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Abstract. We study the connectivity properties of a family of random graphs
which closely model the Bluetooth’s device discovery process, where each device
tries to connect to other devices within its visibility range in order to establish re-
liable communication channels yielding a connected topology. Specifically, we
provide both analytical and experimental evidence that when the visibility range
of each node (i.e., device) is limited to a vanishing function ofn, the total number
of nodes in the system, full connectivity can still be achieved with high probabil-
ity by letting each node connect only to a “small” number of visible neighbors.
Our results extend previous studies, where connectivity properties were analyzed
only for the case of a constant visibility range, and provide evidence that Blue-
tooth can indeed be used for establishing large ad hoc networks.

1 Introduction

A critical problem in setting up mobile multi-hop radio networks, also known asad hoc
networks, is guaranteeing connectivity while minimizing power consumption and, in
some cases, the number of active connections per node. Among others,Bluetooth[1]
is a popular enabling technology for ad hoc networks, which was originally introduced
in 1999 by a Special Interest Group formed by more than 1800 manufacturers for the
deployment of Personal Area Networks (PANs), typically consisting of cellular phones,
laptops, wireless peripherals and PDAs. Several arguments have been raised to foster
the use of Bluetooth for the establishment of large ad hoc networks, due to its low
cost, availability, suitability for small devices, and low power consumption (see, for
example, [2]). However, a number of challenges arise in this context, particularly for
what concerns network formation [3, 4].

Specifically, Bluetooth features a hierarchical organization where the nodes are
grouped intopiconets, with each piconet containing one master and multiple slaves.
Piconets are then interconnected through bridge nodes to form ascatternet. Scatternet
formation can be decomposed into three main steps, namely,device discovery, piconet
formation, andpiconet interconnection. Each of these steps poses interesting algorith-
mic challenges for which several solutions have been proposed [1]. In particular, during
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the first step each device attempts at discovering other devices contained within its vis-
ibility range and at establishing reliable communication channels with them, in order to
form a connected topology, called theBluetooth topology, which underlies the subse-
quent piconet formation and piconet interconnection steps. Since requiring each device
to discoverall of its neighbors is too time consuming [3], a crucial problem consists
of deciding how many neighbors have to be selected in order to guarantee that the re-
sulting Bluetooth topology is connected. Indeed, obtaining connectivity under degree
limitations has been indicated in [2] as a major challenge for the adoption of the Blue-
tooth technology for large ad hoc networks.

In [5] the device discovery step has been effectively modeled as follows. The devices
are regarded as a set ofn nodes randomly and uniformly distributed in a square of unit
side. Each node has a visibility range ofr(n), i.e., it can “see” all other nodes within
Euclidean distancer(n). Given a functionc(n), each node selects as neighborsc(n)
visible nodes at random, picking all visible nodes if their number is less thanc(n).
Observe that the process is unidirectional in nature, however, each link established in
this way becomes bidirectional. As a consequence, the final degree of each node may
be much higher thanc(n), in the case that the node was selected as a neighbor by many
other nodes. We refer toBT(r(n), c(n)) as the resulting (undirected) graph.

Previous studies on the connectivity properties ofBT(r(n), c(n)) have considered
only the case where each node is able to see a constant fraction of all other nodes,
that is, the visibility ranger(n) is a constant. For this particular case, the experimental
analysis conducted in [5] has shown that settingc(n) to a small constant is sufficient
to yield connectivity forBT(r(n), c(n)) almost always. The experimental evidence has
been later substantiated by the analysis in [6], which shows that, for constantr(n),
c(n) = 2 is sufficient to achieve connectivity with high probability. Also, in [7] it
was proved that constantc(n) (though much larger, in the order of the millions) is
also sufficient to guarantee linear expansion ofBT(r(n), c(n)). These results suggest
that device discovery can be performed efficiently whenever the network is sufficiently
small (even though not necessarily a PAN). However, the assumption of constantr(n)
becomes quickly unfeasible as the number of devices to be connected increases, which
would be the case when adopting Bluetooth for building large ad hoc networks.

