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ABSTRACT

Traditional image-based localisation methods do not work
when the robot is moving in an environment whose appear-
ance is changing in time. We propose an extension to the
classical image-based localisation that uses a Distributed
Vision System (DVS) and can work also in highly dynamic
environments. The DVS is composed of omnidirectional
cameras installed in the environment and can communicate
with the robot. The localisation of the robot is achieved
by comparing the current image grabbed by the robot with
the images grabbed at the same time by the DVS. Finding
the DVS’s image most similar to the robot’s image gives a
topological localisation of the robot. In this paper, we an-
alyze requirements and effectiveness of this approach and
we present some preliminary experimental results obtained
with the Distributed Vision System.

1. INTRODUCTION

Robot navigation in real world environments based on vi-
sion sensors is becoming more and more diffuse in robotics.
In the past, several solutions have been proposed, but most
of them can work only in static or almost static environ-
ments. Mobile robots should be able to work in dynamic
environments in which many people are moving around or
objects are displaced here and there. Most of the current lo-
calization systems assume the robot has a statical represen-
tation of the environment. The sensory inputs of the robot
are processed and matched against the statical representa-
tion to find the robot position. In these approaches, a certain
amount of noise or occlusion of the sensors can be tolerated
[4, 13], but if the environment is changing too much in time
(e.g. hundred people walking by, like in a metro station) the
localization will not be successful.
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Fig. 1. The humanoid robot Eveliee and the DVS installed
in the environment

In the classical image-based localization approach, there
is a setup stage in which the robot grabs several images
at different locations in the environment and stores them
in its memory. These images are called reference images
and are annotated with the positions in which they were
taken. At the running stage, when the robot moves around,
to find its pose, it grabs an image and compares the cur-
rent image with the image data-set stored in its memory.
The reference image in memory most similar to the current
image gives a topological localisation for the robot [1, 5,
17, 8, 18]. In previous works, we introduced an approach
based on the Fourier signature of omnidirectional image
[11] and showed that if combined with a Monte Carlo Lo-
calisation algorithm it could work reliably also in large en-
vironments [14]. However, all this works when the environ-
ment changes only slightly in time. If there are big changes
the current image at a reference position will not match any-
more the reference image stored in the memory of the robot.
One possibility is to look at features that do not change even
if the environment is crowded, like the ceiling [3]. However



this is not always possible or do not solve the problem if
there are lighting variations.

In this paper, we extend the image-based localisation ap-
proach to a dynamic environment. Our idea is: if a network
of cameras is already installed in the environment (maybe
for other purposes), this could be exploited as a Distributed
Vision System (DVS). The robot’s position can be estimated
finding the camera whose image is most similar to the image
grabbed by the robot. This approach will work both in static
and in highly dynamic environment, because if the appear-
ance of the environment changes, these changes are imaged
both by the robot’s camera and by the network’s camera.
This approach preserves all the advantages of the image-
based localisation based on the Fourier signature proved in
previous works: the possibility to have a hierchical coarse
to fine localisation, the rotational invariance that enables to
correctly estimate the position of the robot regardless of its
orientation.

In this work we used the existing network of omnidirec-
tional cameras available at the Intelligent Robotics Labora-
tory of Osaka University. The robot was equipped with an
omnidirectional camera, as well. The basic assumption in
this approach is that the image grabbed by the robot at any
time and in any position in the environment is recognized as
most similar to the image grabbed by the closest network’s
camera at the same time. It is easier to complain with this
constraint, if one uses some of the technique we experienced
in previous works: omnidirectional cameras [7][12], a mea-
surement of similarity based on the Fourier signature [11],
and grid computing for robotics applications [15].

The traditional approach to localize the robot in the en-
vironment with a network of camera is to detect the robot
in the cameras images and determine its position thanks to
previous camera calibration and possibly N-stereo geometry
[10][9]. The problem with this approach is that visual fea-
tures are not stable and it is not easy to correctly detect the
robots in dynamic environments. Typical approaches like
IR beacons and active or passive landmarks on the robots
are not reliable in large environments. The problem is even
more complex if we have several robot in the environment
and we want to be able to identify them. In the future, the
robot identification by visual feature might also be impos-
sible for tiny or micro-robot, while for humanoid robots or
android robots might be very hard to be able to distinguish
them from humans walking by. Therefore, we developed
this approach which does not depend on the appearance of
the robot and do not require segmentation of visual features
in the image.

