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This paper presents a Distributed Perception System for application of intelligent surveil-
lance. The system prototype presented in this paper is composed of a static acoustic agent
and a static vision agent cooperating with a mobile vision agent mounted on a mobile
robot. The audio and video sensors distributed in the environment are used as a single
sensor to reveal and track the presence of a person in the surveilled environment. The
robot extends the capabilities of the system by adding a mobile sensor (in this work
an omnidirectional camera). The mobile omnidirectional camera can be used to have a
closer look of the scene or to inspect portions of the environment not covered by the fix
sensory agents. In this paper, the hardware and the software architecture of the system
and of its sensors are presented. Experiments on the integration of the audio localization
data and on the video localization data are reported.
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1. Introduction

Several works deal with the integration of the information gathered by a network
of cameras!®'2. In this paper, we focus on the integration of the visual and audio
information provided by different “sensing agents”.

Many researchers focused on the integration of vision and acoustic senses, moti-
vated by the fact that there usually exists a strong correlation between the motion
of a sound source and the corresponding audio data. Dupont et al. 7, for exam-
ple, exploited this fact for lip/speech-reading for improving speech recognition in
adverse conditions. As far as the position of a sound source is concerned, two ap-
proaches have been considered. In the first approach, audio data and vision data
are fused together with suitable information fusion methods. Cutler et al. described
a system able to automatically detect the identity of the talker and the position of

*also with ISIB-CNR corso Stati Uniti, Padua, ITALY
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the talker’s mouth 6. In that work, the speaker’s head is first box-bounded in the
video data and visual features from the image are extracted as a measure of change
between two subsequent images. The audio features are mel-cepstrum coefficients,
which are commonly used in speech recognition systems. A Time Delay Neural Net-
work (TDNN) is then trained to learn the audio-visual correlations between audio
and visual features. Another possibility is to process separately each channel to get
the localization information of the two sources and to integrate the results only in
the final step. An example of this is presented by Chen et al.. * In that work, the po-
sition of the sound source (a talking mouth) in a video scene is estimated by fusing
auditory and visual information, based on skin-color and nonskin-color information,
using a Bayesian network. A different approach is the system described by Rabinkin
et al.?! which uses an array of eight microphones to initially locate a speaker and
then to steer a camera towards the sound source. The camera does not participate
in the localisation of objects. It is used simply to take images of the sound source
after it has been localised. This system is well suited for video-conferences, but not
for surveillance purposes.

Our approach is more similar to the one described by Aarabi et al.!, i.e. a multi-
modal sound localisation system that uses two cameras and a 3-element microphone
array. Their approach seemed to be reliable only when using ad-hoc narrow band
acoustic signals. In this work, we show that the integration of the data is effective
even using the noise of the foot-steps of the intruder.

In this paper, we present an intelligent surveillance system that uses both mo-
bile and static surveillance agents. The scenario of application is the monitoring of
a room or a multi-room environment with a dynamic structure, for instance the
storage room of a shipping company where the position of piles of boxes can change
day after day. In this case most of the traditional surveillance systems ® 19 based on
static sensors will fail, because they will not be able to re-configure in order to avoid
occlusions from objects piled-up in front of the sensors. In our system, one (or more)
mobile robot can be sent to inspect suspicious areas occluded by movable objects.
In our approach, the sensors distributed in the environment cooperate in order to
form a sort of “super-sensor” distributed among the agent team. This distributed
sensor is used to provide the single mobile robot and the remote human supervisor
of the system with richer information than the one coming from the single agents.

This paper extends a work already presented'® by introducing a new acoustic
sensor: an omnidirectional microphone array, by adopting a more standard com-
munication middleware based on ACE/TAO 2* 25 in addition to the custom built
called ADE 3, and by synchronizing all mobile and static clients and the servers
existing in the system via the well-known Network Time Protocol (NTP)?.

aURL: http://www.eecis.udel.edu/~ntp
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Fig. 1. A schematic representation of the elements of the surveillance Distributed Perception
System.