In this paper we extend the above studies by providing both analytical and ex-
perimental evidence that, when the visibility range is a vanishing function ofn, the
device discovery step in Bluetooth can still be performed efficiently while guaran-
teeing connectivity, by letting each device discover only a“small”, although non con-
stant, number of neighbors. In particular, we prove that ifr(n) = Ω(

√
lnn/n), then

BT(r(n), c(n)) is connected with high probability as long asc(n) = Ω(ln(1/r(n))).
We remark that the lower bound onr(n) cannot be improved since it is known that
whenr(n) ≤ δ

√
lnn/n, for some constant0 < δ < 1, thevisibility graphwhere each

node is connected toall nodes in its visibility range is disconnected with high proba-
bility [8]. A challenging open question is whether the lower bound on the value ofc(n)
required for connectivity is tight. We give a partial analytical answer to this question by
showing that in factc(n) = 3 is sufficient to attain connectivity with high probability,
as long asr(n) ≥ n−ε, for some constant0 < ε < 1/2, but each node must choose two
of the three neighbors sufficiently close to it.



In the paper we also report on a massive set of experiments conducted in order to
assess the real performance of the two previously described protocols. Quite surpris-
ingly, the experiments indicate that, even when the visibility range function is close to
the aforementioned lower bound, the number of neighbors needed for connectivity ex-
hibits an extremely weak dependence onr(n): in fact,c(n) = 3 suffices almost always,
independently of how the neighbors are chosen. Moreover, the experiments show that
the expected maximum total degree featured by the topologies obtained by choosing
three neighbors for each node is much smaller than the one featured by the visibility
graph, while the diameter is only slightly larger.

Even though our results were mainly motivated by the question of whether Blue-
tooth is suitable as a large-scale ad hoc network technology, we believe that they may
be of interest for other wireless network scenarios [9].

The rest of the paper is organized as follows. Section 2 analyzes the connectivity of
BT(r(n), c(n)) whenc(n) is Θ(log(1/r(n))). Section 3 analyzes the case ofc(n) = 3
under further constraints on neighbor selection. Section 4 reports the results of our
experiments.

2 Connectivity of BT(r(n), c(n))

Consider a setV of n nodes randomly and uniformly distributed in a unit-side square.
Each nodev ∈ V has a visibility range ofr(n), i.e.,v can “see” all nodesu at Euclidean
distanced(v, u) ≤ r(n). Let the unit square be tessellated intok2 squarecellsof side
1/k, wherek = d

√
5/r(n)e. Consequently, any two nodes residing in the same or in

adjacent cells are at distance at mostr(n): hence, they are visible from one another.
Most of our results holdwith high probability(w.h.p.for short) by which we mean that
the probability of the stated event is at least1−1/poly(n), where poly(n) denotes some
polynomial function ofn.

The following proposition can be easily proved using Chernoff’s bound [10].

Proposition 1. Letα = 9/10 andβ = 11/10. There exists a constantγ1 > 0 such that
for everyr(n) ≥ γ1

√
lnn/n the following events occur w.h.p.:

1. Every cell contains at leastαn/k2 and at mostβn/k2 nodes.
2. Every node has at least(α/4)πnr2(n) and at mostβπnr2(n) nodes in its visibility

range.

The rest of the section is devoted to the proof of the following theorem.

Theorem 1. There exist two positive real constantsγ1, γ2 such that, if r(n) ≥
γ1

√
lnn/n andc(n) = γ2 ln(1/r(n)) thenBT(r(n), c(n)) is connected w.h.p.

Let ε = 1/8. In the proof of the theorem we distinguish between the caser(n) ≤
n−ε and the caser(n) > n−ε, which are dealt with separately in the following subsec-
tions. Moreover, in both cases we condition on the events expressed by Proposition 1,
which occur with high probability.



2.1 Caseγ1

√
ln n/n ≤ r(n) ≤ n−ε

We fix the lower bound forr(n) to be the same under which Proposition 1 holds. In the
range ofr(n) considered in this case, we have thatc(n) = γ2 ln(1/r(n)) = Θ(lnn).
Let Q be an arbitrary cell and letGQ denote the subgraph ofBT(r(n), c(n)) formed
by nodes and edges internal toQ. We first show that everyGQ is connected and then
prove that for every pair of adjacent cells there exists an edge inBT(r(n), c(n)) whose
endpoints are in the two cells.

Lemma 1. With high probability, everyGQ is connected.

