
Teaching by touching:
an intuitive method for development of humanoid

robot motions
Fabio Dalla Libera∗, Takashi Minato†, Ian Fasel†, Hiroshi Ishiguro†‡, Emanuele Menegatti∗ and Enrico Pagello∗

∗ Intelligent Autonomous Systems Laboratory, Department ofInformation Engineering (DEI),
Faculty of Engineering, University of Padua, Via Gradenigo6/a, I-35131 Padova, Italy

† ERATO, Japan Science and Technology Agency,
Osaka University, Suita, Osaka, 565-0871, Japan

‡ Department of Adaptive Machine Systems, Osaka University,Suita, Osaka, 565-0871 Japan

Abstract— This paper investigates touching as a natural way
for humans to communicate with robots. In particular we
developed a system to edit motions of a small humanoid robot by
touching its body parts. This interface has two purposes: itallows
the user to develop robot motions in a very intuitive way, andit
allows us to collect data useful for studying the characteristics
of touching as a means of communication. Experimental results
confirm the interface’s ease of use for inexpert users, and analysis
of the data collected during human-robot teaching episodeshas
yielded several useful insights.

I. I NTRODUCTION

In order for robots to become truly integrated into everyday
life, it will be necessary for humans to be able to interact
with them in a natural and intuitive way. This consideration
has recently lead to many different studies in human-robot
interaction with the aim of finding natural ways by which
humans can communicate with robots (e.g., [1]–[4]).

Abstractly, we regard communication as a process by which
a sender encodes a concept into a format suitable for trans-
mission though a medium, and sends this information to a
receiver, who then reconstructs (or decodes) it. We can divide
human-to-human communication roughly into verbal (when
concepts are encoded in the form of words) or non-verbal
(see for instance [5]). Non-verbal communication can then be
broken down further according to the transmission channel
used, such as communication via vision, smell (a study on
this communication medium is provided by [6]), or touch.
There are a great variety of studies dealing with characteristics
of visual communication, for example recognition of human
gestures [2], analysis of how a robot’s aspect affects human-
robot interaction [7], and knowledge transfer through visual
task recognition, as is in Kuniyoshi and Inoue’s [8] work in
which a robot observes humans performing a task and rec-
ognizes various actions, from which it constructs a high-level,
abstract plan. However touch as a communication medium has
received considerably less attention.

Touch is an important method of communication employed
by humans, particularly in teaching. Even at the earliest ages,
touching behaviors have been found to be a very important

element of interactions between humans and preschoolers [9].
At older ages, touch is frequently used in the teaching of
sports or dance [10], for instance by instructors correcting a
learner’s posture or motion. Touch is particularly appealing as
an intuitive method for humans to teach robots, and has been
employed to program robot arms, for example, by Voyles and
Khosla in [3] and, more recently, by Grunwal, Schreiber, Albu-
Schäffer and Hirzinger in [4].

In this paper, we investigate the effectiveness of touchingas
a mechanism for transferring knowledge about the body from
a human to a small humanoid robot. Small humanoid robots
are quite popular and are becoming increasingly available
at relatively low cost. However teaching a new motion to a
humanoid robot is currently a time consuming task, because
the standard method is through the use of motion editors
which require the user to set the position of each joint in each
“keyframe” (as illustrated in [11]). Although other techniques,
such as motion capture and retargetting [12], can be employed,
these methods are still somewhat cumbersome, and require the
human teacher to learn specialized techniques.

Our goal is to create a method by which humans can
intuitively instruct a robot without any special training.We
therefore have developed a method for humans to teach robot
motions through an “observe and correct” cycle, similar to a
human dance or sports instruction. In each teaching episode,
the human teacher watches the robot perform a motion,
observes what is wrong or could be improved, and touches
the robot’s body parts to instruct the robot how to modify the
motion. For example, the teacher could watch a kicking motion
and notice that the right leg should rise higher in a specific
moment. S/he can then touch the leg from the back and push
it upward to express how the motion should be modified. The
robot then repeats the behavior with the modifications, and
the cycle can be repeated several times until the movement is
satisfactory to the teacher.