2. A system overview

The Distributed Perception System (DPS) can be composed of several sensors, as
shown in Fig. 1. Each sensor processes the data collected about the environment and
sends messages containing the results of its processing to the central server via one
of the different middleware ACE/TAO or ADE, depending on the type of message.
The server is running a software able to integrate the different measurements of the
different sensors. The server can reconstruct a high level model of the monitored
environment and can control a mobile robot and use it as a mobile perceptual
agent. The sensors used in this work are shown in Fig. 2 and in Fig. 3. In Fig. 2 we
depict the static Vision Agent (SVA), composed of an omnidirectional camera with
a hyperbolic mirror (on a tripode on the right of the image), and a mobile robot
(on the bottom left of the image). The robot is equipped with an omnidirectional
camera with a mirror profile different from the one used by the static Vision Agent.
It mounts a multi-part omnidirectional mirror '*. The vision system on board of
the robot is called mobile Vision Agent. In Fig. 3 we depict the audio sensor (Static
Acoustic Agent) which is composed of a circular microphone array able to perform
beamforming and to estimate the position of a person using his/her speech.

Every sensory agent is realised with a sensor (microphone or camera) connected
to a computer equipped with a IEEE 802.11b wireless LAN card. The computer
provides the agent the computational power necessary to process the raw sensory
data and to transmit the results of this processing via the wireless LAN to a remote
console, where an human operator can monitor the situation. The communications
are managed by two different middlewares. The first one was developed at the TAS-
Lab for the RoboCup project, and is called ADE ? (Thanks to ADE, message passing
from one agent to the other is totally transparent, irrespectively if they reside on
the same machine or on machines connected through a LAN or a wireless LAN).
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Omnidirectional

Fig. 2. The two vision agents the static one on the tripod and the mobile one on the mobile
robot.

The second one is ACE/TAO and offers higher flexibility and performances thanks
to the standardization.

The system is able to detect and track intruders in an indoor dynamic environ-
ment grabbing close-up images of the intruder with the mobile robots. The basic
functioning of the system is:

e the static vision agent, i.e. the omnidirectional camera over the tripod,
detects moving objects in the image and transmits their coordinates in the
world frame of reference to the static acoustic agent;

e the static acoustic agent performs beamforming in the direction of the de-
tected motion, estimates the position of the noise produced by the intruder
and start tracking it;

e the different measurements on the position of the intruder coming from the
static vision agent and static acoustic agent are fused by the computer of
the static acoustic agent in order to improve the position estimate, which
is then sent to the mobile robot and used for moving it toward the position
of the localized intruder;

e once the intruder is detected by the mobile vision agent, a close-up image
is sent to the monitoring station, so an operator can check if the moving
object represents a danger or if it is just a false alarm. Moreover the mobile
robot might ask the intruder to present itself using speech and verify if the
person is authorized or not with a speaker recognition system.
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Fig. 3. The audio sensory agent: on the left, a close-up view of the circular microphone array
used by the audio agent; on the right, the acoustic agent in the final setup, mounted on a pole 1.2
m hight.

In the next sections we discuss the implementation of the individual parts of
the system: the Static Vision Agent, the Static Acoustic Agent, the Mobile Vision
Agent, and the sensor fusion module.

3. The Static Vision Agent

As hinted before, the static vision agent (SVA) is a catadioptric omnidirectional
camera composed of a standard perspective camera and a hyperbolic mirrorP.

To detect the intruder, the image is segmented into a moving foreground and into
a stationary background. As we said, our system is designed to work in a dynamic
environment in which the objects and the obstacles might change configuration over
time. For this reason we adopted a historical background subtraction algorithm. In
this technique the background image is not a static image, but it is updated frame
after frame slowly incorporating changes in the scene. In Fig. 4 is depicted a sequence
in which the history image is changing to incorporate a black object moved close
to the omnidirectional camera staying there for a long time. On the left image, the
object is just a ghost on the top left of the image, in the centre image, the ghost
of the object becomes more perceptible, on the right image the object is merged
into the historical background. The historical background is calculated according to

bThe camera and the hyperbolic mirror are kindly lent by Prof. H. Ishiguro of Osaka University.
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Fig. 4. An example of the evolution of the dynamic background. From left to right an object
that was moved into a new position, and then stays stationary, is gradually merged into the static
background.

Eq. 1, by creating a grey-level image representing the fix luminance in the image.
The luminance is obtained by the channel Y of the image representation in the YUV
color space.

history, (i, j) = history,_(4,7) - (1 — &) + luminance; (4, j) - « (1)

The parameter o describes how fast the changes in luminance of the individual
pixels are incorporated in the image. The foreground, i.e. the moving objects in the
scene, is obtained as the set of pixels that differ from the corresponding value stored
in the historical image more than a certain percentage of the standard deviation
of these pixels. The constant ¢ in Eq. 2 is controlling this percentage. Thus, the
standard deviation of each pixel is used as an adaptive threshold to determine if the
pixel belongs to the foreground. This takes into account situations in which some
pixels can change quite a lot in time, but they should not be considered as part
of the foreground, as in the classical example of the leaves of a waving tree. They
are moving, so the corresponding pixels change in time, but this change does not
correspond to a moving object in the scene. The standard deviation of each of these
pixels captures this variation. A pixels is considered to belong to a moving object
only if it changed more than its usual variation. The image processing software of
the SVA is running at 15 frame per second. This ensures that for typical speed of a
walking person the ghosting effect typical of background subtraction algorithms is
not present or is very limited.

