
Optimal Many-to-One Routing on the Mesh

with Constant Queues ?

Andrea Pietracaprina a Geppino Pucci a,∗

aDip. di Ingegneria dell’Informazione, Università di Padova, Padova, Italy

Abstract

We present randomized and deterministic algorithms for many-to-one routing on an
n-node two-dimensional mesh under the store-and-forward model of packet routing.
We consider the general instance of many-to-one routing where each node is the
source (resp., destination) of ` (resp., k) packets, for arbitrary values of ` and k. All
our algorithms run in optimal O

(√
`kn

)
time and use queues of only constant size

at each node to store packets in transit. The randomized algorithms, however, are
simpler to implement. Our result closes a gap in the literature, where time-optimal
algorithms using constant-size queues were known only for the special cases ` = 1
and ` = k.
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1 Introduction

Efficient interprocessor communication is one of the crucial characteristics of a
parallel machine. When the machine’s architecture consists of a set of proces-
sor/memory pairs (nodes) connected in a network topology of point-to-point
links, interprocessor communication is typically performed via packet switch-
ing. In packet swicthing, each message originating at a node s is encapsulated
in a packet and is shipped to its intended destination d by letting it travel
along a path from s to d. One of the most thoroughly studied models of packet
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switching is store-and-forward [2], which requires packets to “hop” between
neighboring nodes as indivisible units. When needed, queues are provided at
the nodes for storing packets in transit that compete for transmission over the
same link.

Other popular packet switching models are wormhole routing [1], where a
packet is sent along its path as a contiguous sequence of small fragments
called flits, and each node can buffer only a few flits of a packet; and virtual
cut-through [4], which is similar to wormhole routing, except that the queues
at the nodes are large enough to contain a small number of whole packets,
rather than flits.

In this paper we focus on the store-and-forward model. The performance of a
store-and-forward routing algorithm is stated in terms of two key quantities.
The first is the algorithm’s running time, defined as the maximum delivery
time of a packet to its destination. The second quantity is the maximum queue
size (usually measured in packet units) needed at a node to store packets in
transit. Keeping the queue size small is a compelling practical requirement,
since these queues are usually built in hardware to enable fast access by the
routing circuitry of a node. In particular, routing algorithms working with
constant queue capacity are highly desirable, since such algorithms also guar-
antee the scalability of the parallel machine, which can be made larger without
changing the structure of a single node. Last, but not least, an important by-
product of store-and-forward routing algorithms with constant queue size is
that they are amenable to efficient translation into the more effective but more
stringent wormhole and virtual cut-through models [7,1].

Customarily, a routing instance is usually described in terms of a message set,
containing all the messages to be routed concurrently to their destinations. We
distinguish between unicast message sets, where each message is associated to
a single destination, and multicast message sets, where each message is to
be delivered to several destinations. In this paper we study the most general
routing problem for the case of unicast message sets under the store-and-
forward model, namely, the routing of many-to-one message-sets, where each
node is the source and the destination of several messages. When the maximum
number of messages originating at (resp., destined to) a node is ` (resp., k)
the corresponding many-to-one routing instance is known in the literature as
(`, k)-routing. We will develop randomized and deterministic algorithms for
(`, k)-routing for an n-node square mesh. Such an interconnection has been
widely studied in the literature due to its simplicity, regularity and scalability
[5]. Our algorithms are time-optimal and work with constant queue capacity at
each node, hence optimizing both the performance measures discussed above.

Routing under the store-and-forward model has been intensively studied over
the last two decades. We will not attempt to summarize the entire literature on
this problem here but only quote those results that directly relate to our work,
and refer the interested reader to [2] (and the over 300 references therein) for
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a recent and comprehensive summary of previous work on this topic.

The first result on routing many-to-one message sets on an n-node mesh
are due to Makedon and Symovnis [6], who devised an optimal deterministic

O
(√

kn
)
-time algorithm with constant queues for the special case of (1, k)-

routing, where each node is the source of at most one packet. Subsequently, in
[8], Sibeyn and Kaufmann proved an Ω

(√
`kn

)
lower bound for general (`, k)-

routing (which holds for both randomized and deterministic algorithms) and
obtained the first general, time-optimal deterministic algorithm, which how-
ever requires large queues of size O (k). They also obtained a time-optimal
randomized algorithm with constant queues and a more complex determinis-
tic algorithm with similar performance for the case ` = k. Their deterministic
algorithm, however, works under the assumption that messages can be tem-
porarily swapped out of the queues to be stored within the processors’ internal
memories, at the cost of a time penalty proportional to the length of the packet
to be swapped out.

