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Abstract

In this paper an omnidirectional Distributed Vision System (DVS) is presented.
The presented DVS is able to learn to navigate a mobile robot in its working envi-
ronment without any prior knowledge about calibration parameters of the cameras
or the control law of the robot (this is an important feature if we want to apply
this system to existing camera networks). The DVS consists of different Vision
Agents (VAs) implemented by omnidirectional cameras. The main contribution of
the work is the explicit distribution of the acquired knowledge in the DVS. The aim
is to develop a totally autonomous system able not only to learn control policies
by on-line learning, but also to deal with a changing environment and to improve
its performance during lifetime. Once an initial knowledge is acquired by one Vi-
sion Agent, this knowledge can be transferred to other Vision Agents in order to
exploit what was already learned. In this paper, first we investigate how the Vision
Agent learns the knowledge, then we evaluate its performance and test the knowl-
edge propagation on three different VAs. Experiments are reported both using a
system simulator and using a prototype of the Distributed Vision System in a real
environment demonstrating the feasibility of the approach.

1 Introduction
In recent years, the robotics community is shifting its attention from a single agent
performing its task in a structured environment to distributed systems where a number
of agents cooperate together to achieve a common goal in unmodified human-made
environments. Several projects explored the possibility to support the human and robot
activity in the environment with a network of smart sensors [8, 31, 24].
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Figure 1: A picture of the whole system showing two Vision Agents and the robot used
in the experiments.

In [17] we proposed to use a pre-existing network of surveillance cameras to nav-
igate a mobile robot, i.e. to implement an intelligent infrastructure able to support
robots’ activities in a way similar to the ones proposed in [11, 12]. In these works, the
network of cameras is named Distributed Vision System (DVS) to emphasize that the
system of cameras acts as a whole at the aim of reaching the final objective: navigate
the robot in the environment. In our implementation the DVS, as shown in Fig. 1, is
composed of several Vision Agents (VA). Each VA is an omnidirectional vision sensor,
Fig. 2a), and is able to acquire and process images, to communicate with other VAs
over the network and to send the movement commands to the robot, Fig. 4.

In our approach the cameras are not calibrated and the robot does not have any
sensor or processing power on board. Each VA will take the control of the robot every
time it enters its field of view. The robot is just a “dummy” mobile platform whose
motors are driven by the Vision Agents in the DVS. On the contrary, the classical
approach to this kind of problems is to calibrate the camera in order to find the mapping
between the image space and the world space and to use the control law of the robot
to drive it to desired points in the 3D-world. We want to bypass this procedure, as
sketched in Fig. 3, and be able to relate the image space directly to the motor space
of the robot. An additional reason to deal with uncalibrated cameras, is the aim to use
the system in environments in which there is a pre-installed network of surveillance
cameras. These cameras usually are not calibrated. To calibrate by hand all these
cameras can be tedious or even unfeasible if the number of cameras is large or if the
cameras are distributed over a large space. Several researchers are exploring the issue
of multiple-camera network calibration (e.g., [30] [21] [9]).

We propose a different approach. We do not want to program a robot by using
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a) b)

Figure 2: a) One of the omnidirectional cameras used in the experiments. b) Example
of an image taken by the omnidirectional camera.

the information provided by a network of cameras calibrated by hand. We propose to
build a network of uncalibrated vision sensors with overlapping fields of view, able to
autonomously learn to navigate a service robot in a large indoor environment composed
of several connected rooms and corridors.

In [17] the same DVS is introduced, but what makes that system different from
the one proposed in this work is the learning procedure. In [17] neural networks were
used to learn how to control the robot. However the experimental results showed a
poor generalization ability of the neural system due to an overfitting of the training
data. In the current work a different learning methodology is used instead of a neural
network. A totally autonomous system should be able to learn and to adapt itself to the
eventual variations of the environment in order to improve its performance during its
lifetime. Reinforcement Learning (RL) [29] seems a very appropriate paradigm to face
this learning problem because of the possibility of a continuous and on-line learning
without the need of a teacher which indicates the best association between situations
and actions (policy).

RL has been receiving great attention by robotics researchers to solve complex real-
world problems. Initially individual autonomous agents were used in many domains
[1, 2, 19, 7]. In last years, instead, there has been increased interest to apply RL and, in
a more general view, Machine Learning to problems in the area of distributed systems
or multi-agent systems. Learning based approaches provide a new way of designing
agents in which agents interactions do not need a priori specific definition [3]. Learn-
ing methods may provide effective, near-optimal solutions to complex planning and
decision-making problems under uncertain environments. A good and exhaustive sur-
vey of cooperative multi-agent learning in a spectrum of areas, including not only RL,
but a wide range of Machine Learning techniques, is presented in [22]. RL based ap-
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Figure 3: A sketch representing a comparison of our approach with respect to the
classical approach for robot navigation by an external camera.

proaches are reported in [5, 25, 14, 16, 4, 13], where different applied problem domains
and different interaction mechanisms are explored.