[luminance, (4, j) — history,_; (¢, 7)| > ¢ - stdDev;_1(i, 5) (2)

Once the foreground is calculated on the Y component of the image, the colors
existing in the foreground are taken into account, in order to divide it into blobs of
similar colors. A two-sweep connected component algorithm is used to cluster the
pixels into differentblobs. The connected blobs are considered to belong to a single
object. For every object in the foreground its position in the world coordinate system
and its three principal colors are calculated and sent to the Distributed Perception
System. The world coordinates of the object in the foreground are calculated as
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Fig. 5. A screenshot of the graphical interface of the client of the Static Vision Agent (SVA)
client. On the left, the omnidirectional image grabbed by the SVA. On the right, the foreground
calculated. Bottom left, the current historical background. In this image two persons are moving.

the world coordinates of the object’s pixel closest to the centre of the image. This
assumes the camera calibration is known and the objects lay on the floor (sensible
assumptions for the system in use).

4. The Static Acoustic Agent

The acoustic agent is composed of a microphone array (shown in Fig. 3), a DSP
board for acoustic acquisition and processing and a host PC. The different tasks
performed by the acoustic agent are discussed in details in the following.

4.1. Circular microphone array based localization

Microphone array technologies are commonly used for performing acoustic local-
ization, both in 2D and in 3D. Several techniques can be adopted 2°. One class of
algorithms can be derived directly from antenna array theory. They are well suited
for narrow-band signals. Another class of algorithms, well suited for wide band
signals, is based on the Generalized Cross Correlation. A 2D acoustic localization
algorithm suited for wide band signals and circular arrays are presented. Circu-
lar arrays allow for omnidirectional localization around the acoustic agent. We use
only 2D localization, which provides enough information to plan the movements of
the robots. In this work a circular array has been considered, which has a 30 cm
diameter and 32 microphones equally spaced on its circumference. Out of the 32 mi-
crophones, the 16 microphones directed towards the acoustic source are selected on
the basis of energetic considerations. The localization of the source is determined
from the knowledge of the time delay between microphone pairs. The estimation of
the localization from the time delay is obviously a non linear problem. However, by
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introducing some approximations it is possible to derive simple geometrical methods
to solve this problem.

e Estimation of the time delay. Popular approaches for the estima-
tion of the time delay of arrival of an acoustic signal to a couple of
microphones are based on the maximization of the cross-correlation be-
tween a couple of signals s;(t) and s,(t) received by microphones i and j:
R (1) = E{s;(t)sk(t + 7)}. In fact, assuming that a reasonable model for
the signal received by microphone i is s;(t) = a;r(t — ;) + n;(t), where 7;
is the time of flight from the source r(¢) to the microphone i and «; is the
propagation lossy factor, the cross-correlation becomes

Rk (7-) = oo Ry (7- - 5zk) + Rmnk (7-) (3)

where R, is the autocorrelation of the acoustic source r(¢). Sharp cross-
correlation peaks can be obtained by filtering in the spectral domain. More

precisely, a spectral weighting filter ¢(f) '* can be introduced to whiten
the input signal:
+oo
R () = [ 0g(H)Ga(F)e™ 7 df (4)

The function reported in Eq. 4 is called Generalized Cross Correlation
(GCQ). Various choices of the weighting function are possible. For instance,
the ¥(f) function can be derived with a Maximum Likelihood formulation
leading to the TDOA (Time Delay Of Arrival) algorithm 2.