The teacher’s touching actions are a method of encoding
and transmitting their internal image of what the robot postures
should be. To make communication successful, the robot must
then interpret the meaning of these touches in terms of adjusted

body postures. However for the robot, this reconstruction
process is not a trivial task. Not only can different toucheshave
the same meaning – for instance, touching several different
parts of the arm could all mean that the arm should move
backwards – but similar touches could have different meanings
depending on the context. For example if the robot is standing,
touching the upper part of one leg could mean that that the
leg should bend further backwards. However if the robot is
squatting, the same touch could mean that the robot should
move lower to the ground by bending its knees.

Rather than force the human user to learn an externally
defined teaching protocol (determined by a programmer based
on e.g., inverse kinematics) we instead take the approach
that the mapping can be constructed online from examples
provided by the user. While observing the robot perform a real
task, the user chooses key moments to provide instruction. At
these moments, the human touches parts of the robot, and the
robot responds by moving its joints according to the learned
mapping. If the robot’s responses to touches are incorrect,the
human can manually adjust its joints to teach the intended
meaning using a separate interface (shown in Fig. 4). The robot
then uses this as an example in which to update its internal
mapping from touch to joint angle changes. As instruction
progresses, the learned mapping continues to be refined until
ultimately the human only needs to touch the robot and the
robot properly adjusts its body.

In the remainder of this paper, we describe our interface
and learning techniques in detail, and discuss how users
can use this method to easily teach specific actions. We
then perform analysis of the data collected during the touch
teaching interactions, to help improve our understanding of
how humans communicate via touch. We show that a simple
linear model for mapping touch to joint angle changes cannot
capture the dependence of touching behavior on context.
We then use a tree-based feature selection method to get a
sense of what variables are most important in explaining the
changing meaning of human touch. Our discovery was that
the most important variables to consider for context seem to
be the positions of those joints which determine the overall
orientation of each of the limbs. We finally conclude with a
discussion of future work and suggest a possible way to further
formalize the interaction between context, intention, touch, and
robot body posture.

II. I MPLEMENTATION

The purpose of the interface is to let the user play a motion
and modify it through touching, and provide information
about the intended meaning of touches if needed. During the
development of a motion, the user pushes the robot’s body
parts, and the robot tries to predict the intended joint angle
changes based on previous examples of context, touches and
joint modifications. Inference of intended joint changes due to
touches is done using a k-nearest neighbor (k-NN) algorithm
on a database containing previous examples of context, touch,
and pose changes. If the human believes the robot does
not yet have a good mapping, the user can directly set the

joint position and add this example of context, touch, joint
adjustments into the database of examples used by the k-
NN algorithm, thereby improving the future ability to infer
the touch intentions. This approach is similar to the critic
method of [13], however their system required a fixed initial
database of context, touch, and action examples, and the
human critiques simply adjusted the relative weightings of
these examples in their 1-NN inference engine.

Throughout the text, we use capital Roman letters to
represent random variables, and lowercase Roman letters to
represent specific values taken by those variables. Let touch
information be represented by a vectorT = (T1, ..., TnT

),
where the value of each element represents the duration that
each of thenT tactile sensors distributed over the robot’s
surface were pushed. We encode context with the following
random variables. Let:

• posture vectorP = (P1, ..., PnP
) be the angles formed

by each of thenP joints,
• orientation vectorO = (O1, O2, O3) be roll, pitch and

yaw, respectively,
• velocity vectorV = (V1, V2, V3) be the velocity at the

center of gravity.
P is needed because the meaning of touches may depend on
the posture, as in the previous example in which touching
the lap means different things depending on if the robot is
standing or squatting. Likewise, the meaning of touches may
also depend onO, for instance whether the robot is standing
or laying down. Finally, touches may also depend on the
velocity vectorV , especially if the robot is experiencing strong
accelerations, for example if it is falling down. It is possible
that the velocity of each single limb should also be included,
however for the moment we felt this was excessive, and will
put off investigating this and other features for future work.

To simplify notation, letX = (T, P, O, V) be the concate-
nation of touchT , postureP , orientationO, and velocityV .
Let M = (M1, ..., MnM

) be a vector of desired changes in
the nM joint angles (i.e., motor commands). Then our goal
is to learn a policy functionF : X → M , which maps an
input vectorx to a set of joint angle changesm. Currently,
we use a variation of the k-nearest neighbors algorithm, which,
despite its simplicity, performs very well in many applications
(e.g., [13], [14]). Aside from simplicity, an important reason
we chose this algorithm was the ease with which additional
training data can be incorporated.