It is important to note that the camera network is not
dedicated to the robot localisation, but as is the case of the
network used in this work, it has several other duties like
surveillance, people tracking, people activity monitoring (in
cooperation with floor pressure sensors and sound sensors)

[6, 16]. Moreover, it should be noted that the robot is au-
tonomous and can locate it-self using the system presented
in [11, 14], the approach presented here can be integrated
with this one to extend the robot abilities in case a DVS is
available, but do not require the infrastructure to operate,
like in [9].
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Fig. 2. (a): An omnidirectional camera. (b): An example
of omnidirectional image. (c): The panoramic cylinder ob-
tained from the omnidirectional image (b).

2. DVS LOCALIZATION

The vision sensors being part of the DVS are not simple
omnidirectional cameras. They can acquire the images, they
can process them and can transmit over a LAN the result
of the processing. Therefore, we call these vision systems
Omnidirectional Vision Agents (OVAs) to stress their ability
to process the image and to communicate with other agents.

The localisation system presented in this work is com-
posed of several static OVAs (Omnidirectional Vision Agents)
comparing their images to find which one is more similar to
the images of the mobile OVA.

The localisation system must work in real-time, so one
of the first issues is to have a system able to provide fast
transmission and processing of the images to enable a real-
time comparison of the images. Therefore, we need to de-
sign the system which requirements are: (i) to minimize the
amount of data needed to describe the images; (ii) to max-
imize the speed of calculating the similarity among the im-
ages; (iii) to have a complete description of the scene to
reliably assess the similarity of the images.

The first variable to be optimized is the number of cam-
eras. By using omnidirectional cameras, we keep this num-
ber to a minimum, see Fig. 2a). In fact, every omnidirec-
tional camera has a 360◦ field of view and images the whole



scene surrounding it, Fig. 2b). This means a complete de-
scription of the scene and less cameras needed to cover the
whole environment.

To reduce the amount of data transmitted and to ensure
a fast calculation of the similarity between the images, the
OVA does not send the whole image over the net, but sends
a compact representation, called the Fourier signature of the
image.

2.1. The Fourier signature and its properties

We showed in previous works the Fourier signature is a
complete and compact representation of an omnidirectional
image with many interesting proprieties [11]. To obtain the
Fourier signature, the omnidirectional image is ’unwarped’
into a panoramic cylinder, Fig. 2 (c), and then the Fourier
transform of every row of the panoramic cylinder is calcu-
lated. The Fourier signature of every image is represented
by the first 15 Fourier coefficients of the magnitude and of
the phase associated to every row of the panoramic cylin-
der. The robot’s position can be extracted using the magni-
tude coefficients of the Fourier signature, while the robot’s
orientation can be extracted by the phase coefficients. For
more details please refer to [11].

One of the main advantages of the use of the Fourier
signature is its intrinsic rotational invariance, which enables
to match the correct OVA image regardless of the orienta-
tion of the robot (at the same time the orientation of the
robot can be calculated using the phase values). In addi-
tion to the rotation invariance, another fundamental prop-
erty of the Fourier signature essential in this application is
what we called the perspective invariance. Consider the
case sketched in Fig. 3, where a person is standing between
the OVA and the robot. In this situation, the omndirectional
cameras of the OVA and of the robot see the approximately
the same omnidirectional image. The person standing by
seen occluding the right part of the background by the OVA,
while it is seen occluding the left part of the background by
the robot, Fig. 9 (b) and (c). Nevertheless, the Fourier sig-
natures of the two images do not differ greatly (we tested
the robustness to occlusion in [19]). In fact, calculating
the Fourier transform only along the rows of the panoramic
cylinder results in an invariance to the horizontal distribu-
tion of brightness pattern. Therefore, it is not important the
horizontal position of the occlusion in the images, but the
fact that the occlusion is there or not.

