
A 3D Model of a Humanoid
for USARSim Simulator

Nicola Greggio†, Giovanni Silvestri∗, Stefano Antonello†, Emanuele Menegatti∗†, Enrico Pagello∗†
∗ Intelligent Autonomous Systems Laboratory

Department of Information Engineering
University of Padua, Italy

† IT+Robotics S.r.l. Vicenza, Italy.
A spin–off of the University of Padua

Abstract— This paper focuses on the creation of a realistic
simulation of a humanoid robot in a virtual environment using
USARSim (Urban Search and Rescue Simulator). The robot we
chose to model is a Robovie-M, by Vstone. This model will help
researchers to implement and study different behaviors of the robot
without its physical presence. The dynamics and the appearance of
the robot and the other objects within the simulator are faithfully
reproduced in the virtual environment. Moreover, the virtual robot
in USARSim can be controlled with the same program controlling
the real robot, a program tool we developed in our laboratory.
We present a 3D model of the humanoid robot Robovie-M for
the USARSim simulator and the computer program used as tool
to control the 3D model of the robot within USARSim, and the
real robot. We present the results of our experiments about the
qualitative simulation of the robot’s behaviors and the analysis of
fps in case of single and multiple robot simulation.

I. INTRODUCTION

Simulating robotic behaviours has different important appli-
cations. Firstly, it allows researchers to develop and test pro-
grams in a virtual environment, without the physical presence
of the robot. This may be extremely useful, for instance, in
situation in which there are many people who are working
on different tasks related to the same robot. In this case,
each person can work independently without interfering with
the others. Moreover, simulators are very useful in education:
Students can develop different algorithms to study the robots
reaction, without been physically in the laboratory or without
the risk to damage the robot. Generally, a Humanoid Robot
is a complex unit that is built with expensive electronic and
mechanical parts.

Simulation is rapidily developing since a few years ago.
2D simulators are widely used in evaluating different kind of
robots behaviours. They are easy to use and customize. They
can be useful in many applications to test different kinds of
robots, environments, and situations. On the other hand, they
are limited to a 2D representation, which if can be enough
for wheeled robot, it may not be sufficient for more complex
robots. For example, robots with many degrees of freedom
cannot properly simulated in a 2D world. Legged robots, and
humanoid robots in particular, need a more complex simulator
creating a faithfully 3D simulation.

3D simulators solve these problem. Again, there are advan-
tages and disadvantages in this choice. This type of simulators

can solve problems of depicting a humanoid robots behaviors
in environment in which 2D simulators cannot, but they require
to set many more parameters to give an effective result. In
3D simulation there are many problems: Modeling, animation,
and virtual environments rendering are few examples. There
are numerous different 3D simulators, and each of them
presents advantages and disadvantages, so the choice must
take into consideration all the aspects, in terms of fluidity
of the simulation and reusability [1]. The ASURA RoboCup
Software by the Asura RoboCup team [8] has been developed
for the simulation of four legged robots. It allows to use
strategies and sensors acquisition, but it lack in representing
dynamic simulation, so giving a poor representation of the
virtual environment. SimRobot simulator by Laue et al. [7],
supports different models with a great flexibility of control,
because there have been implemented different body models,
sensors, and actuators. Dynamics is simulated with the open-
source physical engine Open Dynamic Engine (ODE) [10].
UCHILSIM by Zagal and Ruiz-del-Solar [9] uses the ODE
engine for the physical simulation. This project has been de-
veloped to became a standard framework for the AIBO robots’
simulation. However, it seems to be no longer developed.
Webots [11] is a commercial software for robotic simulation.
It uses the ODE engine. It has an extensive library of actuators,
sensors and robots. In addition, the mechanical features of the
robots are well defined. However, it lacks in the quality of
the 3D graphical representation of the virtual environment.
USARSim (Urban Search And Rescue Simulator) [4] is a
simulation environment useful for many kinds of applications
that require a great fidelity in visual simulation and in physics
properties simulation of an environment. In addition, we
choose USARSim because there is a great community that
is developing it, firstly for rescue tasks, and after that for
RoboCup competitions [14], [15], [16], [17], [18]. USARSim
has just used to simulate AIBO robots [1] and other robots.
We used it to simulate a humanoid robot for the first time.