Formally, let the tuple(xi, mi) represent theith train-
ing example provided by the human, and letS =
((x1, m1), (x2, m2), ..., (xnS , mnS)) be a set ofnS training
examples. Sometimes we need to refer to specific elements
of variables, so lettis represent the value of elements of the
touch sensors in theith training example, and similarly for
the other variables. Then, given a new inputx′, the system’s
output m′ can be computed by a weighted sum of the joint
modifications inH, i.e.,

m′ =

nS
∑

i=1

g(x′, xi)mi (1)

T* [1]=0 T* [2]>0 T* [3]=0 T* [4]>0 T* [5]>0 T* [6]=0 ... T* n]=0

...

...

...

...

Collected
examples

(green=pushed sensor white=not pushed sensor)

Input
touch information

Consider

Consider

Discard

Discard

T1[1]=0 T1[2]>0 T1[3]=0 T1 [4]=0 T1[5]=0 T1[6]=0 T1[n]=0

T2[1]=0 T2[2]>0 T1[3]=0 T2 [4]>0 T2[5]=0 T2[6]=0 T2[n]=0

T3[1]=0 T3[2]=0 T3[3]>0 T3 [4]=0 T3[5]=0 T3[6]=0 T3[n]=0

T4[1]=0 T4[2]>0 T4[3]>0 T4 [4]=0 T4[5]=0 T4[6]=0 T4[n]=0

Fig. 1. Examples of considered ad discarded examples applying the described
rule.

where the weight functiong(x′, xi) is based on the euclidean
distance between test pointx′ and training pointxi.

A. Weighting schema

We want the weighting functiong to output relatively larger
values when the two inputs are close to each other, and
relatively smaller values when the inputs are far away from
each other. A simple choice for this function that has the
desired properties is

g(x′, xi) =
1

1 + ‖x′, xi‖
(2)

where‖·, ·‖ is euclidean distance. Since the units of the various
input vector components are heterogeneous, it is important
that each input vector component be normalized. This can be
done by first dividing each element by its standard deviation
in the example set, which is the same as replacing the
distance function with a Mahalanobis distance using a diagonal
covariance matrix.

Unfortunately, this technique does not give any “priority”to
more important elements – for instance, the touch information
does not get any more importance than the context features.
This means that points with a very similar context (ex,
similar posture) may dominate the determination of the output,
irrespective of the touching pattern. This is exacerbated by the
relatively high dimension of the input space and the limited
number of example points. This can lead to very unintuitive
behaviors, for instance if a user is focusing on a leg motion
and therefore only provides examples involving a leg, then
pushing on an arm will cause the leg to move, a surprising
behavior indeed!

To solve this problem, we modifyg(x′, xi) to be zero if
the set of activated (i.e., nonzero) touch sensors inti is not a
subset of the active touch sensors int′, i.e. g(x′, xi) = 0 if

∏

{s:t′
s
=0}

(

1 − δ(tis)
)

= 0, (3)

where the threshold functionδ(u) = 1 if u > 0 and 0
otherwise. Some examples are provided by Fig. 1.

With this modification, most of the counterintuitive behav-
iors are avoided, although it can make the mapping less general
and it introduces some discontinuities when the set of pressed
sensors varies. On the flip side, this modification yields a
significant speed-up of the system – as much as2000% in

some tests. This makes it possible to calculate and display
the predicted joint modifications in real-time, providing useful
visual feedback to the user while they are touching the virtual
sensors.

Another problem with this scheme is that, due to the sym-
metry of the distance function, it is not possible to distinguish
whether a current input sensor has been pushed for a longer
or shorter time than the nearby prototypes in the training set.
This can lead to unintuitive behavior regarding the relationship
between the duration of a touch and the magnitude of joint
angle changes. As a simplistic example, suppose a particular
sensor was active in only one training example, and it was
pushed for 300 milliseconds, and this corresponded to a single
motor joint change of 40 degrees. While a user might naturally
expect that pushing for less time will cause a smaller change
in that joint, while a longer press should produce a larger joint
angle change, the result with the current scheme would be that
any touch on that sensor with a duration different from 300ms
would result in a smaller angle change. Fig. 2 illustrates this
problem.