In this work we apply the RL paradigm to our DVS. We develop a totally au-
tonomous system which learns to guide a robot from an initial position to a desired one
(target). In particular one VA learns to control the robot, then the same knowledge is
passed to other VAs. Those can improve the initial knowledge whilst still experiencing
the world and adapting it to the eventual differences with respect to the first VA. In
this way the learning time is reduced since the new VAs exploit the initial knowledge,
instead of starting from scratch.

The aim of this paper is twofold: first we prove that a VA is able to learn au-
tonomously to control the robot, second we prove it is possible to distribute the knowl-
edge acquired by one VA to a different VA located at a different position in the en-
vironment. The knowledge is learnt by the VA by using a RL method. In particular
SARSA(λ) with Replacing Eligibility Traces has been used as RL method. In addi-
tion the LEM ( Learning by Easy Missions) [2] technique has been applied with the aim
of speeding up learning. During learning each VA has to cope with hard problems such
as obstacle avoidance and path optimization. In the first stage of the work, the experi-
mentation is performed in simulation in order to investigate how SARSA(λ) method
applies to the VA. Then the adaptability of the learned knowledge to different VAs in
the environment is tested. An optimization analysis of the parameters involved in the
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SARSA(λ) and LEM method is also carried out. The choice of the optimal parame-
ters is essential in the application of learning algorithms due to their relevant influence
on both the learning time and the success rate. The experimental results obtained in the
simulation phase prove the efficiency and the robustness of the learning system and en-
courage the application of the system in the real context. In fact additional experiments
are conducted in the real environment by using a network composed of two omnidirec-
tional VA and one mobile robot. The experiments showed the system is able to use the
knowledge acquired in the simulation and to improve it to learn how to control the real
robot in the real environment and to navigate it from a starting point to a goal point,
both of which are indicated by the user by clicking on the omnidirectional image.

The rest of the paper is organized as follows. Section 2 gives an overview of the
learning system and its task. Section 3 describes the simulator used for the experimen-
tation. Section 4 gives an overview of SARSA(λ) algorithm and a description of all
its elements: state and action spaces, action selection mechanism and reward function.
The LEM strategy is briefly introduced in section 5. Section 6 describes the opti-
mization of the RL parameters. Sections 7 and 8 report the experimental results both
in simulation and in the real environment respectively. Finally some conclusions and
future work end the paper.

2 System Overview
Each VA in the DVS has the task of navigating the mobile robot in its own field of
view, sending to the robot motion commands to move from a starting position to a
target one. Fig. 4a) represents the information flow in the system. Once the image
is grabbed by the camera of one of the VAs (on the left) it is processed by the VA
and using the knowledge acquired by the VA motor commands for the robot are sent
via the wirelass LAN. Fig. 4b) represents the internal structure of the VA module.
The Vision Module processes the image seeking the robot. The robot’s position is
transferred to the Learning Module that outputs the motor command to be sent to the
robot by the Communication Module. The Communication Module can also send the
frames grabbed by the VA to the VA Monitor for debugging purposes.

The choice among the motor commands must be done considering that the robot
has to reach the target position as fast as possible. This means that the VA should
choose the shortest path and the proper velocities for the robot. That choice depends
on the visual sensor used. Considering that the VA is an omnidirectional camera, the
distances between points of the environment estimated by processing the images are
different from the real ones. An accurate calibration of the system could allow a more
correct estimation of distances and then a good definition for the velocities to be sent
to the robot. However, we want the VA to perform its task without any calibration of
the omnidirectional camera and without any knowledge about the robot control law,
but learning by itself the best policy to guide safely the robot (i.e. the best commands
to give to the robot for each encountered situation). In addition the VA must be able
to adapt the acquired policy to changes in the environment such as variations of the
camera parameters (e.g. different height between the camera and the floor). In the
experimentation we test the DVS in an environment where only the cameras, which
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a) b)

Figure 4: a) The conceptual representation of the software. b) The Vision Agent soft-
ware module.

are fixed on tripods, represent obstacles for the robot. Then the VA has also to learn to
guide the robot avoiding these obstacles.

