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Abstract— This paper investigates touching as a natural way element of interactions between humans and preschoolers [9
for humans to communicate with robots. In particular we At older ages, touch is frequently used in the teaching of
developed a system to edit motions of a small humanoid roboth - g5qt5 or dance [10], for instance by instructors correctin
touching its body parts. This interface has two purposes: illows learner’s posture or motion. Touch is particularly appegks
the user to develop robot motions in a very intuitive way, andit e )
allows us to collect data useful for studying the charactestics an intuitive method for humans to teach robots, and has been
of touching as a means of communication. Experimental restd employed to program robot arms, for example, by Voyles and
confirm the interface’s ease of use for inexpert users, and atysis  Khosla in [3] and, more recently, by Grunwal, Schreiber,uAlb
of the data collected dyring human-robot teaching episodebas Schaffer and Hirzinger in [4].
yielded several useful insights. In this paper, we investigate the effectiveness of touchimg
a mechanism for transferring knowledge about the body from
a human to a small humanoid robot. Small humanoid robots

In order for robots to become truly integrated into everydayre quite popular and are becoming increasingly available
life, it will be necessary for humans to be able to interaett relatively low cost. However teaching a new motion to a
with them in a natural and intuitive way. This considerationumanoid robot is currently a time consuming task, because
has recently lead to many different studies in human-robie standard method is through the use of motion editors
interaction with the aim of finding natural ways by whichwhich require the user to set the position of each joint irheac
humans can communicate with robots (e.g., [1]-[4]). “keyframe” (as illustrated in [11]). Although other technies,

Abstractly, we regard communication as a process by whiehich as motion capture and retargetting [12], can be emg)Joye
a sender encodes a concept into a format suitable for tratteese methods are still somewhat cumbersome, and regaire th
mission though a medium, and sends this information tohaiman teacher to learn specialized techniques.
receiver, who then reconstructs (or decodes) it. We camlelivi Our goal is to create a method by which humans can
human-to-human communication roughly into verbal (whentuitively instruct a robot without any special training/e
concepts are encoded in the form of words) or non-verhiflerefore have developed a method for humans to teach robot
(see for instance [5]). Non-verbal communication can then Inotions through an “observe and correct” cycle, similar to a
broken down further according to the transmission chanri@iman dance or sports instruction. In each teaching episode
used, such as communication via vision, smell (a study ¢ime human teacher watches the robot perform a motion,
this communication medium is provided by [6]), or touchobserves what is wrong or could be improved, and touches
There are a great variety of studies dealing with charatiesi the robot's body parts to instruct the robot how to modify the
of visual communication, for example recognition of humamotion. For example, the teacher could watch a kicking nmotio
gestures [2], analysis of how a robot’s aspect affects humamd notice that the right leg should rise higher in a specific
robot interaction [7], and knowledge transfer through &lsumoment. S/he can then touch the leg from the back and push
task recognition, as is in Kuniyoshi and Inoue’s [8] work it upward to express how the motion should be modified. The
which a robot observes humans performing a task and reobot then repeats the behavior with the modifications, and
ognizes various actions, from which it constructs a higlele the cycle can be repeated several times until the movement is
abstract plan. However touch as a communication medium tsasgisfactory to the teacher.
received considerably less attention. The teacher’s touching actions are a method of encoding