To overcome this counterintuitive behavior, we compute two
factors,αi andβi, and then redefineg as

g(x′, xi) = αiβi

∏

{s:t′
s
=0}

(

1 − δ(tis)
)

(4)

where

αi =
∏

{s:ti
s
>0}

t′s
tis

(5)

is a value which increases linearly as the pushing time in-
creases; the result is that increasing the pushing time of one
sensor will only increase the weight of the examples in which
that sensor was pushed, and it will not have an effect on the
weights of other examples. The second factorβi accounts for
the context information, as well as for the touch sensors which
are active in the input but are not active in theith example.
This is defined as

βi =
1

1 + di

(6)

where

di =
√

∑

{s:ti
s
=0}

t′s
2 + ‖p′ − pi‖2 + ‖o′ − oi‖2 + ‖v′ − vi‖2 (7)

Essentially,di is a euclidean distance betweenx′ and xi,
except ignoring the touch sensors which are nonzero inxi

(since they are used already inαi). The specific choice of the
form of β is admittedly arbitrary, and in future work we will
investigate other types of weighting functions.

III. E XPERIMENT

For our experiments, we used a VStone1 VisiON 4G, a
humanoid robot with 22 degrees of freedom. Fig. 3(a) shows a

1http://www.vstone.co.jp

push ing t ime (inpu t)

Acqu i red example
Inpu t :push 300ms

Outpu t : tu rn 40°I n p u t : 2 0 0 m s
Dis tance : 100

Output : tu rn 20°

Joint modi f icat ion
(o u t p u t)

I n p u t : 1 0 0 m s
Dis tance : 200

Outpu t : tu rn 10°

I n p u t : 4 0 0 m s
Dis tance : 100

Outpu t : tu rn 20° I n p u t : 5 0 0 m s
Dis tance : 200

Outpu t : tu rn 10°

DISTANCE BASED

push ing t ime (inpu t)

Acqu i red example
Inpu t :push 300ms

Outpu t : tu rn 40°
I n p u t : 2 0 0 m s

Outpu t : tu rn 20°

Joint modi f icat ion
(o u t p u t)

I n p u t : 1 0 0 m s
Outpu t : tu rn 10°

I n p u t : 4 0 0 m s
Outpu t : tu rn 50°

I n p u t : 5 0 0 m s
Outpu t : tu rn 60°

INTUITIVELY EXPECTED

Fig. 2. Expected behavior versus the behavior obtained scaling the output by a decreasing function of the distance

(a)

1

2

3

7

4

8

5

9

1 3

1 5

1 7

1 9

2 1

1 0

1 2

1 4

1 6

1 8

2 0

2 2

6

1 1

(b) (c)

Fig. 3. (a) A photo of the VStone VisiON 4G humanoid robot, (b)a schematic of its joints, and (c) the 3D rendered model, where the left upper arm and
forearm have just been pushed. The 3D model display also shows the projection of the center of gravity onto the ground (represented by an orange sphere)
and its velocity (a blue arrow) which can be useful to expert users in motion development.

photo of the robot, and a diagram depicting the configuration
of the joints is given in Fig. 3(b).

It is impractical to use touch sensors directly on the robot’s
body for several reasons. This robot, and others like it, are
typically quite small (often under 50cm/20inches tall), and
use servomotors with an internal PID controller. With such
devices, it is not possible to the detect the force applied by
the user as might be done in e.g., larger pneumatic-actuator
robots, in which it is possible to measure the error between the
target position and the actual position of the actuators ([15]).
The small size of these humanoids also makes it difficult to
place and wire touch sensors over the entire body. Another
difficulty with attempting to directly use touch for teaching
these small robots is that the robot motions are often quite
fast, so real-time interaction might be impossible for a human
(especially if the robot is flying through the air as in a jumping
motion).

To overcome these issues, we developed a system which
combines the real-world robot actions with a virtual touch-
screen driven interface. In this system:

1) A motion is performed by the physical robot, and the

position of the robot body is recorded with a real-time-
motion capture system. The use of motion capture on
the real robot helps prevent any simulator-reality gap.