In section 2, we firstly present the USARSim simulator.
Then, in section 3 we present the software architecture of our
robot tool controlling. In section 4 we describe the 3D model
of the Robovie-M humanoid robot. In section 5, we describe
the experiments performed with the real robot and with the
simulated robot to analyze the fidelity of our virtual model.

enrico
Text Box
 Proceedings of the Workshop on Humanoid Soccer Robots
 of the 2006 IEEE-RAS International Conference on Humanoid Robots
 Genoa, Italy, December 4, 2006
 pp. 17-24
 ISBN: 88-900426-2-1

II. THE USARSIM SIMULATOR

USARSim is a high fidelity simulation of Urban Search
and Rescue (USAR) robots and environments intended as a
research tool for the study of human-robot interaction (HRI)
and multirobot coordination.

It is a robot simulator based on the industrial game engine
Unreal Engine 2 [5]. The current version of USARSim is
based on the Unreal Engine game engine released by Epic
Games with Unreal Tournament 2004. The engine to run
the simulation can be inexpensively obtained by buying the
game. It is a complete game development framework for
todays PC. With its Unreal Editor, it is possible to use its
tools to rapidly develop objects and environment. In addition,
with its Unreal Script, which is an ad-hoc script language,
it is possible to define the behavior of the objects. In fact,
Unreal Engine 2 has been developed for the development of
networked multi-player 3D games. In particular, USARSim
simulates the robots intended for the Urban Search and Rescue
(USAR) [4] tasks and the reference test arenas developed by
the (National Institute of Standard And Technology (NIST).

Using USARSim problems like modeling, animation, and
virtual environments rendering are automatically solved. High
fidelity at low cost is made possible by building the simulation
on top of a game engine. A commercial platform can provide
superior visual rendering and physical modeling with respect
to simulators developed by researchers. Then, it is useful to
offload to it the most difficult aspects of simulation. This
has the advantage that a full effort can be devoted to the
robotics-specific tasks of modeling platforms, control systems,
sensors, interface tools and environments. These tasks are in
turn, accelerated by the advanced editing and development
tools integrated with the game engine leading to a virtuous
spiral in which a widening range of platforms can be modeled
with greater fidelity in less time. The current release of the
simulation consists of: various environmental models (levels),
models of commercial and experimental robots, and sensor
models.

Unreal spectators can observe the scenes by using egocentric
(attached to the robot) or exocentric (third person) views of the
simulation. Robot control programs can be written using one
of the following tools: the GameBot interface, the MOAST
System [6], the Player interface, or the Pyro middleware [4].

Our robot has been modeled using the program 3DStudio:
The visualizing part, which appears on the screen, has been
imported in USARSim as a static meshes (*.usx) file, while
the physics property of the model has been described in Unreal
Script language, using a file for each robot’s part. In the
following we call the simulated robot virtual robot (VR), and
the real Robovie-M real robot (RR).

III. ROBOSTAGE: THE ROBOT CONTROLLING TOOL

We developed a computer program, called Robostage, to
control the Robovie-M robot. It provides a graphical interface
for the user.

We developed Robostage with two aims.

1. To control different versions of control boards. Currently,
there are available three control boards for the robot:

– One has a CPU Renesas H8/3684, which is function-
ing at 16MHz with three Microchip PIC16F877 for
the servomotors’ control, an accelerometer on two
axis, and a serial port RS232C, by Vstone

– Another is the CPU Renesas SH2/7054, which is
functioning at 40MHz, a RAM of 262144 word
of 16bit, an extern EEPROM of 64 Kbyte, an ac-
celerometer on two axis, and a serial port RS232C,
by Vstone

– The last is the Korebot Board, which has a Intel
XSCALE PXA-255 400MHz processor, a ram of
64MB, a USB Client port, and two serial ports
RS232, by K-Team [12].

Our program allows a programmer to use all the control
boards. There is a code section for each control board, and
it is possible to select which one to use using the graph-
ical interface. The program serves to control the robot in
real time and to program different complex movements
starting from simpler ones. The graphical interface of the
program is inspired by the original controlling software
provided by Vstone with the Robovie-M robot.