Touch is an important method of communication employeahd transmitting their internal image of what the robot poest
by humans, particularly in teaching. Even at the earliessagshould be. To make communication successful, the robot must
touching behaviors have been found to be a very importahen interpret the meaning of these touches in terms of ejus
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body postures. However for the robot, this reconstructigaint position and add this example of context, touch, joint
process is not a trivial task. Not only can differenttouchage adjustments into the database of examples used by the k-
the same meaning — for instance, touching several differéi algorithm, thereby improving the future ability to infer
parts of the arm could all mean that the arm should motee touch intentions. This approach is similar to the critic
backwards — but similar touches could have different megminmethod of [13], however their system required a fixed initial
depending on the context. For example if the robot is standirdatabase of context, touch, and action examples, and the
touching the upper part of one leg could mean that that theman critiques simply adjusted the relative weightings of
leg should bend further backwards. However if the robot these examples in their 1-NN inference engine.
squatting, the same touch could mean that the robot shouldhroughout the text, we use capital Roman letters to
move lower to the ground by bending its knees. represent random variables, and lowercase Roman letters to
Rather than force the human user to learn an externalpresent specific values taken by those variables. Lehtouc
defined teaching protocol (determined by a programmer bagetbrmation be represented by a vectbr= (T4, ..., Ty, ),
on e.g., inverse kinematics) we instead take the approaghere the value of each element represents the duration that
that the mapping can be constructed online from exampleach of thenr tactile sensors distributed over the robot’s
provided by the user. While observing the robot perform & regurface were pushed. We encode context with the following
task, the user chooses key moments to provide instruction.random variables. Let:
these moments, the human touches parts of the robot, and the posture vector® = (P4, ..., P,,.) be the angles formed
robot responds by moving its joints according to the learned by each of theup joints,
mapping. If the robot’s responses to touches are incortt@et, « orientation vectorO = (O, 02, 03) be roll, pitch and
human can manually adjust its joints to teach the intended yaw, respectively,
meaning using a separate interface (shown in Fig. 4). Thetrob « velocity vectorV = (V;, V5, V3) be the velocity at the
then uses this as an example in which to update its internal center of gravity.
mapping from touch to joint angle changes. As instructioR is needed because the meaning of touches may depend on
progresses, the learned mapping continues to be refineld uthié posture, as in the previous example in which touching
ultimately the human only needs to touch the robot and thige lap means different things depending on if the robot is
robot properly adjusts its body. standing or squatting. Likewise, the meaning of touches may
In the remainder of this paper, we describe our interfaggso depend oD, for instance whether the robot is standing
and learning techniques in detail, and discuss how useislaying down. Finally, touches may also depend on the
can use this method to easily teach specific actions. MWelocity vectorV/, especially if the robot is experiencing strong
then perform analysis of the data collected during the touelscelerations, for example if it is falling down. It is pdssi
teaching interactions, to help improve our understandifg that the velocity of each single limb should also be included
how humans communicate via touch. We show that a simglewever for the moment we felt this was excessive, and will
linear model for mapping touch to joint angle changes cannait off investigating this and other features for future kvor
capture the dependence of touching behavior on contextTo simplify notation, letX = (T, P,O, V) be the concate-
We then use a tree-based feature selection method to getasion of touchT’, postureP, orientationO, and velocityV'.
sense of what variables are most important in explaining thet M = (M, ..., M,,,,) be a vector of desired changes in
changing meaning of human touch. Our discovery was théke nj, joint angles (i.e., motor commands). Then our goal
the most important variables to consider for context seemitto learn a policy function® : X — M, which maps an
be the positions of those joints which determine the overafiput vectorz to a set of joint angle changes. Currently,
orientation of each of the limbs. We finally conclude with ave use a variation of the k-nearest neighbors algorithmewhi
discussion of future work and suggest a possible way to éarthdespite its simplicity, performs very well in many applicais
formalize the interaction between context, intentionctowand  (e.g., [13], [14]). Aside from simplicity, an important &z
robot body posture. we chose this algorithm was the ease with which additional
training data can be incorporated.
Formally, let the tuple(zf,m?) represent theith train-
The purpose of the interface is to let the user play a motiamy example provided by the human, and & =
and modify it through touching, and provide informatior{(x!,m'), (2, m?),..., (2", m"s)) be a set ofng training
about the intended meaning of touches if needed. During tbeamples. Sometimes we need to refer to specific elements
development of a motion, the user pushes the robot's bodfyvariables, so let’ represent the value of elemenbf the
parts, and the robot tries to predict the intended joint @nglouch sensors in théth training example, and similarly for
changes based on previous examples of context, touches timedother variables. Then, given a new inpgit the system’s
joint modifications. Inference of intended joint changee tlu outputm’ can be computed by a weighted sum of the joint
touches is done using a k-nearest neighbor (k-NN) algorithmodifications inH, i.e.,
on a database containing previous examples of contexthtouc ns o
and pose changes. If the human believes the robot does rn’::jz:g(xﬂaﬁ)nf (1)
not yet have a good mapping, the user can directly set the i=1
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Input N —— some tests. This makes it possible to calculate and display
toven informaon [ 7 ' ' M ' ' ! the predicted joint modifications in real-time, providingeful
visual feedback to the user while they are touching the &irtu