2) A computer interface allows to the human to watch
a virtual 3D reconstruction of the recorded motion
performed by the robot. The human can pause, rewind,
and step through frames at their leisure.

3) The user chooses an instant where the posture of the
robot should be modified, and playback is frozen at that
point.

4) The human touches the robot model’s body parts on a
touch screen to modify the robot’s posture.

Currently we use a touch screen but other devices, such as
a haptic joystick, or simply a mouse, could also be used.
When the posture in one moment is modified, it becomes a
new keyframe, and the motion in the surrounding frames are
then altered via interpolation. In the current implementation
a simple linear interpolation is used, but the software has
been designed to easily permit the use of more sophisticated
interpolations, for instance the method used by [16].

While the robot is performing a motion, the joint positions

Fig. 4. A snapshot of the commands window of the developed interface

are acquired using the potentiometers present in each of the
servomotors, while the overall orientation of the robot is
captured using a Motion Analysis Corp. capture system2. The
on-screen playback (implemented using Java 3D) displays the
robot’s limbs as parallelepipeds with size and joint positions
proportional to the limb size and joint positions of the real
hardware. Each parallelepiped’s face simulates a touch sensor.
Because the touch screen currently only tracks a single point,
and discards pressure information, the user is allowed to
touch various parts of the 3D-model in one keyframe, and
the duration of each touch is considered to be the pushing
intensity. As the user touches the robot, the parts being pushed
become more and more red (see Fig. 3 c), so the user knows
what input the robot is receiving.

If the system fails to predict the desired modification, which
can be immediately seen by the robot’s response, the user can
manually correct the robot’s joints. To do so, the interface
allows the human to independently switch off any of the
motors, and the human can then move the the limbs of the
physical robot into the desired position. To fine tune the
various angles, the interface provides one slider for each of the
servomotors, as shown in fig. 4. The system can then acquire
the robot’s new joints angles, and then stores the context,
touch, and joint angle changes as a new training example.

We used the interface to teach two motions: jumping (with
the help of a rubber band pulling the robot up since the servo
torque is not sufficient for liftoff) and walking. Let the setof
examples collected during these teaching episodes be denoted
by JUMP andWALK, respectively. Fig. 5 shows an image
sequence of the learned jumping motion, which was taught
in just seventeen minutes. Teaching the same motion using a
traditional motion editor took more than forty minutes.

2for details see http://www.motionanalysis.com/
applications/movement/neuro/eaglesystem.html

IV. DATA ANALYSIS

We performed two kinds of analysis, both of them aimed
mainly at understanding the role of context. First, we wanted
to see if the mapping from touch to change in joint angles
could be learned simply with linear regression. This is useful
both as a baseline to compare with other methods, and to
help develop some intuitions about what makes the problem
difficult, for instance understanding what kinds of touches
change their meaning due to context. The second analysis was
a clustering / feature-selection analysis, in which we tried to
understand which pose, orientation, and velocity variables are
most closely associated with changing touch behaviors.

For the first analysis, using the definitions of the random
variables from Section II (organized as row vectors), let

M = XA + ǫ, (8)

be a linear model of input to output, whereA is a matrix
whose number of rows is the same as the number of elements
of X and number of columns is the number of joint anglesnM ,
andǫ represents Gaussian noise with zero mean and spherical
covariance. Given a set of training data, organized into a matrix
of inputs X and outputsM, the matrix A minimizing the
squared error can be found by ridge regression [17], i.e.,

Â = (XT
X + αI)−1

X
T
M (9)

where the T superscript indicates the transpose operation,I

is the identity matrix, andα is a small number which can
be interpreted as an estimate of the standard deviation of the
Gaussian noise. The value ofα is chosen heuristically, by
manually finding a value that gives low cross validation error.
We fixedα = 0.1 for all experiments, then found̂A using the
entire training dataset for each experiment.

