pattern among 5 peers. As it
can be clearly seen, all individual bandwidths, as well as the
average bandwidth, are flattened near the one of the slow-
est computer. This makes an application using this pattern
hardly suitable for execution on an OC.

To measure the computing power of a remote host in an
uncooperative P2P setting we use a quiz-like approach [13].
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Figure 2. Scatter measures from a slow sender to the others (Figure (a)), and from a fast sender to
the others (Figure (b)). The plots show measured bandwidth at each peer along with the average
value, as the size of the message received by each peer varies.

The remote peer is required to perform a given computation
and the execution time is measured by the inquiring peer
(that needs to filter out communication time). In order to
be effective, the computation needs to exhibit the following
characteristics: 1) requiring both a small input and a small
output; and 2) requiring a given amount of computation
that cannot be avoided. The first requirement is necessary
since we do not want the network to become a bottleneck,
the second allows for a trusted measure, since the inquired
peer cannot employ faster algorithms to provide the right
answer. A computation that matches these requirements is
given by a random number generator where the input is the
seed and the output is the number generated after either a
given number of iterations or a given amount of time. A
fairly simple generator has been chosen, whose main itera-
tion is seed=MOD(8121*seed+28411, 134456).

Figure 4 shows the results of CPU performance measure-
ments. The plot shows the outcome of four tests: two of
them fix the number of iterations to be performed, respec-
tively on a slow and fast CPU; while the other two fix the
computing time, respectively on a slow and fast CPU (in
this latter case data are again plotted against the number of
iterations performed in the allotted time). Even though the
measurement is influenced by the fluctuations of the com-
putational load of the inquired peer, the results indicate that
such a test may be employed if a sufficiently large number
of iterations are executed by the remote peer to deal with
the clock resolution. For instance, from the plot we can say
that 4 million iterations are sufficient to get a reasonable
measure of computing power, which is equivalent to about
300ms of fast CPU time and 800ms of slow CPU time.

Figure 3. All-to-All communication pattern
among 5 peers. As it may be seen, bandwidth
is dominated by the slow computer.
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4. Conclusions and future work

In this paper we dealt with the issue of measuring per-
formance in an P2P-based OC, focusing on parameters such



as the computing power of participating hosts, latency, and
bandwidth for communication patterns arising in typical ap-
plications. After reviewing some relevant state-of-the-art
measurement approaches employed in globally distributed
system, we developed a suite of microbenchmarking exper-
iments for measuring performance an OC built over JXTA.
Preliminary results have shown that different patterns ex-
hibit highly different behaviors, suggesting that the efficient
execution of an application requires a careful choice of the
executing nodes. Measuring systems should also provide
adeguate countermeasures against selfishness and free rid-
ers, especially for what concerns estimating the computing
power of a given node.

Future work will aim at extending the microbenchmark-
ing suite to produce a complete measurement toolkit to be
employed in an OC and to extend the experiments to large
heterogeneous testbeds (such as PlanetLab) to fully assess
the effectiveness of the proposed approach.
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