Proof. Fix an arbitrary cellQ and letAQ be the event that, for every partition of the
nodes inQ into two nonempty subsets, there is at least an edge with endpoints in distinct
subsets. Observe that the subgraphGQ ⊆ BT(r(n), c(n)) is connected if and only if
AQ occurs. Then:

1− Pr(AQ) ≤

≤
βn/(2k2)∑

s=1

(
βn/k2

s

)(
1− αn/k2 − s

βπnr2(n)

)sc(n)(
1− s

βπnr2(n)

)(αn/k2−s)c(n)

≤
βn/(2k2)∑

s=1

exp
(

s ln
eβn

sk2
− 2sc(n)

βπnr2(n)

(αn

k2
− s
))

≤ 1
n2

where the last inequality holds by choosing the constantγ2 in the expression forc(n)
large enough. The lemma follows by applying the union bound over allk2 cells. ut

Lemma 2. With high probability, for every pair of adjacent cellsQ1 andQ2 there is
an edge(u, v) ∈ BT(r(n), c(n)) such thatu resides inQ1 andv resides inQ2.

Proof. Consider an arbitrary pair of adjacent cellsQ1 andQ2 and letBQ1,Q2 denote
the event that there is at least one edge inBT(r(n), c(n)) between the two cells. Since
we are conditioning on the events described in Proposition 1, we have that

1− Pr(BQ1,Q2) ≤
(

1− αn/k2

βπnr2(n)

)2c(n)αn/k2

≤ exp
(
− αn/k2

βπnr2(n)
(2c(n)αn/k2)

)
≤ exp(−ζ ln2 n),

whereζ is a positive constant. The lemma follows by applying the union bound over all
O(n) pairs of adjacent cells. ut

For the caseγ1

√
lnn/n ≤ r(n) ≤ δn−ε, Theorem 1 follows by combining the results

of the above two lemmas.



2.2 Caser(n) > n−ε

We generalize and simplify the argument used in [6] for the caser(n) = Θ(1). Specif-
ically, we first show thatBT(r(n), c(n)) contains a large connected componentC, and
then we show that for every nodev there is a path fromv to C. We condition on the
events that the number of nodes in each cell and in the visibility range of each node are
within the bounds stated in Proposition 1, which occur with high probability.

Lemma 3. For r(n) > δn−ε and c(n) ≥ 2, BT(r(n), c(n)) contains a connected
component of sizen/(8k2), w.h.p.

Proof. The argument is identical to the one used in the proof of Proposition 3 in [6]. In
particular, the probability of the existence of the connected component is at least

1− 8k2 log2
2 n

n
− 1

9log2 n
,

which is1− o(n−2/3) by our choice ofk. ut

Let C be the connected component of size at leastn/(8k2) which, by the above lemma,
exists w.h.p. By the pigeonhole principle there must exist a cellQ containing at least
n/(8k4) nodes ofC. Let V (Q,C) the set of nodes residing inQ and belonging toC.
We have:

Lemma 4. With high probability, for each nodeu there exists a path inBT(r(n), c(n))
fromu to some node inV (Q, C).

Proof. Consider a directed version ofBT(r(n), c(n)) where an edge(u, v) is directed
from u to v if u selectedv during the neighbor selection process. Since we are con-
ditioning on the event stated in the second point of Proposition 1, our choice ofc(n)
implies that the outdegree of each node isexactlyc(n) w.h.p. Pick an arbitrary node
u and run a sequential breadth-first exploration fromu in such a directed version of
BT(r(n), c(n)). Stop the exploration as soon asm nodes have been discovered but not
yet explored (m is a suitable value that will be chosen later). We say that a failure occurs
when the edge(v1, v2) is considered during the exploration ofv1, and nodev2 had been
previously discovered. It is easy to see that at the moment whenm nodes are discovered
but not yet explored, if at mostc(n) − 1 failures have occurred, then the total number
of nodes discovered up to that moment is at most2m. Also, if at mostc(n)− 1 failures
occur before reachingm unexplored nodes, then at mostm nodes have been explored.
Therefore, from the second point of Proposition 1 it follows that the probability of not
reachingm unexplored nodes with less thanc(n)− 1 failures is at most(

m · c(n)
c(n)

)(
2m

(α/4)πnr2(n)

)c(n)

≤
(

8m2e

απnr2(n)

)c(n)

. (1)