Looking at the magnitudes of the entries in̂A provides
insight into the importance of each of the input features, while
the sign helps us to understand which features produce similar
effects and which produce opposite effects. Fig. 6 gives a
visual representation of̂A superimposed on the model of the
robot. In this figure, the touch sensors of the robot are colored
according to their corresponding row in̂A for two different
joints (each corresponding to a different column inÂ). For
example in Figs. 6c and 6d, corresponding to joint 7, each face
is colored green if the corresponding entry in column 7 ofÂ

is positive, and red if it is negative, while the color intensity
represents the magnitude of the value. In general the values
follow intuition fairly well – for instance, for determining the
arm orientation changes, the sensors with high coefficientsare
mainly the ones on the arm.

In Table I, we show the prediction error when the matrix
learned from one of the training sets (or from the combined
dataset), is tested for its ability to predict itself, the other
dataset, or the combined dataset. Each entry shows the average
euclidean distance. For comparison, we compute the same
values for the k-NN algorithm described in Section II. We
can see that although the linear regression model is sometimes
able to make very accurate predictions, at other times it fails

Fig. 5. An image sequence of the developed jumping motion

(a) (b) (c) (d)

Fig. 6. The importance of each of the sensors in determining the variation of the head orientation ((a) and (b), joint 1 of fig. 3(b)) and the variation of
the elbow joint angle((c) and (d), joint 7 of fig. 3). The various sensors are coloured red or green depending on the sign of the relative coefficient, while its
absolute value is represented by the intensity of colour. A yellow sphere highlights the position of the joint which depends on the coefficients used to colour
the sensors.

TABLE I

AVERAGE RMSD ERROR BY LINEAR REGRESSION AND K-NN

Training dataset Test dataset Lin. Regr. k-NN

JUMP JUMP 0.2846 0.1985

JUMP WALK 13.7177 0.5938

JUMP COMBINED 2.0567 1.0198

WALK JUMP 0.0314 0.0588

WALK WALK 0.3522 0.2028

WALK COMBINED 0.3626 0.2223

COMBINED JUMP 0.3219 0.1425

COMBINED WALK 3.7272 0.3006

COMBINED COMBINED 1.5462 0.7778

badly. Meanwhile, our k-NN algorithm performs consistently
well, even when predicting the touch mapping for different
action sequences.

A. Context feature selection

We hypothesize that the reason the nonlinear technique
works better than the linear regression model is because
the human produces touches differently based on the robot
context variables. We illustrate this idea in Fig. 7. In this
model, the human has an internal belief about how joints
should be modified in order to improve the task performance.
Meanwhile, the human also evaluates some features of the
context to determine how to best communicate this desire to
the robot. The pattern of touches is thus jointly determinedby
the desired changes and the current robot context. When the
human simultaneously touches and directly manipulates the
robot joints, we can observe all of the nodes in the lower part
of the graph – the context, the touches, and the intended joint
angle changes – while the human’s intention and perception of
the context remain hidden. However, when the human is not
providing direct joint manipulation, the corresponding node
becomes hidden, and the goal of the robot is to infer the values
at that node from the observed touch and context data.

Because we believe the touching behavior is jointly deter-

perceived
context

physical
context

joint
modif icat ion direct ly

communicated

 intended joint
modif icat ion

touching

Human

World

Fig. 7. A schema resuming the various concepts.

mined by the desired joint changes and the inferred context,
we wanted to see if it is possible to determine a few context
variables that can predict when the touching behavior will
change – i.e., when the mapping from touches to joint angle
changes becomes non-linear. To do this, we used a tree-based
technique, using Quinlan’s C4.5 algorithm [18]. The most
telling indicator of contextual influence is when the same
touch causes a joint to be adjusted in a different direction.
Therefore, we created a simplified problem of discriminating
direction of joint angle change given touch and context. For
each training examplexi we create a target variableqi =
(qi

1
, ..., qi

nP
) based onpi (the pose component ofxi), where

each element is set to+1 if the corresponding element in
pi is larger than some thresholdτ , −1 if it is smaller than
−τ , and 0 otherwise. In practice we setτ to a value of 5
degrees. Note that although in principle this could result as
many unique target values as training points, in practice of
the 238 collected examples, there were only 97 unique values
of q. We then ran the Q4.5 algorithm, with pruning, on each
of the datasets (JUMP, WALK, and the combination), which
tries to predict the direction of joint angle changesQ from
the touch and context variablesX . We then examined where
each context variable appeared in the trees, to see if any of
these consistently appeared high in the tree (suggesting they
have a great influence in determining the direction of change).
Table II shows the level at which the various context features
appear (notice that one feature can appear multiple times,
along different paths of the tree).