2. To control the simulated robot and the real robot using
the same program and graphical interface. As a result,
it allows to verify the accuracy of the simulation. The
virtual robot is controlled by our program tool as a device.
A device is intended as an external tool that is directed
by the program. In addition, the simulated robot and the
real robot can be controlled at same time, one via TCP/IP
and the other via serial port, respectively.

A. Functioning

The principal characteristics of Robostage are:
• Interfacing to the real robot by serial port
• Interfacing to the USARSim server and creation, in a

preferred position, of the virtual robot within the running
map

• Visualizing the information given by the RR and VR
• Sending commands to the joints, at the same time, too,

to the RR and VR.
Robostage is composed by a single thread, for reading

information and sending commands to the robot’s control
board, during each thread cycle. It communicates with the real
robot using a serial port. Robostage sends the commands to
the virtual robot communicating with the USARSim simulator
by TCP/IP protocol. It sends information to the simulator.

The program provides three different modules to control the
real and virtual robot:

a. USARSim module
b. Serial module
c. Rendering panel
The USARSim device controls the robot’s virtual model.

It sends commands to the joints of the model in USARSim
via TCP/IP, permitting the model’s movement. Dependly on

the available computer power, the simulator generates more or
less frames, resulting in a more or less fluidity of the images
on the screen.

The serial module controls the real robot, sending com-
mands to its control board. These commands are the servo-
motors’ position of the rotors. These positions are interpreted
by the control board in order to produce the PWM signals
needed to activate the servos subsequently. These positions are
the state (the value of the 22 joints) at which the VR or the
RR has to be ported. The format of data, of course, is different
dependently on if the RR or the VR will receive them. The
string that the serial module has to be sent to a robot has to
be of the following type:
@11>7f>8e>1b>80>7a>80>1e>a4>10>e0>80>71>e4>7f>85>7f>de>5c>ef
>0a>8e>77<80<80<80<80<80<80<80<80<80<80

While at each cycle, the robot answers sending the following
type of string:
>7f>8e>1b>80>7a>80>1e>a4>10>e0>80>71>e4>7f>85>7f>de>5c>ef>0a
>8e>77<80<80<80<80<80<80<80<80<80<80

These strings need to be read with sets of three characters:
For example ”> 7f” means to activate a particular servomotor
(a ”<” means to not activate a servomotor) and to port it to
the position ”7f” (in exadecimal). The particular servomotor
to which the set of three characters refers depends on the
particular position of that set within the whole string. The last
10 servomotors have been inserted in the string type for likely
future expansions. The Robovie-M’s control board has other
10 controller for other 10 servomotors. These last motors are
considered not activated (”<”) and placed in a default position
(”80”). The sending string differs from the receiving string
only for the first three characters: ”@xx” that indicates the
speed (xx, in exadecimal) with which the robot has to assume
the static position described by the sending string.

The rendering panel will be explained in Section B. This
merely manages a integer vector, with dimension 22. It con-
tains the values of the single joints placed in the same order
discussed for the serial module.

Robostage has been developed with wxWidgets libraries
(developed under GNU GPL licence [3]), to consent the pro-
gram’s porting under different OS without excessive changes
on the code. So far, we ported the program on Windows and
Mac OS X.

B. GUI

The main window is divided in four as shown in Fig. 1.
The first section is the control panel. It is situated at the top

right of the main window. The control panel is composed by
22 bars. Each bar controls one servomotor. The set of all the
servomotors’ position values corresponds to a robot’s static
position, which is visualized in the rendering panel. We call
each static position stance.

The second section is the frame panel. It is situated at
the bottom left. This is a collection of frames. A complex
movement, as a walking movement, is obtained by a sequence
of frames. In the frame panel each frame is represented as
a secondary window, like the ten windows in Fig. 1. Each

Fig. 1. Robostage graphical interface

frame window has its own frame number (the top section of
each frame window), like the red one ”0”. There are other
three sections of the frame window. The first one represents
the speed with which the robot will arrive in that static
position. The second one is a pointer to the frame that will be
processed after the current one. The third one is the number
of times that the frame will be repeated. There is a model,
called Sim module, which is a tool of our program, created
to interpolate the robot’s frames in order to create a fluid
movement. Since these movements cannot be fluidly executed
by the robot if they are too much different, they need to be
interpolated in order to be performed without jerks. In order to
obtain this, the user should create more frames as possible to
make a complex movement. Then, the program does another
interpolation obtaining a even more fluid final robot’s behavior.
The Sim module provides this to the virtual robot’s input and
to the real robot’s input.