=0 | Consider

Sensors.
cxamples - 1 Z1enT - Another problem with this scheme is that, due to the sym-
[CO [T A [REFO] WEro] - [REm] Piseard metry of the distance function, it is not possible to distiisiy
= = = = = oiscars  Whether a current input sensor has been pushed for a longer
(green=pushed sensor white=not pushed sensor) or shorter time than the nearby prototypes in the trainirig se

This can lead to unintuitive behavior regarding the refsltp
between the duration of a touch and the magnitude of joint
angle changes. As a simplistic example, suppose a particula
sensor was active in only one training example, and it was
where the weight functiog(2’, «*) is based on the euclideanpushed for 300 milliseconds, and this corresponded to desing
distance between test point and training pointz®. motor joint change of 40 degrees. While a user might naturall
expect that pushing for less time will cause a smaller change
in that joint, while a longer press should produce a largitjo

We want the weighting function to output relatively larger angle change, the result with the current scheme would ke tha
values when the two inputs are close to each other, aady touch on that sensor with a duration different from 300ms
relatively smaller values when the inputs are far away fromould result in a smaller angle change. Fig. 2 illustratés th
each other. A simple choice for this function that has thgroblem.

Fig. 1. Examples of considered ad discarded examples agptlye described
rule.

A. Weighting schema

desired properties is To overcome this counterintuitive behavior, we compute two
_ 1 factors,a; and 3;, and then redefing as
9@’ 2") = ——— ) . :
1+ [l 27 g@’ 2y =iy [] (1-0(t) 4)
where||-, -|| is euclidean distance. Since the units of the various {s:t(=0}

input vector components are heterogeneous, it is importgtere

that each input vector component be normalized. This can be 4

done by first dividing each element by its standard deviation a; = H t—f %)
in the example set, which is the same as replacing the {s:ti>0} ®

distance function with a Mahalanobis distance using a diafjo ;s 5 value which increases linearly as the pushing time in-

covariance matrix.. _ _ ___ creases; the result is that increasing the pushing time ef on
Unfortunately, this technique does not give any “priority” sensor will only increase the weight of the examples in which

more important elements — for instance, the touch inforomati i, 4t sensor was pushed, and it will not have an effect on the

does not get any more importance than the context featur\%-ights of other examples. The second fagtpaccounts for

This means that points with a very similar context (&%ne context information, as well as for the touch sensorsmwhi
similar posture) may dominate the determination of the BLP 56 active in the input but are not active in tih example.
irrespective of the touching pattern. This is exacerbatethb 1his is defined as

relatively high dimension of the input space and the limited 1

number of example points. This can lead to very unintuitive Bi = (6)

behaviors, for instance if a user is focusing on a leg motion '

and therefore only provides examples involving a leg, thamhere

pushing on an arm will cause the leg to move, a surprising; _

behavior indeed! ’
To solve this problem, we modify(z’, z*) to be zero if Z 2+ |p = P2+ [0 — o2 + |lv" — vi||2 (7)

the set of activated (i.e., nonzero) touch sensor is not a {s:ti=0}

subset of the active touch sensorstini.e. g(z/, 2%) = 0 if

Essentially,d; is a euclidean distance between and z,
H (1-4(th)) =0, (3) except ignoring the touch sensors which are nonzera’in
{s:t, =0} (since they are used alreadyadr). The specific choice of the
form of 5 is admittedly arbitrary, and in future work we will

where the threshold functio(u) = 1 if v > 0 and 0 investigate other types of weighting functions.