The most interesting observation from Table II is that for
all data sets, the position of the joints near the trunk of the
body, which determine the global position of the limbs, are
used as a discriminating attribute in high (near the root) levels
of the three. Although we did not predict this beforehand, this
makes intuitive sense, suggesting that the meaning of the touch
depends primarily on the overall positions of the limbs.

Also somewhat surprising from this analysis is the fact that
the robot orientation and velocity do not appear very high in
any of the trees. We hypothesize that this might not be the
case were we teaching more dynamical motions, and so in
future work we will investigate this hypothesis more deeply.

V. CONCLUSION AND FUTURE WORK

We have developed an interface for teaching robots through
touching, which allows the user to continuously refine the
meaning of their touches by directly manipulating the limbsof

TABLE II

LEVELS IN THE DECISION TREE OF THE FEATURES

X
X

X
X

X
X

XX
Feature

Dataset
JUMP WALK COMBINED

joint 1 2 2

joint 2 17,21,22 9 19,23

joint 3 3 3 3

joint 4 5,11

joint 6 2

joint 7 20 22

joint 8 5,8,19 5,10

joint 9 1 3 1

joint 11 10

joint 12 0 1 0

joint 14 3

joint 15 2,8,10

joint 16 5 3,4 7

heading 0,2

Levels at which the various features appear constructing the three with each
of the three matrices as training data. Only the features which appear at least
in one of the trees had been reported inthe table. The joint numbers are the
ones reported in fig. 3(b). The entry “heading”, is part of theheading, attitude
and bank triple used to define the orientation.

the robot. The interface we have developed is readily usable
by inexpert users, and allows people to teach robots new
behaviors much more quickly than through more traditional
motion editors. We have hypothesized that one reason a linear
model is not sufficient to learn the mapping from context and
touch to changes in joint angles is because context and touch
interact in a nonlinear way. We applied the C4.5 algorithm as
a first step for gaining insights about which features of the
physical world are related to how humans express their inten-
tions through touching. This can be interpreted as attempting
to learn the mapping from the physical context to the perceived
context, using the touch and joint angle information to infer
the different categories of perceived context.

Our k-NN algorithm does not directly represent the context,
touch, and human intention as separate variables. However it
is possible that we could divide the context into a few basic
categories (e.g., squatting, standing, etc.), perhaps using the
features discovered from our tree-based analysis, and then
learn a separate kNN model, or perhaps even a linear model,
for each context category. In future work, we intend to model
each of the nodes shown in Fig. 7 as either discrete or Gaussian
(or mixtures of Gaussian) random variables, and use more
sophisticated Bayesian techniques to infer their parameters
given training data. In this way we can jointly learn the set of
context categories, the variables that are needed to infer the
context, and the mapping from touch to joint modifications
given context.

An important future goal for this work is to apply similar
methodologies to bigger robots with more sensors and actua-
tors. In such a scenario, the virtualization of the touch sensors
will not be necessary, except perhaps for actions that are too

fast for the human to manipulate in real-time. This amplifies
the advantage of our approach, since complex robots with
many sensors and actuators are even more difficult to program
using traditional motion editors. Moreover, the use of real
sensors may make it possible to discriminate between different
kinds of the touch, for example differentiating between long
soft touching patterns and short, which can increase the range
of possible human instructions. From a technical standpoint,
we have written our code with portability in mind, in order to
make migration to new platforms such as human-size androids
relatively painless.

As we continue to improve this interface, we will be able to
perform further studies in the analysis of touching as an intu-
itive way for users to interact with robots. We are particularly
interested in further investigating the importance of various
context features, and how they influence the intended message
conveyed through touching communication. Importantly, we
believe it will be important to extend the context to include
timing related features, such us the elapsed time between the
maximum/null robot’s acceleration and the pushing time. We
expect further development of this system to yield interesting
new insights into the human touching behavior, as well as a
more effective method for teaching robots.