Summarizing the VA’s task is to learn:

• to guide the robot

• to choose the optimal path from the starting position to the target one

• to choose the proper velocities

• to avoid the robot exits from the field of view of the VA

• to avoid the robot colliding with the tripods (obstacle avoidance problem)

• to adapt the learned knowledge in case of new situations in the environment

3 The Simulator
In order to study the feasibility and the quality of the proposed learning system, we
built a simulator able to reproduce the peculiarities of the VA. In particular, the relation
between the pixel radial distance of a point from the center of the camera and the
corresponding radial distance from the camera in the real world is evaluated. The
simulated system identifies the robot by a point on the virtual image and three values
(x, y, β): x, y being the pixel coordinates of that point and β its orientation. Knowing
the starting position of the robot the simulator receives as input a pair of velocities
(linear, jog), which refer to an action to be taken by the robot, and gives as output the
new position of the robot on the image. A graphical interface has not been implemented
because our aim is to build a fast system and with a very low computational cost.
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4 Learning the task
As previously introduced, the VA learns to guide the robot by using the RL paradigm.
Then, by the direct interaction with the unknown environment, it discovers the best
commands to send to the robot. In order to understand how the VA learns the correct
policy, a description of the principal components for a RL agent is needed. In this
section first a brief overview of SARSA(λ), the RL algorithm implemented to learn
the policy, is given. Then we show how the actions are selected during learning, how
we construct the state and action spaces and finally how the reward function is defined.
Finally a description of the LEM mechanism, used to reduce the learning time, is
presented.

4.1 SARSA(λ)

In RL problems the learning agent attempts to acquire on-line a policy which maxi-
mizes the expected cumulative reward in the long term. A policy π is a mapping from
each state s and action a to the probability of taking action a when the agent is in state s
(π : S×A→ [0, 1], where S is the state space and A is the action space). SARSA(λ)
is an on-policy Temporal Difference (TD) control method [28]. The main peculiarity of
on-policy TD methods is that, during learning, they incrementally evaluate or improve
the policy that, at the same time, is used to make decisions. In other words on-policy
methods update gradually the policy by using the learned estimates of the current pol-
icy. These methods differs from off-policy methods which, instead, estimate a policy
whereas they use another policy for the control. A policy π is evaluated estimating an
action value function Q : S × A → R which represents the expected return when the
agent performs a given action in a given state. The off-policy methods directly approx-
imate the optimal action value function, independent of the policy being followed. The
on-policy methods, instead, update the action value function considering the current
approximate policy.

The value function is the key element of RL methods and estimates the long-term
reward. A value function can be a function of states only (V : S → R), but since we use
SARSA(λ) method, we consider the value function as a function of state-action pairs.
These values are used to select actions so as to maximize the discounted cumulative
reward

∑∞
k=0 γkr (where γ is the discount factor and r the reward value).

SARSA(λ) updates all state-action values Q(s, a) according to the following rule:

Q(s, a) ← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))e(s, a) (1)

where γ is the discount factor, α is the learning rate parameter, a′ is the action the robot
takes in the next state s′ and e(s, a) is the eligibility trace of action a in state s. In this
work we use replacing eligibility traces [26] which are updated for all s, a as follows:

et(s, a) =
{

1 if s = st and a = at

γλet−1(s, a) otherwise

where λ is the decay parameter 0 ≤ λ ≥ 1. An eligibility trace is a temporary record
of the occurrence of an event, such as the visiting of state or the taking of an action.

7



By using eligibility traces the learning system is able to give out credit or blame to the
explored state-action pairs in a more efficient way.

4.2 Action Selection
During learning the choice among the possible actions, in each state, must be carried
out taking into account the exploration/exploitation dilemma. The agent has to ex-
ploit what it already knows in order to obtain reward, but it also has to explore new
actions in order to learn possibly better solutions. A way to achieve that is to select
actions stochastically according to their action values. In our work, actions are se-
lected according to the ε-greedy policy [29] that chooses most of the time the action
with the maximal estimated action value. Actions with a lower action value are cho-
sen with probability ε. The probability is higher at the beginning, whereas it decreases
incrementally with time. This enables more exploration at the beginning and more
exploitation of the acquired knowledge during advanced learning phase.