The third section is the USAR Panel. It is situated at the
bottom right of the main window. This displays a feedback
information from USARSim. In fact, it provides information
about the speed and position of the center of gravity (COG)
of the robot in the virtual environment.

The last section is the rendering panel, situated at the top left
of the screen. It is only a visualization of each static position
(stance) of the robot. It works only if the real robot and the
virtual robot are not connected (i.e. in use). It helps users to
get a fast visualization of a stance qualitatively, without the
need of USARSim or the real robot. When a complex behavior
is loaded, the rendering panel shows the robot executing this
movement. Using a black background the robot is visualized
as a blue picture. This is controlled by Robostage, just as it
were the real robot, i.e. managing the command panel, which
is situated at the right of the rendering panel. The rendering
panel has been implemented by using the openGL libraries
(developed under GNU GPL licence [3]).

IV. THE ROBOVIE MODEL

Robovie-M is a humanoid robot produced by the Japanese
Vstone [13]. We used the version two of this robot. It has 22
DOF (degrees of freedom), and consequently 22 servomotors,
so distributed:

• 6 for each inferior art (legs)
• 4 for each superior art (arms)
• 2 for the trunk
The humanoid robot Robovie-M uses 22 Sanwa servomo-

tors. The characteristics of the servomotors are in Table I.

Motore Coppia Velocitá Dimensioni
Hyper ERG-VB 13 Kg x cm (6V) 60◦/0.1s (6V) 39x20x37.4 mm

SPEC-APZ 4 Kg x cm (4.8V) 60◦/0.2s (4.8V) 39x20x35.5 mm

TABLE I
ROBOVIE-M: TECHNICAL CHARACTERISTICS OF THE SERVOMOTORS.

Its dimensions are 290x240x65mm, with a complexive
weight of 1.9 Kg. The robot is distributed without the camera,
and its control board does not support a camera device. We
used the control board with the CPU Renesas SH2/7054,
previously described. This not only is more powerful than
the previous one, but also allows a camera’s supporting for
image acquisitions. In addition, we modified the robot in our
laboratory, in order to give it the possibility of mounting a
camera. We developed a metallic head within which inserting
the camera in a fixed position respect to the shoulders of the
robot. In Fig. 2(b) it is possible to observe the head we build
for our robot. The control board’s power supply is given by a
a set of batteries (five batteries of 1.2 V and 2300 mA) that
gives 6 V as output, and that is able to provide a current of 6
A, needed to run the 22 servomotors of the robot.

The virtual model of the Robovie-M robot has been devel-
oped using the program 3DStudio. We took the size and weight
measures of each single part of the Robovie-M, including the
servomotors. Then, we drawn the virtual model of the robot
with 3DStudio. The model needed to be exported as *.ASE
files (one file for each part). This is because an *.ASE file is
a generic mesh file, which can be recognized and imported
by the Unreal Editor, as static meshes. This is the 3D model.
There is the need of a script for each virtual robot’s part. These
scripts define the physical parameters of the virtual model of
the robot, such as masses, frictions, and inertial tensors.

V. EXPERIMENTS, PLATFORMS, AND METHODOLOGY USED

Unreal Engine 2 and Unreal Script are configurable and
finely tunable in order to create a realistic simulation (for
instance one can set the parameters for friction and gravity).
Without a precise simulation, an error in the initial phases of
the robot’s movements will propagate and will increase during
the simulation, affecting the final results negatively. For this
reason, we visually compared the real robot’s behavior with
the simulated one in order to define the best values of the
PenetrationScale and the ContactSoftness parameters of the
simulator. Marco Zaratti explained them in [14]. These are:

• PenetrationScale [default: 1.0]. Since interpenetration is
caused by collision, this causes objects to appear to have
impacted each other much harder (or softer, if the value
is lower) than they really did. Penetration is multiplied
by this amount. We set this value as: 5.