REFERENCES

[1] A. Stoica. Humanoids for lunar and planetary surface operations.
NASA Jet Propulsion Laboratory. Pasadena, CA. [Online].
Available: http://hw.jpl.nasa.gov/humanoid/assets/Documents/\\STAIF\
stoica\ Final%\ Camera\ Ready.pdf

[2] C. Lee and Y. Xu, “Online, interactive learning of gestures for hu-
man/robot interfaces,” inIEEE International Conference on Robotics
and Automation, Minneapolis, MN, 1996, pp. 2982–2987.

[3] R. Voyles and P. Khosla, “Tactile gestures for human/robot interaction,”
in Proc. of IEEE/RSJ Conf. on Intellingent Robots and Systems, Vol.3,
1995, pp. 7–13.

[4] G. Grunwald, G.Schreiber, A. Albu-Schaffer, and G. Hirzinger, “Touch:
The direct type of human interaction with a redundant service robot,”
in Proc. of the IEEE Int. Workshop on Robot and Human Interactive
Communication, Bordeax/Paris,France, 2001.

[5] J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, T. Becket,
B. Douville, S. Prevost, and M. Stone., “Animated conversation: Rule-
based generation of facial expression, gesture and spoken intonation for
multiple conversational agents,” inSIGGRAPH, 1994, pp. 413–420.

[6] A. Bodnar, R. Corbett, and D. Nekrasovski, “Aroma: Ambient awareness
through olfaction in a messaging application,” inProceedings of the
International Conference on Multimodal Interfaces, PA, 2004.

[7] T. Minato, M. Shimada, S. Itakura, K. Lee, and H. Ishiguro, “Evaluating
the human likeness of an android by comparing gaze behaviorselicited
by the android and a person,” inAdvanced Robotics, Vol.20 No.10, 2006,
pp. 1147–1163.

[8] M. Kuniyoshi and I. Inoue, “Learning by watching: extracting reusable
knowledge from visual observation of human performance,” in Proc. of
IEEE Transactions on Robotics and Automation, Vol.10 No.6, 1994, pp.
799–822.

[9] J. R. Movellan, F. Tanaka, I. R. Fasel, C. Taylor, P. Ruvolo, and
M. Eckhardt, “The RUBI project: a progress report.” inHRI, C. Breazeal,
A. C. Schultz, T. Fong, and S. B. Kiesler, Eds. ACM, 2007, pp. 333–
339.

[10] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama, “Dance partner
robot -ms dancer-,” inProc. of the 2003 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems, Las Vegas,Nevada, 2003.

[11] T. Wama, M. Higuchi, H. Sakamoto, and R. Nakatsu, “Realization of tai-
chi motion using a humanoid robot,” inProc. of The 14th International
Conference on Artificial Reality and Telexistence, 2004, pp. 71–74.

[12] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi, “Imitating humand
dance motions through motion structure analysis,” inProc. of the
2002 IEEE-RSJ Intl. Conference on Intelligent Robots and Systems,
Lausanne,Switzerland, 2002.

[13] B. Argall, B. Browning, and M. M. Veloso, “Learning by demonstration
with critique from a human teacher.” inHRI, C. Breazeal, A. C. Schultz,
T. Fong, and S. B. Kiesler, Eds. ACM, 2007, pp. 57–64.

[14] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine learning,
neural and statistical classification,” inEllis Horwood, London, 1994.

[15] B. McDonell and J. Bobrow, “Modeling identification andcontrol of
a pneumatic actuated, force controllable robot,” inIEEE Trans. Robot
Automat., Vol 14, 1998, pp. 732–742.

[16] N. Mayer, J. Boedecker, K. Masui, M. Ogino, and M. Asada,“HMDP:a
new protocol for motion pattern generation towards behavior abstrac-
tion.” in RoboCup Comp. Symp., Atlanta, 2007.

[17] A. Hoerl and R. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems,”Technometrics, vol. 12, pp. 55–67, 1970.

[18] J. Quinlan,C4.5 Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[19] C. Breazeal, A. C. Schultz, T. Fong, and S. B. Kiesler, Eds.,Proceedings
of the Second ACM SIGCHI/SIGART Conference on Human-Robot
Interaction, HRI 2007, Arlington, Virginia, USA, March 10-12, 2007.
ACM, 2007.