4.3 State Space Definition
The 640 × 480 image captured from the VA is the only source of information it has
about the environment. The VA has to estimate the position and the heading of the
robot in the image. An important thing to consider when an omnidirectional system is
used, is that the robot can appear only on a subset of all possible pixels on the image.
This subset is a circular ring with external diameter of 480pixel and internal diameter
of 20pixel. The internal circle contains the self-reflection of the camera. The region
external to the ring is not imaging the omnidirectional mirror. Therefore the robot can
be detected only inside the ring. Since the robot, once detected, is represented by a
point (one pixel position) in the image, the number of the different positions it can
occupy inside the ring is considerable (about 180600). Besides, for each position we
must consider the different orientations of the robot. As a consequence if we think of
the state of the robot as a position-orientation pair, the state space will be really large
and then difficult to manage by using a RL algorithm in its discrete form.

In order to construct a reasonable state space for the VA, we have to analyze its
particular task. To perform successfully its task, the VA needs to know:

• the distance between the robot and the target position

• the distance between the robot and the camera

• the distance between the target position and the camera

• the orientation of the robot with respect to the target position

• the orientation of the robot with respect to the camera

The distance d between the robot and the target position is classified into 8 different
classes considering a partition of the range interval of d as shown in table 1.

Considering the distance between the robot and the camera, the circular ring of
the image, described before, can be divided into five concentric regions as shown in
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Classes Distance d(pixel)

D0 d ≤ 4
D4 4 < d ≤ 8
D8 8 < d ≤ 12
D12 12 < d ≤ 30
D30 30 < d ≤ 60
D60 60 < d ≤ 120
D120 120 < d ≤ 240
D240 240 < d ≤ 480

Table 1: Definition of the classes for the distance d between the robot and the target
position

a) b)

Figure 5: Regions of the image space: a) regions defined by the distance between the
robot and the camera; b) regions defined by the distance between the target and the
camera.
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a) b)

Figure 6: The angular sectors which define the relative orientation between a) the robot
and the camera and between b) the robot and the target position.

fig. 5. The black circle (with 20 pixel radius) in the center of the image represents
the reflected image of the camera. The black area around the ring is out of the field of
view of the camera. The Z1 region has a distance of 30 pixels from the black circle.
Z1 and Z5 are alarm regions because of their closeness to the black areas. If the robot
is detected in those regions, the VA has to pay more attention to the movement of the
robot. Z5 is 15 pixel thick. The remaining regions Z2, Z3 and Z4 (with 110 pixel,
145 pixel and 320 pixel radius respectively) are defined considering that a camera with
a hyperbolic mirror is used and then the resolution of a pixel changes depending on the
distance from the center of the image.

Considering the distance between the target position and the camera, the ring is
divided only into three regions: T1 = Z1 + Z2, T2 = Z3 and T3 = Z4 + Z5 and each
of them is classified free or notfree depending on the relative position of the robot
with respect to the target position. In particular each region is considered free if the
camera does not represent an obstacle for the robot which can reach the target position
by a straight trajectory. On the contrary it is notfree if the camera is between the robot
and the target position.

Finally, the relative orientation between the robot and the camera and the one be-
tween the robot and the target position are determined. Figure 6a) shows the angular
sectors (SC) defined for the camera: Left, Right, Front and Rear. They indicate if
the camera is on the left side of the robot, on its right side, in front of it or behind it.
For the target position the angular sectors have been augmented in order to optimize
the robot behavior. These sectors (ST ) are: Left, Front-Left, Front, Front-Right,
Right, Right-Rear, Rear and Rear-Left as shown in fig. 6b).

Concluding, the state of the VA is defined considering all the elements described
above and is represented by the 5-tuple (d, Zi, Tj , SC , ST ) where i = 1, ..., 5, j =
1, 2, 3. The total number of states is 7680 (= 8 × 5 × 3 × 4 × 8 × 2), some of them
are terminal states, but a lot of them are impossible states. With impossible states we
mean states which cannot happen such as for example (D4, Z1, T3, ., .). At the end the
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number of effective states does not exceed 2500.

4.4 Action Space
The robot can receive commands in terms of linear and angular velocities (linear, jog),
then we define an action as a pair of these two velocity values. Each velocity is ad-
ditionally discretized into sub-actions: 3 for the linear velocity (stop, slow, fast)
and 5 for the jog one (stop, slow-left, slow-right, fast-left, fast-right). The
(stop, stop) action is not included, as the prime task of the VA is to move the robot in
its environment. During the learning phase it may happen that performing one action
does not correspond to a state transition, i.e. the passage from one state to another
different state, (State-Action Deviation Problem). To deal with this problem we adopt
the solution proposed in [2]. Each aforesaid action is considered as a micro-action.
The robot continues to perform one micro-action until a state transition happens. A
sequence of micro-actions is defined as a macro-action. The last one is considered as
the effective action by the learning system and only when the state changes the value
function is correctly updated by using eq. 1.