• ContactSoftness [default: 0.01] (karma units). This pa-
rameter is important in the cases of two, or more,
objects collide. In these cases there are some initial inter-
penetration. The amount of penetration depends on how
fast the two objects were going before they collided.
Since the objects are considered as rigid object, after col-
lision, Kea’s projection feature will push the objects apart
to reduce the penetration to zero. However, sometimes
Kea will push the objects too far, and the contact will be
broken. This can be a problem, for example, when objects
are resting on the ground. When the contact is broken,
the object will fall a short distance into the ground, the
contact will be re-made and the object will be pushed out
again. This process can result in resting objects that jitter
or twitch from time to time. One solution is to set the
softness option on the contact. This will cause two objects
that are being forced together to naturally inter-penetrate
slightly, preventing contact breaking. We set this value
as: 0.001.

In addition to the visual confrontation, USARSim can return
time and spatial coordinates of the simulated objects. Our first
experiments are aimed at understanding the USARSim simu-
lator’s precision in simulating the robot behavior. Obtaining a
precise simulation of a single step of a robot is the first thing to
create a truthful simulation of more complex behaviors, such
as kicking a ball. The Fig. 2(a) and the Fig. 2(b) show the
virtual model of our Robovie-M in the simulator environment
and the real one in our laboratory. We choose to analyze the
real and virtual robots’ walked distance and we rescaled the
time spent by the virtual robot. We also choose to analyze and
to compare the coordinates of the center of gravity (COG) of
the robot in the frames of reference of the world.

Firstly, we made the RR performing a single left step
followed by a right step. This is the basic behavior of a more
complex walking movement. Secondly, we analyzed a more
complex movement, which may be seen as the repetition of the
basic one, i.e. a basic walk. We generated a motion sequence
to make 8 steps along a straight line. This motion has been
written on the RR and on the VR and we repeated this motion
10 times (both for the RR and the VR). Again, we compared
the time and the coordinates of the robot in the real and in
the simulated world. We placed the RR on the floor, in our
laboratory. Then we started the RR from a fixed starting point
and we made a video with a digital camera, which allows a
time reference. The ground-truth position of the RR was given
by a flexible ruler placed along its trajectory. We let the robot
walking straight.

We took the time necessary to complete the 8-step walking
task by the real robot. During the experiment, we evaluated
the position of the robot every 25 seconds, in order to plot
the behavior of the robot, in terms of speed, trajectory, and

(a) The VR

(b) The RR

Fig. 2. The VR drawn by the USARSim simulator and the RR Robovie-M

distance run as functions of the time. This was achieved thank
to the flexible ruler placed along the robot walking direction.
Then, we loaded the VR in the Unreal environment, and we
did the same thing. USARSim gives the values of the speed,
time, and position of the COG of the robot every thread
cycle. USARSim uses a ”heavy” graphical engine. This latter
consumes several processor’s and memory’s resources, causing
slow down during the simulation. This surely affects the time
spent by the VR in performing its 8-step walking task. We
simulated the tests without running any other application, so
giving the most resources to the computer as possible. We
used an Apple PowerBook G4 with 768 MB of RAM memory,
nVidia GeForce FX Go5200 64 MB of VR, and a G4 1.5 GHz
PowerPc processor, with the OS X 10.4 operative system.

Then we compared the data of the RR with these of the VR.
The plot in Fig. 3(a) shows the VR’s and the RR’s walked
distance as function of time. Here, it is possible seeing how
the RR and the VR maintain the same speed during the first
40 s. Then, the VR is faster. The plot in Fig. 3(b) shows the
walk in terms of the quadratic error between the virtual and
real walk. These graphs have been obtained by averaging the
results of our 10 testing walks of the RR and our 10 testing
walks of the VR.

In the plots in Fig. 4(a), 4(b), and 4(c) there are represented
three test cases of the trajectories of the two robots in three
cases, as function of the run distance. We made 10 tests,
and we took three of these, because of their similarity to
each other. We made the VR and the RR walking along a
straight direction, which is represented in these graphs as the
x-coordinate. The plot in Fig. 5 represents the error in this
three cases, as function of the run distance, intended as the
difference of the y-values of the trajectory coordinates. The
y-values represent the values of the deviations of the robots’
trajectories from the given (imposed, represented by the x-
axes) direction, along its orthogonal axes. In each case the
error has been calculated as the difference between the VR
values and the RR values, respectively. Subsequently, the plots
in Fig. 6(a) and in Fig. 6(b) represent the average of the ten
cases and the quadratic error, respectively.