otherwise. Some examples are provided by Fig. 1.
With this modification, most of the counterintuitive behav- I1l. EXPERIMENT
iors are avoided, although it can make the mapping less gener 4. qur experiments, we used a VStbndsiON 4G, a

and it introduces some discontinuities when the set of ptess,; manoid robot with 22 degrees of freedom. Fig. 3(a) shows a
sensors varies. On the flip side, this modification yields a

significant speed-up of the system — as much2@@% in Lhitp://www.vstone.co.jp



Joint modification INTUITIVELY EXPECTED Input:500ms Joint modification DISTANCE BASED
(output) Output:turn 60° (output)
Input:400ms O
Acquired example Output:turn 50° Acquired example
Input:push 300ms O Input:push 300ms
Qutput:turn 40° Input:200ms Output:turn 40° Input:400ms
Input:200ms O Distance: 100 O Distance: 100
Output:turn 20° Input:100ms Output: turn 20° Output:turn 20° Input:500ms
Input:100ms Distance: 200 Distance: 200
Output:turn 10° O Output:turn 10° O O Output:turn 10°
> 3
pushing time (input) pushing time (input)

Fig. 2. Expected behavior versus the behavior obtainedngctie output by a decreasing function of the distance

ig] Rendering =

@ (b) ©

Fig. 3. (a) A photo of the VStone VisiON 4G humanoid robot, g3¥chematic of its joints, and (c) the 3D rendered model, altee left upper arm and
forearm have just been pushed. The 3D model display alsossttmsvprojection of the center of gravity onto the ground ri@gepnted by an orange sphere)
and its velocity (a blue arrow) which can be useful to expegrs in motion development.

photo of the robot, and a diagram depicting the configuration  position of the robot body is recorded with a real-time-

of the joints is given in Fig. 3(b). motion capture system. The use of motion capture on
It is impractical to use touch sensors directly on the rabot’  the real robot helps prevent any simulator-reality gap.

body for several reasons. This robot, and others like it, are2) A computer interface allows to the human to watch

typically quite small (often under 50cm/20inches tall),dan a virtual 3D reconstruction of the recorded motion

use servomotors with an internal PID controller. With such  performed by the robot. The human can pause, rewind,
devices, it is not possible to the detect the force applied by —and step through frames at their leisure.

the user as might be done in e.g., larger pneumatic-actuato) The user chooses an instant where the posture of the
robots, in which it is possible to measure the error betwhen t robot should be modified, and playback is frozen at that
target position and the actual position of the actuator$])[1 point.

The small size of these humanoids also makes it difficult to4) The human touches the robot model's body parts on a
place and wire touch sensors over the entire body. Another touch screen to modify the robot’s posture.

difficulty with attempting to directly use touch for teachin
these small robots is that the robot motions are often qu
fast, so real-time interaction might be impossible for a ham

Currently we use a touch screen but other devices, such as
Iaﬁehaptic joystick, or simply a mouse, could also be used.
L T i o . When the posture in one moment is modified, it becomes a
(espeually if the robot is flying through the air as in a jungpi new keyframe, and the motion in the surrounding frames are
motion). ) then altered via interpolation. In the current implementat

To overcome these issues, we developed a system whichinple finear interpolation is used, but the software has
comblnes_ the _real-world robpt actions with a virtual touchyeen designed to easily permit the use of more sophisticated
screen driven interface. In this system: interpolations, for instance the method used by [16].

1) A motion is performed by the physical robot, and the While the robot is performing a motion, the joint positions



EIDE'. i ol [

CMagemet IV. DATA ANALYSIS
[J/Add mode [c1 - | fimpoints.txt [~ |[ oven || opensaaa |[ save || Receoim |

Joint Modification
0o
0o
OoOo
OoOo
(mim)
(mim)
(miml
(miml
(mimi]
(mimi]
OOo

utilities

[l Global enable | Acaos | [Listen | savema || orfser | [ o | [1Fnshw

We performed two kinds of analysis, both of them aimed
mainly at understanding the role of context. First, we wdnte
to see if the mapping from touch to change in joint angles
could be learned simply with linear regression. This is ukef
both as a baseline to compare with other methods, and to
help develop some intuitions about what makes the problem
difficult, for instance understanding what kinds of touches
change their meaning due to context. The second analysis was
a clustering / feature-selection analysis, in which wedttie
understand which pose, orientation, and velocity varmble