In this paper, we close the gap left open by the previous literature by de-
vising time-optimal randomized and deterministic algorithms with constant
queues for general (`, k)-routing on the mesh. Both the algorithms implement
a variant of the well-established idea of splitting the original message set into
subsets of lower congestion that can then be routed independently within
smaller submeshes [8]. However, the splitting is rather simple to achieve using
randomization, while it requires a more complex and careful protocol to be
accomplished deterministically.

The rest of the paper is organized as follows. Section 2 provides a detailed
description of the machine and the routing model. Section 3 describes the
randomized algorithm and Section 4 its deterministic counterpart.

2 Preliminaries

As stated in the introduction, an instance of the general many-to-one routing
problem is an (`, k)-routing, that is a unicast message set where each processor
is the source of at most ` messages and the destination of at most k messages.
We make the reasonable assumption that messages departing from the same
node have distinct destinations, which implies `, k ≤ n. Every message is
encapsulated into a distinct packet that consists of a header, containing the
destination address, and a payload, containing the message itself.

Our topology of reference is the n-node mesh, where nodes are connected to
form a

√
n×

√
n square grid. We adopt the following machine model defined

in [8]. Each node is provided with a working queue and an internal queue.
The working queue is used during the routing to maintain packets in transit
through the node, while the internal queue is used exclusively to hold the
packets originating at the node prior to their injection into the network, and
the packets destined to the node after completion of their journey. Hence,
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internal queues cannot be used for buffering purposes during the routing. The
queue size of an algorithm is the capacity required of each working queue, i.e.,
the maximum number of packets that the queue must hold at any fixed time.

The mesh is synchronous and in one step, regarded as a unit of time, a node
can perform one of the following activities:

• execute a constant number of elementary operations on packets held in the
working queues or still residing in the internal queues (i.e., not yet injected);

• transmit/receive one packet along each of its four incident (bidirectional)
links;

• transfer a packet originating at (resp., destined to) the node from the inter-
nal (resp., working) queue to the working (resp., internal) queue.

An easy bandwidth-based argument shows that for every ` and k there exists
an (`, k)-routing problem for which Ω

(√
`kn

)
steps are required to deliver

all packets to their destinations [8]. The objective of the paper is to develop
time-optimal algorithms for (`, k)-routing, using constant queue size.

In the algorithms, we will make use of tessellations of the mesh into square
submeshes of equal size. For convenience, we assume that n is an even power
of two. When the mesh is tessellated into t square submeshes of n/t nodes each
(where t is itself an even power of two 1 ), we will call each such submesh a t-
tile. Furthermore, we number the mesh nodes from 0 to n−1, according to the
natural row-major indexing, and we number the t-tiles from 0 to t−1 according
to a hamiltonian indexing so that t-tile i is adjacent to t-tile (i + 1) mod t,
for every 0 ≤ i < t (observe that such indexing exists since t is even).

3 Randomized algorithm

In this section we present a randomized algorithm for (`, k)-routing on the
mesh which attains optimal performance using constant queue size. Our al-
gorithm builds upon the ideas employed in the (k, k)-routing algorithm de-
veloped by Sibeyn and Kaufmann [8], and extends their result to the general
case of (`, k)-routing with ` 6= k. We assume that at the beginning of the rout-
ing the mesh nodes know the values ` and k. The assumption can be easily
removed, without affecting the performance and the queue size, as follows:
` can be precomputed via a standard prefix operation; as for k, we run the
algorithm for geometrically increasing guesses ki of k, aborting a run (by re-
moving all packets in the working queues) when either the time goes beyond
an allotted number of steps proportional to

√
`kin, or the queue capacity at a

node is exceeded. Clearly, the overall running time is proportional to the time

1 Throughout the paper, tessellations with different values of t are used, where t is
a function of the parameters of the routing instance. In case the resulting value of t
were not an even power of two, the tessellation is obtained by choosing the smallest
even power of two t′ larger than t, i.e., t′ = 4dlog4 te

4



taken by the last run (plus an additive, lower-order term which accounts for
resynching the mesh nodes after each aborted run), which is optimal.