4.5 Reward Function
During learning the VA receives reinforcements as it performs actions. In particular it
is penalized when it guides the robot outside the field of view of the camera (r = −60).
On the contrary it receives a positive reward if the robot reaches successfully the target
position (r = 10). During the other state transitions the VA receives penalties or
rewards proportionally both to the selected linear velocity and to the angle between the
robot heading and the target position. Higher linear velocities are preferred in order to
reach the target faster. Similarly the reward is high if the angle between the robot and
the target is low, but decreases as this angle increases.

5 LEM Strategy
A drawback with RL methods is the long learning time. Several strategies have been
proposed in literature to accelerate learning. In [15, 6] a splitting of the whole task
into different parts or behaviors is used. In [19] the learning agent receives advice
for figuring out what part of the action space deserves attention for each situation.
Asada [2] introduces a new technique known as LEM strategy. The learning schedule
is constructed such that the agent can learn in easy situations (or missions) at the early
stages and in more difficult ones as learning goes on. The difficulty related to the
application of LEM is the assumption about the knowledge of the ordered sequence
of state transitions toward the target one, but the whole knowledge is not needed. In
our problem due to the definition of states the agent roughly knows the ordering of
state transitions then a partition of the state space can be applied. We categorize the
state space S into sub-sets Sk (missions) by considering first the distance between the
robot and the target, then the regions where the robot can be, then the orientation of
the robot with respect to the target and finally the orientation of the robot with respect
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to the camera. So the first easy mission S1 contains those states having D4 as distance
between robot and target, Z1 and T1 as regions where the robot is, frontal orientation
between robot and target and different orientation between robot and camera. Once
the robot learns to reach the target from the states of S1, it learns the second closest
easy mission S2, where different orientations between robot and target are considered.
After that the robot learns the third closest mission S3 and so on. The total number of
missions obtained is 1120 with |Sk| ≤ 6, considering that there are a lot of impossible
states.

Asada proved that in order to shift initial situations into more difficult ones, which
means shifting from sub-set Sk−1 to Sk, the following relation should be satisfied for
each k = 1, 2, 3, . . .:

∆Qt(Sk, a) =
∑
s∈Sk

|max
a∈A

Qt(s, a)−max
a∈A

Qt−∆t(s, a)| < ε (2)

where ∆t is a time interval which indicates the number of episodes attempted for
the Sk mission and should be greater than |Sk|, whereas ε > 0 is equal to:

ε = α
(1− γ)

γ

∑
s∈Sk

max
a∈A

Q(s, a) (3)

Asada proved these relations in the case of Q-learning algorithm [32], a commonly
used RL algorithm. It is straightforward to prove that the same relations hold also in
our case where a different RL algorithm and a different reward function are used. By
our knowledge no additional information, instead, can be found in literature about the
∆t parameter.

5.1 The ∆t parameter
It is considered that the ∆t parameter needs particular attention since it is related to the
learning time. We analyze in greater detail how that parameter affects both the learning
time and the agent performance. The system simulator is used for this aim.

Figures 7 and 8 show the results obtained after running a number of simulations
for different values of ∆t, averaging the result every 25 simulations and with α = 0.5,
γ = 0.95, λ = 0.02 (see next section). Each simulation consists of the completion of a
learning phase which starts from a zero knowledge and executes all the 1120 missions
defined above. Figure 7 plots the number of episodes versus ∆t. As expected, time
grows as ∆t increases, but observing the plot we can infer that the relation is practically
linear. Figure 8 shows a plot of the success rate (i.e. the percentage of successful
episodes) versus ∆t. Such a percentage is evaluated performing 200 test trials after
each simulation. Notice that the success rate initially grows but it stabilizes for ∆t
values higher than 12. This values satisfy the relation ∆t > |Sk| since in the partition
that we apply to the state space maxk |Sk| ' 6, disregarding the unreachable states. In
the experimentation we choose the value ∆t = 14, because it produces a more stable
success rate with respect to the value 12.
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Figure 7: Learning time versus ∆t parameter. Each plotted point refers to the average
number of episodes evaluated on 25 simulations.

Figure 8: Percentage of success versus ∆t parameter. Each plotted point refers to the
average success rate evaluated on 25 simulations.
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Figure 9: Learning episodes versus the α parameter for γ = 0.95 and different values
of λ.