S T Lo e o BT em R e most closely associated with changing touch behaviors.
? For the first analysis, using the definitions of the random

fmotone [ [ swve_ | [_tona_| st [ = [ toad_|[_nem_| variables from Section Il (organized as row vectors), let

M= XA +e¢, (8)

0o
0o
0o
0o
ado
ado
Odoe
Odoe
Oge
Oge
OOoe

jalelaialalaieiaialaig]
lafalargfalaialeialala]

Fig. 4. A snapshot of the commands window of the developesifate
be a linear model of input to output, where is a matrix
whose number of rows is the same as the number of elements
. . . . f X and number of columns is the number of joint anglgs,
are acquired using the potentiometers present in each of ﬂ?‘%e represents Gaussian noise with zero mean and spherical

servomotorg, while the 0vera||l orientation of the robot 'Bovariance. Given a set of training data, organized intoima
captured using a Motion Analysis Corp. capture systefhe inputs X and outputsM, the matrix A_minimizing the

. . ) f
on-screen playback (implemented using Java 3D) displays @huared error can be found by ridge regression [17], i.e.
robot’s limbs as parallelepipeds with size and joint posisi T

proportional to the limb size and joint positions of the real A= (X™X + o)1 X™™M 9)
hardware. Each parallelepiped’s face simulates a touctosen o )
Because the touch screen currently only tracks a single;,pojffhere the T superscript indicates the transpose operation,
and discards pressure information, the user is allowed igpthe identity matrix, andv is a small number which can
touch various parts of the 3D-model in one keyframe, arfe mte_rpreteql as an estimate o_f the standard o_le\_/|at|oneof th
the duration of each touch is considered to be the pushiffigussian noise. The value of is chosen heuristically, by
intensity. As the user touches the robot, the parts beinggris manually finding a value that gives low cross validation erro

become more and more red (see Fig. 3 c), so the user kndi{g fixeda = 0.1 for all experiments, then found using the
what input the robot is receiving. entire training dataset for each experiment.

Looking at the magnitudes of the entries A& provides
insight into the importance of each of the input featured|avh
sign helps us to understand which features producessimil
cts and which produce opposite effects. Fig. 6 gives a
isual representation oA superimposed on the model of the
ot. In this figure, the touch sensors of the robot are edlor

If the system fails to predict the desired modification, vbhic
can be immediately seen by the robot’s response, the user
manually correct the robot’s joints. To do so, the interfacgﬁe
allows the human to independently switch off any of th
motors, and the human can then move the the limbs of t

physical robot into the desired position. To fine tune thgccording to their corresponding row i for two different
various angles, the interface provides one slider for e&tieo ioints (each corresponding to a different columnAr. For
servomotors, as shown in fig. 4. The system can then acq gg‘ample in Figs. 6c and 6d, corresponding to joint 7, each fac

:he LObOtdS _ng\/tv Jo'r;ts ﬁngles, and then tstqrgs the CoTte?ét’coIored green if the corresponding entry in column 7Aof
ouch, and joint angle changes as a new traning example.;q positive, and red if it is negative, while the color intiéps

We used the interface to teach two motions: jumping (witkepresents the magnitude of the value. In general the values
the help of a rubber band pulling the robot up since the sersllow intuition fairly well — for instance, for determinmthe
torque is not sufficient for liftoff) and walking. Let the set arm orientation changes, the sensors with high coefficiamts
examples collected during these teaching episodes beeaten@hainly the ones on the arm.
by JUMP andW ALK, respectively. Fig. 5 shows an image |n Table I, we show the prediction error when the matrix
sequence of the learned jumping motion, which was taugBhrned from one of the training sets (or from the combined
in just seventeen minutes. Teaching the same motion usingaaset), is tested for its ability to predict itself, theneat
traditional motion editor took more than forty minutes. dataset, or the combined dataset. Each entry shows thegavera

euclidean distance. For comparison, we compute the same
values for the k-NN algorithm described in Section II. We
2f0r details see  http://wm notionanal ysis. coni Can see that although the linear regression model is som&tim
appl i cati ons/ novenent / neur o/ eagl esyst em ht ni able to make very accurate predictions, at other times|g fai