For ease of presentation, we distinguish among the cases ` ≤ k and ` > k.
Interestingly, the strategies in these two cases are somehow one the “mirror
image” of the other.

3.1 (`, k)-routing with ` ≤ k

As in [8] the algorithm exploits an initial random `-coloring of the packets,
and delivers the packets of each color class in a separate stage. However, unlike
the case ` = k, the coloring does not reduce the problem to easily routable
subproblems, and more sophisticated techniques are needed to deal with these
subproblems.

The algorithm performs the following sequence of steps. Define s =
√

nk/`

and note that, since both ` and k are not larger than n, we have k/` ≤ s ≤ n.

(1) Within each node, assign a distinct random color in {1, . . . , `} to each
packet in the internal queue. Use the term j-packet to refer to a packet
of color j.
Comment: Since each node generates at most one j-packet, there are at
most n j-packets overall, for each j ∈ {1, . . . , `}.

(2) For each color j, 1 ≤ j ≤ `, do the following:
(a) Sort the j-packets in lexicographic order (destination s-tile, destina-

tion).
(b) Route the j-packets so that a packet of rank r in the sorted sequence

is sent to the node of index r div (k/`) in the (k/`)-tile of index
r mod (k/`).

(c) Repeat k/` times in each (k/`)-tile:
(i) Route all j-packets with destinations within the (k/`)-tile to

their destination s-tile, so that each node of an s-tile receives
roughly the same number of packets.
Comment: Since s ≥ k/`, s-tiles are contained within (k/`)-
tiles.

(ii) Within each s-tile move the j-packets along a hamiltonian cycle
of the tile’s nodes, thus letting each packet reach its destination.

(iii) Perform a blockwise shift of all unrouted j-packets to bring them
to the same position within the next (k/`)-tile in the hamilto-
nian indexing of the (k/`)-tiles.

The analysis of the algorithm relies on the following lemma.

Lemma 1 The coloring performed in Step 1 guarantees that for every j ∈
{1, . . . , `} the number of j-packets destined to the same s-tile is O ((n/s)(k/`)),
with high probability.
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PROOF. Consider an arbitrary s-tile T and let p(i, j) denote the probability
that node i has a j-packet with destination in T , for 0 ≤ i < n and 1 ≤ j ≤ `.
Clearly, if node i is the source of x ≤ ` packets with destinations within T ,
then p(i, j) = x/`. Since there are at most kn/s packets with destinations in
T overall, we have that

∑n−1
i=0 p(i, j) ≤ (n/s)(k/`). Then, by Chernoff’s bound

[3] we have that, for every ε > 0, the probability that there are more than
(1 + ε)(n/s)(k/`) j-packets with destinations in T is bounded above by

(
e

1 + ε

)(1+ε)(n/s)(k/`)

=
(

e

1 + ε

)(1+ε)
√

nk/`

which, for ε > e−1, is exponentially small in n. The lemma follows by applying
the union bound over all colors and over all s-tiles.

Theorem 2 For any ` ≤ k, the above algorithm performs (`, k)-routing in

optimal O
(√

`kn
)

time using constant queue size, with high probability.

PROOF. Consider the routing of j-packets. Lemma 1 implies that, with high
probability, after the routing performed in Step 2.(b), in each (k/`)-tile there
are O (n/s) j-packets with destination in the same s-tile. Consequently, in
every execution of Step 2.(c).i, every s-tile receives a number of packets pro-
portional to its size. This fact, together with the observation that at most one
j-packet departs from a node, shows that constant queue size at each node
suffices to hold all packets going through a node. Let us now evaluate the
overall running time of the algorithm. Step 1 can be performed in O (`) local
steps at each node. For every color j, Steps 2.(a) and 2.(b) are executed via
standard sorting, prefix and permutation routing that require O (

√
n) time

with constant queues. Finally, each of the k/` iterations of Step 2.(c) entails
the execution of (O (1) , O (1))-routing within (k/`)-tiles (Step 2.(c).i) or be-
tween adjacent (k/`)-tiles (Step 2.(c).iii), and complete tours within s-tiles

(Step 2.(c).ii), which take O
(√

n`/k + n/s
)

= O
(√

n`/k
)

time altogether,
with constant queues. Hence the overall running time is

O

`

√n +
k

`

√
n`

k

 = O
(√

`kn
)
,

which is optimal.