6 RL Parameter Optimization
The system simulator is very useful not only to learn and to test the policy of the VA in a
virtual environment, but also to study how to choose the best values for the parameters
(α, γ, λ) involved in SARSA(λ) method. There is not a standard way to define those
parameters to guarantee the convergence of learning. Usually they are heuristically
defined and are closely connected with the particular application. In our work we, in
depth, study those parameters since they influence the learning time, the success rate
and the shifting parameter in the LEM strategy (see previous section). The study
is carried out considering triplets of different values for α, γ and λ, performing 20
simulations for each combination of values and averaging the results. For the evaluation
of the success rate 200 test trials are executed after each simulation.

Figures 9 and 10 show the results obtained varying α and λ and with a fixed value
for γ (=0.95). As can be seen the value for α is close to 0.5 to have both the minimum
number of learning episodes and the high percentage of success. As expected by apply-
ing SARSA(λ) the percentage of success grows as λ increases, but also the learning
time does the same.

Finally figures 11 and 12 show the results obtained varying α and γ, whereas λ has
been fixed to 0.1. As the discount rate γ decreases the number of episodes and also the
success rate decrease. This is closely connected to the shifting parameter (see relation
(3)) of LEM which is influenced by the discount rate in a deeper way than the learning
rate parameter α (see fig. 11).

Concluding, after an analysis of the results, we choose the optimal values for α, γ
and λ that gave the best tradeoff between learning time and success rate. The values
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Figure 10: Percentage of success versus the α parameter for γ = 0.95 and different
values of λ.

used in the experimentations are the following: α = 0.5, γ = 0.95, λ = 0.02.

7 Experiments in simulation
The experiments in simulation consist of two stages: first the VA learns to guide the
robot toward the target, then the learned policy is applied to different VAs in order to
analyze its adaptability to changes of the environment. The first VA simulates an om-
nidirectional camera that is 1.8m high above the floor. A number of simulations are
carried out to learn the optimal policy. Each simulation consists of two phases: a learn-
ing phase, starting from a zero knowledge and using the LEM strategy and a testing
phase to examine the performance of the VA. The average number of learning episodes
is 16400 (123sec running on a 2GHz Pentium 4) to complete all the LEM missions.
In each episode the VA starts from a state, randomly chosen among the possible ones
in a mission. At each state transition it updates the action value function increasing its
knowledge. If that update does not exceed a fixed threshold, the VA passes to the next
mission. Each mission is explored performing at the most ∆t episodes. At the end of
each simulation the learned knowledge is tested running 200 additional trial episodes
to examine the performance of the VA. During this testing phase the VA chooses the
actions by using a greedy policy and learning is turned off. The average success rate
obtained after the testing phase is 95%. Among the different policies obtained after
the learning phase we choose the best one, i.e. the one with the higher success rate
(98.5% in 16100 learning episodes). In the following, some representative examples of
the obtained paths are detailed. They show the capability learned by the VA agent to
guide the robot paying attention to avoid obstacles, to maintain the robot in the field of
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Figure 11: Learning episodes versus the α parameter for λ = 0.1 and different values
of γ.

view and to choose the proper velocities. To visualize the behavior learned by the VA,
the graphical package of Scilab [10] has been applied.

Figures 13, 14 and 15 show some representative sample paths obtained by using
that policy.

Even though an empty environment has been considered, the camera itself repre-
sents an obstacle. Fig. 13 shows that the agent has acquired the capability to avoid
the obstacle. The path is drawn with the long vectors which represent the direction
of movement, the short vectors, instead, indicate the robot orientation. Observing the
figure, it is evident that the VA chooses high velocities at the beginning of the path and
lower ones as it approaches the target position. Fig. 14 shows a sample path which
underlines this ability. The VA chooses low velocities when the robot moves in the
proximity of both the obstacle and the target.

Fig. 15 displays the ability of the VA, to keep the robot inside its field of view. In
particular the VA moves the robot carefully in the most external region (Z5) choosing
low velocities, then it increases the velocities as the robot moves away from Z5 and
finally it becomes careful again close to the target.

All the presented examples demonstrate that the VA has learned to move the robot
by using the proper velocities not only as function of the distance from the target,
but also as function of the distance from the camera (calibration ability). In the inner
regions the VA has learned to use low velocities even if the target is far from the robot.
Notice that little image distances near the camera correspond to little distances in the
real environment, but little image distances far from the camera correspond to large
distances in the real world.