Fig. 5. An image sequence of the developed jumping motion

@)

(b)

(© (d)

Fig. 6. The importance of each of the sensors in determirtiegvarriation of the head orientation ((a) and (b), joint 1 gf B(b)) and the variation of
the elbow joint angle((c) and (d), joint 7 of fig. 3). The varsosensors are coloured red or green depending on the sifpe oélative coefficient, while its
absolute value is represented by the intensity of colourelow sphere highlights the position of the joint which dege on the coefficients used to colour

the sensors.

AVERAGE RMSD ERROR BY LINEAR REGRESSION AND KNN

TABLE |

Training dataset| Test dataset| Lin. Regr. | k-NN
JUMP JUMP 0.2846 0.1985
JUMP WALK 13.7177 | 0.5938
JUMP COMBINED 2.0567 1.0198
WALK JUMP 0.0314 0.0588
WALK WALK 0.3522 0.2028
WALK COMBINED 0.3626 0.2223

COMBINED JUMP 0.3219 0.1425
COMBINED WALK 3.7272 0.3006
COMBINED COMBINED 1.5462 0.7778

A. Context feature selection

We hypothesize that the reason the nonlinear technique
works better than the linear regression model is because
the human produces touches differently based on the robot
context variables. We illustrate this idea in Fig. 7. In this
model, the human has an internal belief about how joints
should be modified in order to improve the task performance.
Meanwhile, the human also evaluates some features of the
context to determine how to best communicate this desire to
the robot. The pattern of touches is thus jointly determibgd
the desired changes and the current robot context. When the
human simultaneously touches and directly manipulates the
robot joints, we can observe all of the nodes in the lower part
of the graph — the context, the touches, and the intended join
angle changes — while the human'’s intention and percepfion o
the context remain hidden. However, when the human is not
providing direct joint manipulation, the correspondingdeo

badly. Meanwhile, our k-NN algorithm performs consistgntlbecomes hidden, and the goal of the robot is to infer the galue
well, even when predicting the touch mapping for differerdt that node from the observed touch and context data.

action sequences.

Because we believe the touching behavior is jointly deter-



TABLE Il
LEVELS IN THE DECISION TREE OF THE FEATURES

perceived intended joint
context modification

e TN Foatrs Dalaset| jyMp | WALK | COMBINED
joint 1 2 2
‘modification directly joint 2 17,21,22 9 19,23
communicated —
joint 3 3 3 3
joint 4 511
Fig. 7. A schema resuming the various concepts. joint 6 2
joint 7 20 22
. . .. . joint 8 5,8,19 5,10
mined by the desired joint changes and the inferred context, joint 9 1 3 1
we wanted to see if it is possible to determine a few context ot 11 0
variables that can predict when the touching behavior will ot 12 o 1 o
change - i.e., when the mapping from touches to joint angle oint 14 B
changes becomes non-linear. To do this, we used a tree-based ot 15 28.10
technique, using Quinlan’s C4.5 algorithm [18]. The most ot 16 5 Y Z
telling indicator of contextual influence is when the same heading 0:2

touch causes a joint to be adjusted in a different direction.