3.2 (`, k)-routing with ` > k

As mentioned before, the algorithm for the case ` > k can somehow be seen as
a backward run of the previous algorithm. However, some slight modifications
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are needed. The algorithm consists of the following sequence of steps. Define

s =
√

n`/k ≥ `/k and s′ =
√

nk/`.

(1) Within each node, assign a random color in {1, . . . , k} to each packet in
the internal queue. Use the term j-packet to refer to a packet of color j.
Comment: More than one packet in a node may be assigned the same
color.

(2) For each color j, 1 ≤ j ≤ k, do the following:
(a) Rank all j-packets so that the ranks assigned to the j-packets origi-

nating from the same s-tile form an interval of consecutive integers.
(b) For 0 ≤ i < `/k do the following within each (`/k)-tile T :

(i) Let T be the (`/k)-tile of index u in the hamiltonian indexing
of the (`/k)-tiles. From each s-tile contained in T , inject all j-
packets whose rank r is such that (u − r) mod (`/k) = i, and
evenly distribute such packets among the nodes of the s-tile.

(ii) Balance all j-packets currently residing in the working queues of
the nodes of T , so that they are evenly distributed among such
queues.

(iii) Perform a blockwise shift of all j-packets to bring them to the
same position within the next (`/k)-tile in the hamiltonian in-
dexing of the (`/k)-tiles.

(c) Route all j-packets to their destination s′-tile so that each node of
an s′-tile receives roughly the same number of packets.

(d) Within each s′-tile move the packets along a hamiltonian cycle of the
nodes of the tile, thus letting each packet reach its destination.

The analysis of the algorithm relies on the following technical lemma.

Lemma 3 The coloring performed in Step 1 guarantees that, with high prob-
ability, for every color j ∈ {1, . . . , k}, every s-tile U , and every s′-tile U ′, the
following properties hold:

• The total number of j-packets is O (n).
• The number of j-packets with sources in U is O ((n/s)(`/k));
• The number of j-packets with destinations in U ′ is O (n/s′).

PROOF. Fix a color j, an s-tile U and an s′-tile U ′. The three properties are
easily shown by applying the Chernoff’s bound, as in Lemma 1, since packets
are colored independently and the claimed values for the number of j-packets,
the number of j-packets with sources in U , and the number of j-packets with
destinations in U ′, are not smaller than the respective averages, which, in
turn, are all Ω (

√
n). The lemma follows by applying the union bound over all

colors, all s-tiles, and all s′-tiles.

We have:

Theorem 4 For any ` > k, the above algorithm performs (`, k)-routing in

optimal O
(√

`kn
)

time using constant queue size, with high probability.
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PROOF. The initial coloring can be performed in O (`) local computation
steps at each node. Consider now the routing of j-packets. Step 2.(a) is eas-
ily executed in O (

√
n) time with constant queue size using standard primi-

tives. Next, we observe that at the end of Step 2.(b) the working queues of
the nodes in the (`/k)-tile T of index u contain all those j-packets that, in
Step 2.(a), have been assigned a rank r such that r mod (`/k) = u. More-
over, such packets are evenly distributed among these queues. Hence, by the
first property stated in Lemma 3, each such queue contains O (1) packets.
Also, the second property stated in the lemma and the ranking ensure that
in each iteration of Step 2.(b) O (n/s) j-packets are injected from each s-tile.
These packets can be injected in O (n/s) time with constant queues by con-
sidering the s-tile as a ring of n/s nodes and applying the greedy balancing
algorithm for the ring topology [5]. Therefore, Step 2.(b) can be executed in

time O
(
(`/k)(n/s +

√
nk/`)

)
= O

(√
n`/k

)
using standard primitives, and

requires only constant queue size. The third property stated in Lemma 3
implies that constant queue size is also sufficient for Steps 2.(c) and 2.(d).
Step 2.(c) requires prefix, sorting and (O (1) , O (1))-routing in the whole mesh,

thus taking O (
√

n) time, while Step 2.(d) takes time O (n/s′) = O
(√

n`/k
)
.