The second part of the experimentation is conducted in order to prove the distribu-
tion of the learnt knowledge to new VAs. In particular two new VAs are considered in
the Distributed Vision System. These VAs have a different camera setup: one has the
camera at the height of 2.0m above the floor and the second one at 2.4m. Our aim is to
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Figure 12: Percentage of success versus the α parameter for λ = 0.1 and different
values of γ.

demonstrate that the new VAs can exploit the policy acquired by the initial VA in order
to reduce learning time and, more important, to improve their performance. In such a
way the same knowledge can be spread over different VAs so that they will be opera-
tional from the very beginning and they will need only a little amount of re-learning to
perform optimally.

The knowledge learnt by the first VA is used as a starting policy for the new VAs,
and new learning missions are defined based on the LEM technique. Partitioning the
state space only considering the distance between the robot and the target, we obtain
seven missions each one with a cardinality not over 960 states. Several re-learning
simulations are carried out considering different values for the ∆t parameter. Re-
calling that ∆t > |Sk|, ∆t is varied in the range [1800, 2200], obtaining a range of
[14000,15400] for the number of learning episodes. Testing the policies on additional
200 test episodes, after each simulation, both VAs reveal high success rates (> 91%).
As expected the higher is ∆t, the higher is the success rate. In the next referenced
figures the paths executed by using the policies with the highest success rates (97.5%
for the first VA and 97% for the second one) will be displayed. Both new VAs are still
able to guide the robot toward the target, but a clear improvement of the policy emerges
after the re-learning phase.

Figure 16 shows two paths, that start from the same initial position and reach the
same target position, before the re-learning phase (fig.16a)) (camera height = 1.8m) and
after the re-learning phase (fig.16b)) (camera height = 2.0m) respectively. Improved
paths are also been obtained by considering the other VA with the camera but at the
height of 2.4m above the floor. Figure 17 shows a sample path for this case. The
presented results reveal that the knowledge distribution allows the new VAs to acquire
improved control policies. In fact, for the sake of completeness, we carry out another
experiment where each new VA learns its own policy starting from a zero knowledge.
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Figure 13: Sample paths obtained after the learning phase: the robot successfully
avoids the obstacle (black circle).

Figure 14: Sample paths obtained after the learning phase: the robot uses different
velocities.

Apart from the learning time and the success rate, that are comparable with the ones of
the first experiment, what emerges is that with knowledge distribution each VA exhibits
a more optimal behavior.

8 Experiments in the Real Environment
The good results obtained in simulation, as shown in the previous section, encouraged
the experimentation of the whole system in a real environment.

The real system is composed of two omnidirectional cameras with hyperbolic mir-
rors with a maximum resolution of 640 × 480 pixels. The robot is based on a Pioneer
2 platform but was modified to play in RoboCup as a goalkeeper. In this work the
omnidirectional camera on board of the robot is removed and the robot is controlled
via IEEE802.11 wireless LAN by the Omnidirectional Distributed Vision System. A
screenshot of the the Vision Agent Monitor showing the image captured by one VA is
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Figure 15: Sample paths: the VA keeps the robot inside its field of view.

Figure 16: Sample paths: before the re-learning phase (left) and after the re-learning
phase for the VA with 2.0m high camera (right).

shown in Fig. 18b).
To easily detect the robot in the image, two coloured markers are fixed on the top of

the robot (see Figure 3). By colour thresholding, the VA is able to detect the coloured
blobs on the image. The midpoint between the centers of gravity of the two blobs
gives the position of the robot, whereas the line passing between these centres gives
the heading of the robot. When the robot is far away from the VA, due to the low
resolution achievable with the omnidirectional camera the estimation of the markers is
noisy. To have a more reliable measurement of the robot’s position, this is calculated
as the average of the position estimated in five consecutive frames. In order to avoid to
look for the coloured blobs on the whole image, a background subtraction algorithm is
applied to detect the region where the robot is located.

Fig. 18a) shows the timing of the information flow introduced in Fig. 4. This is
a cyclic process starting with the acquisition of a frame from the camera. Then, the
image is processed by the VM (Vision Module) and the information about the robot
position is passed to the LM (Learning Module). The LM sends the motor commands
to the robot. The robot execute the motor command moving from one position to the
new one. Once the robot stops a new frame is grabbed by the camera and the cycle is
repeated.

The stop and go procedure adopted for the robot is good for the learning method
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Figure 17: Sample path a) before the re-learning phase and b) for the VA with 2.4m
high camera after the re-learning phase.