; i ieArimi inLevels at which the various features appear constructiegthtee with each
Therefore, we created a S|mpl|f|ed problem of dlscr|m|rg1t|n'5f the three matrices as training data. Only the featureshwappear at least

direction of joint angle change given touch and context. FQf one of the trees had been reported inthe table. The jointbeus are the
each training example® we create a target variablg = ones reported in fig. 3(b). The entry “heading”, is part of tieading, attitude

(qzl' qi ) based Orpi (the pose component sz) where and bank triple used to define the orientation.
vy Unp )
each element is set te-1 if the corresponding element in

p® is larger than some threshold —1 if it is smaller than ) ) _
—r, and 0 otherwise. In practice we setto a value of 5 the robot. The interface we have developed is readily usable

degrees. Note that although in principle this could resalt & inexpert users, and allows people to teach robots new
many unique target values as training points, in practice Bghaviors much more quickly than through more traditional
the 238 collected examples, there were only 97 unique valuggtion editors. We have hypothesized that one reason & linea
of g. We then ran the Q4.5 algorithm, with pruning, on eacmodel is not sufficient to learn the mapping from context and
of the datasets (JUMP, WALK, and the combination), whicipuch to changes in joint angles is because context and touch
tries to predict the direction of joint angle chang@sfrom interact in a nonlinear way. We applied the C4.5 algorithm as
the touch and context variables. We then examined where@ first step for gaining insights about which features of the
each context variable appeared in the trees, to see if anypgb/sical world are related to how humans express their inten
these consistently appeared high in the tree (suggestig tHOns through touching. This can be interpreted as attergpti
have a great influence in determining the direction of chang& learn the mapping from the physical context to the peezeiv
Table Il shows the level at which the various context featur€0ntext, using the touch and joint angle information to tinfe
appear (notice that one feature can appear multiple timéie different categories of perceived context.
along different paths of the tree). Our k-NN algorithm does not directly represent the context,
The most interesting observation from Table Il is that fdiouch, and human intention as separate variables. However i
all data sets, the position of the joints near the trunk of tfi& possible that we could divide the context into a few basic
body, which determine the global position of the limbs, areategories (e.g., squatting, standing, etc.), perhapsyubie
used as a discriminating attribute in high (near the roogle features discovered from our tree-based analysis, and then
of the three. Although we did not predict this beforehani thlearn a separate KNN model, or perhaps even a linear model,
makes intuitive sense, suggesting that the meaning of treato for each context category. In future work, we intend to model
depends primarily on the overall positions of the limbs.  €ach of the nodes shown in Fig. 7 as either discrete or Gaussia
Also somewhat surprising from this analysis is the fact th&r mixtures of Gaussian) random variables, and use more
the robot orientation and velocity do not appear very high #Pphisticated Bayesian techniques to infer their paramsete
any of the trees. We hypothesize that this might not be té/en training data. In this way we can jointly learn the set o
case were we teaching more dynamical motions, and soC@ntext categories, the variables that are needed to ihter t

future work we will investigate this hypothesis more deeplycontext, and the mapping from touch to joint modifications
given context.

V. CONCLUSION AND FUTURE WORK An important future goal for this work is to apply similar
We have developed an interface for teaching robots througtethodologies to bigger robots with more sensors and actua-
touching, which allows the user to continuously refine thers. In such a scenario, the virtualization of the touchseen
meaning of their touches by directly manipulating the linobs will not be necessary, except perhaps for actions that are to



fast for the human to manipulate in real-time. This amplifiegs] J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. AcHb Becket,
the advantage of our approach, since complex robots with
many sensors and actuators are even more difficult to program
using traditional motion editors. Moreover, the use of reals]
sensors may make it possible to discriminate between diiter
kinds of the touch, for example differentiating betweengon 7]
soft touching patterns and short, which can increase thgeran
of possible human instructions. From a technical standpoin
we have written our code with portability in mind, in order to (8]
make migration to new platforms such as human-size androids
relatively painless.
As we continue to improve this interface, we will be able tojg
perform further studies in the analysis of touching as an-int
itive way for users to interact with robots. We are particiyla
interested in further investigating the importance of asi
context features, and how they influence the intended messag

conveyed through touching communication. Importantly, w; X

believe it will be important to extend the context to includ
timing related features, such us the elapsed time between th
maximum/null robot’s acceleration and the pushing time. Wez;
expect further development of this system to yield inténgst
new insights into the human touching behavior, as well as a

(10]

more effective method for teaching robots. [13]
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