(a) Averaged

(b) Quadratic error

Fig. 3. VR’s vs RR’s walking progression

As an additional experiment, we tested the performance of
the USARSim in terms of frames per second. Since using
more than one robot is necessary specific in order to use
the simulator to test virtual soccer games in which there are
presented more than one robot. Using more than one robot,
the computational complexity of the simulation increases, than
the performances decreases, in terms of scenes fluidity and
speed. We tested the performance of USARSim using frame
speed (fps) frames per second. USARSim directly return this
information to the user. In addition, it allows also to store it

(a) Test 1

(b) Test 2

(c) Test 3

Fig. 4. VR’s vs RR’s walking progression test

in a file log, with the other information (robot’s speed, time,
etc.). Two tests have been performed: One with one VR and
the other with two VRs. In each test the robots were still fixed
during the first 7 s, and they moved after that.

The plot in Fig. 7(a) shows the rendering of USARSim
during, firstly a one VR simulation (blue line), and then a two-
robot simulation (red line). The physics performance has been
obtained redirecting the visualization to a map’s corner. With
this expedient, it has been possible not to have to visualize
polygons and textures, which need to be rendered. The plot in
Fig. 7(b) shows the physics performance of the simulator. As

Fig. 5. Error of the trajectories in each of the three cases as function of the
run distance

(a) Averaged

(b) Quadratic error

Fig. 6. VR’s vs RR’s walking progression

in the previous plot we simulated a one-VR and a two-VRs
condition, with the robots in a fixed position (again before the
7 s) and during a moving condition (again after the 7 s).

(a) Rendering using two VRs

(b) Physics performance using two VRs

Fig. 7. USARSim performance

Finally, we simulated a penalty kick: The robot has to
perform 8 steps and after that to kick a ball placed on the
penalty kick spot in a regular RoboCup field. We placed the
real robot in the laboratory and tested three different kick
penalty situations. As in the previous experiment, we placed
a flexible ruler along the RR walking direction, in order to
obtain the exact values of position, in terms of x and y
coordinates. Then, we tested the time required to perform
this task. We made different movies with a digital camera,
to document these tests. At the link ”http://www.dei.unipd.it/
ẽmg/downloads/penaltyComparison.wmv” there is the movie,
representing the RR and the VR, during the performing of the
same kick penalty.

VI. DISCUSSION

We successfully tested the simulator by implementing the
Robovie-M robot and controlling it at a full frame rate (30
fps). The simulator is currently used for the development of
our RoboCup team at IAS-Lab of the University of Padua.
The simulated robot seems to be effectively adherent to the

real robot. The experimental results show that their behavior
are quite similar, intended as precision of movements in the
space. Sometimes differences may occur, which are caused not
by simulation errors, but by a casual error during the walking
action. Since walking results not only on the programmed
movement but also by the starting conditions of the robot,
even small differences in the robot’s starting positions may
affect the final results. We think that these affect the results
most.

Another fact is that a robot may slip on the floor while it
is walking, therefore changing its trajectory. One very simple
explanation may be the following one: The laboratory’s floor
and the virtual floor may do not have the same friction. Under
this consideration, the explanation for this discrepancy is that
the RR slips more on the floor, changing its direction more
than the VR from the right direction, and then loosing more
time during its walking. To solve this problem it is possible
to modify the friction coefficient in USARSim. The problem
is that to do this and simulate a real condition, one has
to know the exact real value of the current floor’s friction
coefficient. Without this one has to find it setting different
values in USARSim empirically, in order to find the one
that best approximate the real situation. However, it is not
so useful, considering that doing so the simulator needs to be
calibrated every time one uses the robot with different floors.
In addition, this problem does not affect the time spent by
the VR to cover the simulated distance considerably. We are
interested in a qualitative comparison of the RR’s and VR’s
behaviors.

Another explanation considers the source of the information
given by USARSim. This is obtained by the program consid-
ering the COG of the robot model. For the RR it was not
possible to evaluate the position and speed of the its COG,
then we evaluated the position of the RR’s feet. This is a
more precise information considering the robot’s trajectory. In
fact, the VR’s trajectory plots show great oscillations in their
data. This is caused by the fact that the barycenter oscillates
during a walking ever, while the feet are stable for about half
the step’s time. With these bias, it is clear how much the VR’s
positions are affected by these systematic errors.