Start (pxl) Stop (pxl) Episodes Successes % of Success
4 8 14 10 71%
8 12 14 9 64%

12 30 14 11 79%
30 60 14 11 79%
60 120 14 8 57%
120 240 14 6 42%
240 480 14 5 36%

TOT 96 60 62%

Table 2: Experimental results of missions in the real world using the knowledge ac-
quired in simulation.

adopted, but it is time consuming. Considering that to learn a very effective policy
requires the robot to accomplish 15’000 missions, to start from no knowledge and
learn everything from scratch with the real robot would take too long. So, we use as
initial knowledge the knowledge acquired in the simulations. Exploiting the ability of
life-long learning of RL, the system can adapt the knowledge acquired in the simulation
with the specific knowledge required to drive the robot with that specific camera.

Experiments showed that using the simulation knowledge, even if the simulated
camera and robot greatly differ from the real ones, the real system is able to accom-
plish simple missions with a high percentage of success, see Table 2. More complex
missions (i.e. longer missions, in term of pixels) requires additional learning to be ex-
ecuted reliably, see Table 2. Nevertheless, this shows the selected method is capable of
achieving our goal.

The experimentation in the real world revealed some problems when the knowl-
edge acquired in the simulation is used in the real world. The first problem is the time
constrains. In simulation we can execute a huge number of simulation steps in a rel-
atively short time, on the contrary in the real world every mission is time consuming,
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Figure 18: a) The timing of a mission execution. b) A screenshot of the VA monitor
showing the GUI and the image grabbed by one VA.

so we must extract the most from every mission. One problem is the missions of the
real robot must have a maximum number of step allowed before the mission is declared
failed. This is to avoid the system will spend too much time in a endless mission. The
problem arises when the system starts the execution of the mission in a wrong way, but
then recovers and performs according to the policy to be learnt. If in the first ”wrong”
stage the system spent a lot of steps, it will not reach the goal in the maximum allowed
step. This will result in a negative reward and, because of the eligibility trace tech-
nique, the last steps would be penalized more than the first even if they were about to
bring the robot to the correct destination. To overcome this, one possibility can be to
have a different reward procedure for a failed mission and one mission that reached the
maximum number of allowed steps.

Another choice that appeared appropriate for the simulation, but should be further
inspected in the real world application is the ε-greedy policy adopted and the choice of
the ∆T in the LEM. A better choice of these parameters will enable to speed-up the
learning also in the real world.

9 Conclusions and Discussion
This work presents an Omnidirectional Distributed Vision System having the task of
navigating a mobile robot in its environment. It consists of a number of VAs that
autonomously learn to guide the robot from a starting position to a target one. We
apply the RL method of SARSA(λ) to learn the control policy. In particular one VA
learns an initial policy to control the robot, then the same policy is transferred to other
different VAs with the aim of testing the ability to share knowledge. The complexity
of such a system is additionally connected to the use of omnidirectional vision sensors.
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The main contribution of this work is about the use of uncalibrated vision systems
which learn autonomously the proper commands to send to the robot for the navigation.

The experiments in simulation demonstrate that the VA learns successfully its task
solving all the problems it involves: obstacle avoidance, choice of the right velocities,
path optimization. Also the adaptability of the learned policy to environment changes
and then the propagation of the acquired knowledge to different VAs has been proved.
Experiments showed the policy learned in simulation can be used as initial knowledge
to continue the learning in the real world. At the moment of writing we are evalu-
ating the amount of re-learning necessary in different situations and the capability of
distributing the knowledge in the real environment.

The experimentation demonstrate that the distribution of knowledge from one VA
to other different VAs is possible and that it is advantageous not only for learning time
saving, but also for the improvements that the VAs exhibit after the re-learning phase.
In fact the VA is immediately operational, because of the no-zero starting knowledge,
and it learns more and improves with experience since it is allowed to explore again the
environment. In effect, the two separate steps of initial learning and re-learning consti-
tute two constraints for the whole learning process. As the experiments demonstrate,
this effectively improves the decision quality and performance of agents.

A final consideration can be done about the application of SARSA(λ) to that com-
plex robotic problem. In this work the value function is approximated by using a stan-
dard tabular formulation which assumes discrete sets of states and actions. This choice
is not restrictive since our aim is first to investigate if the VA is able to achieve a good
policy to guide the robot. A possible optimization of the approach, considering con-
tinuous variables, could be a consequence of this first study. To estimate the value
function, in fact, another possible solution could be to use function approximators in
order to deal with continuous state and action spaces. This problem is receiving a
great deal of interest by the scientific community [27, 23, 20, 18] since in real robot
applications sensor and action spaces are continuous.
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