Now suppose that the above event occurs and consider them unexplored nodes, say
w1, w2, . . . , wm, reached via breadth-first exploration fromu. We now estimate the
probability thatBT(r(n), c(n)) contains a path fromwi to a node inV (Q,C). Observe



that from the cell containingwi there is a sequence of at most2k pairwise adjacent cells
ending atQ. Specifically, we estimate the probability thatBT(r(n), c(n)) contains a
path fromwi to V (Q,C) following such a sequence of cells, with the constraint that
the path contains one node per cell and these nodes do not belong to the set of at most
2m nodes initially discovered fromu or to them − 1 paths constructed for any other
wj , with j 6= i. This probability is at leastp2kq, wherep is the probability of extending
the path one cell further, andq is the probability of ending, in the last step, in a node of
V (Q, C). By Proposition 1 we have that

p ≥

(
1−

(
1− αn/k2 − 3m

βπnr2(n)

)c(n)
)

q ≥ n/(8k4)
βπnr2(n)

=
1

8βπk4r2(n)
.

Recall thatc(n) = γ2 ln(1/r(n)) = Θ(ln k). If we takem = o(n/k2) andγ2 large
enough, we have that

p2k ≥ τ

for some constant0 < τ < 1. It follows that the probability that all of thewis fail to
reachV (Q,C) is at most

(1− τq)m ≤
(

1− τ

8βπk4r2(n)

)m

=
(
1− τ

σk2

)m

, (2)

for some positive constantσ.
By combining Equations 1 and 2, we get that the probability thatu is not connected

to V (Q,C) is at most (
8m2e

απnr2(n)

)c(n)

+
(
1− τ

σk2

)m

.

Now, sincer(n) > n−1/8, we have thatk = O(n1/8). If we choosem = Θ(n1/3) we
have thatm = o(n/k2), as required above, andm = ω(k2 lnn). This, combined with
the choice ofc(n), ensures that the above probability is smaller than1/n2. The lemma
follows by applying the union bound over all nodesu. ut

For the caser(n) > n−ε, Theorem 1 follows by combining the results of the above two
lemmas.

3 Achievingc(n) = 3 using a double choice protocol

In the previous section we showed that selectingc(n) = Θ(ln(1/r(n)) visible neigh-
bors at random is sufficient to enforce global connectivity for all ranges ofr(n) which
guarantee connectivity of the visibility graph. Whether these many neighbors are nec-
essary remains a challenging open question. As a step towards this objective, we show
that, at least for large enough (yet nonconstant) radii,c(n) = 3 always suffices under



a slightly different neighbor selection protocol where each node is required to direct
the selection of some neighbors within a certain geographical region. More formally,
consider again the tessellation of the unit square intok2 square cells of side1/k, with
k = d

√
5/r(n)e. DefineBT(r(n), 2, 1) to be the undirected graph resulting by letting

each node select two neighbors at random among the nodes residing in its cell, and
another neighbor at random among all visible nodes.

Observe that if applied in a practical scenario, the abovedouble-choiceprotocol
would require each node to infer geographical information about its location and the
location of the nodes in its visibility range. For example, this information could be
provided by a GPS device.3

Theorem 2. There exists a constantε, 0 < ε < 1/2 such that ifr(n) = Ω(n−ε), then
BT(r(n), 2, 1) is connected w.h.p.

Proof. We employ the same approach used in Subsection 2.1. Specifically, we first
argue that w.h.p. for all cellsQ, the graphGQ induced by the nodes inQ is connected,
and that for every pair of adjacent cells there is an edge with endpoints in the two cells.
Since by the first point of Proposition 1, each cellQ containsΩ(n1−2ε) nodes w.h.p.,
the main result of [6] implies that two neighbors selected by each node inQ suffice to
guarantee connectivity ofGQ with probability at least1 − 1/nδ(1−2ε), for a suitable
positive constantδ < 1. Then, choosingε smaller thanδ/(2(1 + δ)) and applying the
union bound, all cells will be internally connected with high probability. In order to
prove connectivity between adjacent cells, we proceed as in the proof of Lemma 2.
In particular, consider an arbitrary pair of adjacent cellsQ1 andQ2, and letBQ1,Q2

denote the event that there is at least one edge inBT(r(n), 2, 1) between the two cells.
By conditioning on the events described in Proposition 1, we have that