Finally, the last consideration is about the fact that each
trajectory of the VR is different from the previous one. This is
because the physical engine of UNreal Tournament Karma [2],
has an internal engine that solves a set of linear equations for
each simulation’s step. Karma is a library of the USARSim’s
MathEngine. Karma uses the Lagrange’s multiplying method
to model the rigid bodies. Within this model, the effect of
the joints is modeled by forces that act to maintain the joint.
To calculate these forces it is solved a set of linear equations
using the linear prediction method (LPC). Kea is the solver
of these equations. It calculates, at the end of each time-step,
as the forces are applied to satisfy the joints. Kea, solves the
differential equations with a certain degree of approximation
that may be different every time. So the result may be different
every time.

VII. CONCLUSION

In this paper we discussed and analyzed the usefulness
and validity of a particular simulator, called USARSim. We
described a program to generate movements for the humanoid
robot Robovie-M. We proposed a virtual model in order to
use it within the simulator. We analyzed the behavior and
the performance of a Robovie-M robot’s simulated activity
based on a simple basic task like walking along a straight line.
Finally, we analyzed the USARSim’s performance in terms of
graphical fluidity, measured in fps, during the experimental
case of simulating first one robot and then two robots at the
same time.

The next step of this research will be visualizing a virtual
scene by using a property of USARSim, simulating the camera
on the head of our robots. Visualizing a scene of the virtual
environment in a egocentric view, it will be possible to process
it as it is currently done with the images obtained with the
camera of the RR. So, it should be possible to program the
VR to act in the virtual environment as the RR does in the
real environment. The further step, therefore, will be to write
a computer program that accepts the data previously analyzed
from the visual scene given by USARSim, and will elaborate
them in order to send commands to the VR by Robostage.
This computer program will reproduce the functioning of the
control board of the RR via software. Doing so, the VR will
be completely independent, as a simulation software should
require.

REFERENCES

[1] Marco Zaratti, Marco Fratarcangeli and Luca Iocchi A 3D Simulator
of Multiple Legged Robots based on USARSim, 10th RoboCup Inter-
national Symposium (CD-ROM Proceedings), Bremen, Germany June
2006

[2] MathEngine. MathEngine Karma User Guide, March 2002. Accompa-
nying Karma Version 1.2.

[3] GNU Org. Free Software foundation. URL: http://www.gnu.org
[4] USARSim Urban Search and Rescue Simulation. URL:

http://usarsim.sourceforge.net/
[5] Unreal Engine 2. URL: http://www.unrealtechnology.com
[6] MOAST System URL: http://moast.sourceforge.net/
[7] T. Laue, K. Spiess, and T. Röefer, SimRobot - A General Physical

Robot Simulator and Its Application in RoboCup, in RoboCup 2005:
Robot Soccer World Cup IX, ser. Lecture Notes in Artificial Intelligence.
Springer.

[8] Asura: The United Team of Kyushu. URL: http://www.asura.ac
[9] Karma physiscal engine. http://wiki.beyondunreal.com/wiki/Karma.

[10] Open Dynamics Engine. URL: http://www.ode.org
[11] Cyberbotics. URL: http://www.cyberbotics.com/products/webots/
[12] K-Team. URL: http://www.k-team.com
[13] Vstone Corporation. URL: http://Vstone.co.jp/
[14] URL: http://digilander.libero.it/windflow/index.htm
[15] Jijun Wang. ”USARSim. A Game-based Simulation of the NIST

Reference Arenas”. University of Pittsburg, May 2005. URL:
http://sourceforge.net/projects/usarsim/

[16] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, C. Scrapper. ”Bridging
the gap between simulation and reality in urban search and rescue”.
Robocup 2006: Robot Soccer World Cup X, Springer, 10th RoboCup
International Symposium (CD-ROM Proceedings), Bremen, Germany
June 2006

[17] S. Balakirsky, C. Scrapper, S. Carpin, M. Lewis. ”USARSim: providing
a framework for multi-robot performance evaluation”. Proceedings of
PerMIS 2006

[18] S. Carpin, T. Stoyanov, Y. Nevatia, M. Lewis, J. Wang. ”Quantitative
Assessments of USARSim Accuracy”. Proceedings of PerMIS 2006