Therefore, the entire algorithm runs in time

O
(
` + k

√
n`/k

)
= O

(√
`kn

)
,

which is optimal, and requires only constant queue size.

4 Deterministic algorithm

Note that in the algorithms presented in the previous section randomization
is employed exclusively to assign colors to the packets, so to partition them
into subsets characterized by lower congestion at source or destination tiles of
suitable size. Therefore, in order to obtain a deterministic algorithm we must
adopt a (more sophisticated) coloring strategy that provides similar guarantees
in the worst case. The required modifications to the algorithms are described
below.

Let us first consider the case ` ≤ k. The coloring performed in Step 1 of
the randomized algorithm for this case can be substituted with the following

computation. Let s =
√

nk/`.

(1) In parallel for each s-tile T , rank the packets destined to T with con-
secutive integers ensuring that packets whose sources are in consecutive
nodes of the mesh receive consecutive ranks. Assign color j to every packet
whose rank r is such that r mod ` = j, with 0 ≤ j < `. Call j-packets
the packets of color j.
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It is easy to see that, for every j, there are O ((n/s)(k/`)) j-packets with
destination in the same s-tile, and there are O (s) j-packets originating at the
nodes of any stripe of ds/

√
ne rows of the mesh. However, the coloring does

not guarantee that a node has only O (1) j-packets. Therefore, the sorting step
(Step 2.(a)) of the randomized algorithm must be modified as follows.

2.(a).i Evenly distribute the j-packets within each stripe of ds/
√

ne consec-
utive rows.
2.(a).ii Sort the j-packets in lexicographic order (destination s-tile, desti-
nation).

The rest of the algorithm is identical to the randomized one.

Theorem 5 For any ` ≤ k, (`, k)-routing can be performed in optimal O
(√

`kn
)

time in the worst case using constant queue size.

PROOF. The deterministic coloring performed in Step 1 can be accom-
plished by a pipelined execution of s prefix computations on the mesh, where
each prefix ranks the packets destined to a distinct s-tile. Assume for now that
each node maintains s local variables, one for each prefix. For 0 ≤ j <

√
n

and 0 ≤ i < s, in row j the i-th prefix starts skewed at time i + j + 1 at the
first node of the row, which initializes a counter with the number of packets
locally held and destined to the s-tile of index i. Then, the counter is sent
eastwards along the row. When the counter reaches a node it is first stored
in the appropriate local variable, then incremented by the number of local
packets destined to s-tile i, and finally sent eastwards. The last node in each
row j > 0 receives a counter from the northern link, sends it westwards, adds
it to the counter of its row and dispatches it southwards. While the counters
move westwards along the rows, the local variables are updated to hold the
final prefix values.

The last prefix will terminate after O (s +
√

n) time and there will never be
more than two counters in each working queue of a mesh node. Moreover,
rather than having s local variables in each node to store the values of the s
prefixes, in O(` log `) time we can set up a data structure whose size does not
exceed the aggregate size of the headers of the packets originating at the node,
which stores the relevant rank values determined by the prefix computation.
Thus, the time required by Step 1 is O (` log ` + s +

√
n) = O (s) with constant

queue size.

Finally, the distribution performed in Step 2.(a).i can be regarded as a bal-
ancing of O (s) packets in a ring of O (s) nodes, hence it can be accomplished
in O (s) time using standard techniques [5].

The analysis of the rest of the algorithm is identical to the one of the random-
ized algorithm, and the theorem follows.

Consider now the case ` > k. We modify the randomized algorithm for this
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case by substituting the coloring performed in Step 1 with the following com-

putation. Let s =
√

n`/k ≥ `/k and s′ =
√

nk/`.

(1) In parallel for each s′-tile T , rank the packets destined to T with consec-
utive integers ensuring that packets whose sources are in the same s-tile
receive consecutive ranks. Assign color j to every packet whose rank r is
such that r mod k = j, with 0 ≤ j < k. Call j-packets the packets of
color j.

It is easy the see that the above coloring guarantees that the three properties
stated in Lemma 3 hold in the worst case. The coloring can be performed in
time O (s′ +

√
n) = O (

√
n) by using techniques akin to those described in the

proof of Theorem 5. We have:

Theorem 6 For any ` > k, (`, k)-routing can be performed in optimal O
(√

`kn
)

time in the worst case using constant queue size.
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