1− Pr(BQ1,Q2) ≤
(

1− αn/k2

βπnr2(n)

)2αn/k2

≤ exp
(
− αn/k2

βπnr2(n)
(2αn/k2)

)
≤ exp(−ζn1−2ε),

whereζ is a positive constant. The theorem follows by applying the union bound over
all O(n) pairs of adjacent cells. ut

4 Experiments

We have designed an extensive suite of experiments aimed at comparing the connectiv-
ity and other topological properties of the graphs analyzed in the previous sections.4 In a

3 A full discussion on the feasibility of this approach is outside the scope of this paper, since the
analysis of the double-choice protocol is mostly meant to provide evidence that the selection
of very few neighbors may suffice in order to build a connected topology.

4 The implemented code makes use of the Boost Graph Libraries [11] for computing the number
of connected components.
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Fig. 1.Comparison of the minimum rangesrlb, rsc, andrdc yielding connectivity in BT(r(n), 3),
BT(r(n), 2, 1), and in the visibility graph withr(n) = rlb, respectively

first set of experiments, for values ofn ranging from 10000 to 170000 with step 10000,
we have generated 50 placements ofn nodes in the unit square. For each placement,
we have determined (through binary search) an approximation to the minimum range
rlb which guarantees connectivity of the visibility graph associated with the placement
(i.e., the graph where each node connects to all its visible neighbors). Moreover, for
the same placement we have determined the minimum rangersc such that the graph
BT(rsc, 3) turns out to be connected in all of 30 repetitions of the neighbor selection
protocol. Finally, for the same placement we have determined the minimum radiusrdc

such that the graph BT(rdc, 2, 1) turns out to be connected in all of 30 repetitions of the
neighbor selection protocol. The results of these experiments are depicted in Figure 1
where for every10000 ≤ n ≤ 170000 the values ofrlb, rsc, andrdc, averaged over the
50 placements, are shown. According to the experiments,rsc is very close torlb (within
5% for all values ofn). Moreover,rdc features a similar behavior with a slightly larger
value thanrsc. Observe that, interestingly, connectivity of BT(r(n), 2, 1) does not seem
to require thatr(n) ∈ Ω(1/nε) as required by the analysis since it is attained for values
of r(n) close torlb.

In a second set of experiments we measured the maximum degree of the graphs
BT(r(n), 3) and BT(r(n), 2, 1), and of the visibility graph with visibility ranger(n),
wherer(n) is chosen to be an approximation of the smallest value which guarantees
connectivity in all three cases. The results of these experiments are depicted in Figure 2
where, as before, for each value ofn the reported values represent the averages over 50
placements. It can be seen that BT(r(n), 2, 1) exhibits a slightly smaller maximum de-
gree than BT(r(n), 3), and, clearly, both graphs have a much smaller maximum degree
than the visibility graph whose expected maximum degree can be shown to beΘ(lnn),
whenr(n) ∈ Θ(

√
(lnn)/n) is used.
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Fig. 2. Comparison of the maximum degree of BT(r(n), 3), BT(r(n), 2, 1), and of the visibility
graph with ranger(n)

One last set of experiments concerned the estimation of the average diameter of
BT(r(n), 3) and BT(r(n), 2, 1), and of the visibility graph with visibility ranger(n),
wherer(n) is chosen to be an approximation of the minimum value which guarantees
connectivity in all three cases. The results of these experiments are depicted in Figure 3,
once again reporting for eachn the averages over 50 placements. It can be seen that
BT(r(n), 3) has a smaller diameter than BT(r(n), 2, 1), and that it has only a slightly
larger diameter than the one of the visibility graph.

5 Conclusions

The main theoretical contribution of this paper is a proof of connectivity for the Blue-
tooth graph when the visibility ranger(n) is a vanishing function of the numbern of
nodes and each node selects only a logarithmic number of neighbors with respect to
1/r(n). Also, we introduced a novel neighbor selection protocol based on a double
choice mechanism, which ensures connectivity when a total of only three neighbors are
selected by each node. In the paper we also report the results of extensive experiments
which validate the theoretical findings. In fact, the experiments suggest that the best av-
enue for future research is to tighten the analytical result on the connectivity yielded by
the single choice protocol, while the double choice idea (which could be more complex
to implement in practice) seems only needed for the analysis but does not outperform
single choice in practice.
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