2.2. Localisation in Dynamic Environment

The robot localisation process starts when the robot send a
localisation request over the wireless LAN in broadcast to
the OVAs in reach of the wireless card. The localisation re-
quest contains the Fourier signature of the image grabbed

Fig. 3. The concept of the perspective invariance.

by the robot. Every VA that receives the localisation re-
quest, grabs an image and calculates the Fourier signature
and compares this with the Fourier signature sent by the
robot using the similarity function defined in [11]. The VA’s
image more similar to the robot’s image gives the topologi-
cal localisation of the robot.

To test the effectiveness of the approach we compare
the new approach with the classical image-based localisa-
tion approach. As we said, in the classical image-based lo-
calisation approach there is a set-up stage in which the robot
stores in its memory the dataset of the reference images. If
at the running phase the environment changes (like in Fig. 5
where many people are passing by, or like in Fig. 7, where
a big variation in the lighting of the environment occured),
the current image grabbed by the robot cannot longer match
the correct reference image stored in the robot’s memory.
In the experimental sections we will show that if the current
robot’s image is compared with the DVS current images, the
correct position can be calculated.

2.3. Requirements

The requirements for a reliable localisation are listed be-
low. Experimentally we found that some of them heve to
be strictly met and others can be met only loosely. These
requirements are related mostly to the current implementa-
tion of this idea and dependent on the technique adopted
to asses the similarity between the omnidirectional images
(i.e. the similarity Function defined on the Fourier signa-
ture). We are working on finding new similarity function

Fig. 4. Image-based localisation with a classical approach:
with and without people moving around.



that will enable to relax these requirements, in order to be
able to include different type of cameras as well, e.g. per-
spective cameras.

1. the robot camera should be as close as possible to the OVAs;
this ensures the images grabbed by the robot and by the
closest OVA are similar.

2. there shouldn’t be walls or very wide objects between the
OVA and the robot. If there is a wall limiting the view of
the robot and the OVA is over the wall, like in Fig. 1, even
if the robot and the OVA are really close their views will be
really different.

3. the robot’s camera and the OVAs’ cameras should be of the
same kind. Different cameras or different omnidirectional
mirror can results in different omnidirectional images with
very different Fourier signatures.

4. the robot’s camera and the OVAs’ cameras should be lo-
cated approximately at the same height. Too different heights
can cause different perspective distortions and result in er-
roneous localisation.

These requirements are very strict for a pratical imple-
mentation, indeed. However, in the following we show the
approach is working also when using a DVS not built on
purpose for this application. The DVS used is a pre-existing
network of cameras used for other tasks. This network does
not fulfill all the above requirements. In particular, the OVAs
are fixed over panel walls dividing the room (requirement
2), so sometimes the robot sees the wall, but the camera do
not see it.

3. EXPERIMENTS

In this section we do not present the whole localisation with
the Monte Carlo algorithm, but just some tests in which a
static image-based localisation would have failed. The im-
age Fig. 6 a) is the one grabbed by the robot, the image
Fig. 6 b) is the one grabbed by the closest OVA. Thanks
to the rotational invariance and the other property of the
Fourier signature they are recognised as the same image
from the localisation system (both from the classical one
and the new one using the DVS).

3.1. Comparison between classical and DVS approach

If the appearance of the environment changes after the set-
up phase, like in Fig. 7 where the lighting conditions are

Fig. 5. Image-based localisation with the proposed DVS
approach with people walking by.

(a) (b)

Fig. 6. An example of an omnidirectional image grabbed by
the robot (a) and by the closest OVA (b).

(a) (b)

Fig. 7. (a): Two omnidirectional images grabbed by the
robot in the same position: (a) at the set-up stage with the
lights on; (b) at the running phase with the lights off. Note
the auto-gain of the camera is turned on, so the average
brightness is the same, but the images are different.

changed and the lights are switched off. The results given
by the two methods are no longer the same. The classical
method gives an erroneous localisation, Fig. 8a). Note the
correct location achieve a similarity value rather low, it is
the sixth value. While the proposed DVS method correctly
localises the robot, Fig. 8b). This is because if the lights go
off, also the images grabbed by DVS will be dimmer, i.e.
robot and OVAs see the same variations.

3.2. Perspective Invariance

To test the robustness of the proposed approach to the per-
spective invariance, we recreated a situation similar to the
one described in Section 2.1: a person is standing between
the OVAs and the robot. For this experiment we have 6
OVAs like in Fig. 9a). A person is standing between OVA 4
and the robot that is near OVA 4.

The images grabbed by OVA 4 and by the robot are very
different (the person is seen against different portions of the
background). They are shown in Fig. 9 (b) and (c). Nev-
ertheless, thanks to the perspective invariance introduced in
Section 2.1 the two images are correctly matched as show
the similarity values plotted in Fig. 9 b)



Fig. 8. Plot of the current robot image similarity against
the DVS images (solid line) and the reference images in the
robot’s memory (dashed line).

(a)

(b)

(c)

(d)

Fig. 9. (a)A sketch of the relative positions of the OVAs
and of the robot; (b) The same environment observed by the
robot and (c) by the closest OVA when a person is standing
in between; (d) The plot of the similarity values calculated
for the robot’s image.

4. STRENGTHENING THE SYSTEM

At the moment we are working to make the system more flexible,
in order to be able to relax the constraints and the requirements in-
troduced in Section 2.3. The ultimate reason for the necessity of so

strict requirements is the image similarity function that discard a
lot of information to focus only on the brightness pattern described
by the Fourier signatures. This might results in reference images
very different from the input image, but with a similar Fourier sig-
nature. We are experimenting new similarity measures that could
take into account the information discarded by the Fourier signa-
ture. Our aim is to be able to cluster the DVS images depending on
their appearance, to determine to which cluster the robot’s image is
more similar and then to use the Fourier signature similarity only
in the selected image cluster to exploit the properties of the Fourier
signature localisation. We developed an image similarity function
based on colors which has the same two fundamental properties
of the Fourier signature: (i) the rotational invariance and (ii) the
perspective invariance. We take into account the H (hue) and S
(saturation) components of the HSV colour space. This similarity
was inspired by [2]. Fig. 10 shows that the HS-diagrams are simi-
lar for OVAs nearby, while the HS-diagrams are very different for
OVAs far away.

Fig. 10. A comparison of HS-diagrams for OVAs close-by
and far away.

Fig. 11. Plot of similarity values showing that using the
HS-clustering a correct localisation can be achieved even if
the absolute maximum of the similarity is not at the correct
location.

The plot of the similarity values of the robot image against all
DVS images in Fig. 11 shows that a correct localisation can be
achieved also when the requirements of Section 2.3 are not met. In
this last experiments, we introduced OVAs with a significant dif-



ference in height from the robot’s camera, which did not satisfied
Requirement 4. The plot in Fig. 11 shows an incorrect robot locali-
sation because the highest value is at 6 4, while the robot is located
at 1 3. However, if the HS-clustering algorithm is used, the system
finds that the robot image belongs to the cluster of cameras (1 1,
1 2, 1 3, 1 4), the area highlighted in yellow in Fig. 11. So, if the
Fourier signature similarity is calculated only within the correct
cluster (the yellow one), the maximum similarity in this cluster is
obtained at the correct location 1 3.

5. CONCLUSIONS

In this paper we proposed an extension for a previously proposed
image-based localisation approach. The extension is based on a
Distributed Vision System (DVS). To find its location, the mobile
robot compares its current image with the images grabbed at the
same time by the DVS. The calculation of the similarity is based
on the Fourier signature we introduced in previous works. We
identified some constraints the system have to meet in order to give
correct results. The system has been tested using a humanoid robot
and a pre-existing camera network. The experiments showed the
system can cope with dynamic environments where the classical
image-based approach fails. At the moment we are working to
relax the requirements we pinpointed in the text in order to have a
more flexible system. In the end, we hinted the direction we are
taking in order to be able to relax those constraints.
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