Another approach is the Modified Cross-power Spectrum Phase (MCSP)
estimator 22:

1

Yuese(f) = G DI (5)

where 0 < p < 1.

e Geometric consideration.

e Estimation of the TDOA with Neural networks. The neural network
model adopted was a Multi-Layer Perceptron ! with one hidden layer.
Each hidden node use the hyperbolic tangent as activation function. With
reference to Fig. 6, the sixteen microphones towards the source are divided
into eight pair as follows: (1,5), (2,6), (3,7), (4,8), (9,13), (10, 14), (11, 15),
(12,16). For each pair the time delay is again computed using the MCSP.
01,02, -+, 0g are given as input to the neural network. Several optimization
techniques !, including in particular backpropagation with momentum, the
Levemberg-Marquardt approach, and Newton-based approaches, have been
tested for training the neural network. The best results were obtained with
Levemberg-Marquardt and Rprop 2.

e TDOA performances. The localization is based on the estimation of the
TDOA using the MCSP as described in eq. (5). Let us summarize now the
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Fig. 6. Geometric location of the microphones in the circular array

procedure: first the signal is divided into frames and then a MCSP function
is computed on the considered frame. The TDOA is then estimated by
peak picking. Besides the usual approach to make an average estimation of
the localized coordinate, which has a long algorithmic delay as it requires
to localize each incoming frame, a faster approach was investigated: the
localization was performed on the maximum energy frame only and on the
first frame only. Both these approaches seemed reasonable, because the
former implies a higher SNR while the latter is less affected by echoes and
reverberations. The parameters to optimize are therefore: whether the best
results are obtained using the first frame or the maximum energy one, the
frame dimension and the value of the p used in the MCSP formulation.
The optimization has been performed on the basis of the geometric TDOA
described in Eq. (6):

TDOAgeometric = round{ d(p, ml) — d(p7 m2) : fs} (6)

L;ound

where p is the source position, (mj, ms) is the microphone couple, d() is
the distance measure, Vioung is the sound velocity and f is the sampling
frequency. The analysis has been carried out by computing the number of
times that a set of parameters gave a TDOA equal to that obtained with
eq. (6).

The results are reported in 7, which shows that the best results are
obtained for the first detected frame of the vocal signal with a frame length
equal to 1024 and p = .5 while for DTMF signals the best results are
obtained for the first detected frame but with a frame dimension equal to
128 and a p = 0.
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Fig. 7. TDOA results.

It was the considered the possibility to average several TDOA results
instead than a single frame. The results are that both for the vocal signal
and the DTMF signal the TDOA improvements obtained averaging several
frames are not significant.

The TDOA estimation described so far is obtained from a couple of
microphones. Coming back to Fig.6 we see that, out of the 32 microphones
of the array, several definitions of the microphone couples are possible.
We considered 8 couples in each semi-circle, according to the description
reported in Table 1.

In Fig. 8 the average absolute localization errors obtained using geo-
metrical localization are reported. The configuration that provides better
results is the nr. 5.

From TDOA to source coordinates: acoustic localization. We tested
two approaches for acoustic localization. The first approach is based on a
classical triangulation 2.

The second approach is based on Neural Networks (NNs). The training

of the NN has been performed by dividing a 8m - 8m area around the
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Fig. 8. Localization performance using different microphone configurations.

omnidirectional device into a grid, as shown in Fig. 9, and playing in the
points of such grid a signal. Half a grid is used for training the NN while
the remaining half is used for testing. The network has 8 inputs, coming
from 8 microphone couple, and two outputs, that is the X, Y coordinates
of the sound source. For increasing the effectiveness of the training, other
artificially shifted signals has been added to the signal played in the points of
the grid. Two classical techniques for training the network are used, namely
he Rprop and the Levenberg-Marquardt. The former is less computational
expensive but it requires a higher number of iterations to converge towards
a good local minimum while the latter has a greater computational cost
but it requires a lower number of iterations. Average localization errors in
meters for the two algorithms are shown in Fig. 10 for speech and DTMF
signals respectively.
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Two kinds of acoustic signals were tested: speech and DTMF tones. The speech
used for testing is composed by three Italian phrases typical of human-robot inter-
action:

(1) “Vieni qui.” (“Come here.”);
(2) “Vai al sito A.” (“Go to site A.”);
(3) “Prendi l'oggetto B.” (“Take object B.”).

The DTMF tones used for testing are three of the dial tones used in telephony.

|
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v
-
N
W
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Fig. 9. Training grid plotting the position of the emitter in the training phase of the acoustic
sensor. The big points correspond to real position of the emitter. Small points correspond to virtual
position of the emitter.

Real signals were acquired in the big points on the grid of Fig. 9 in our laboratory.
In each point 10 replicas of the same 6 signals were acquired: 5 replicas have been
used for training and the other 5 for testing. Other synthetic signals were created
shifting the original signals as if they were emitted in the small points of Fig. 9.
In Fig. 10 results concerning speech and DTMF tones localization are reported.
It is depicted the absolute mean localization error of acoustic signal considering
two different neural network training algorithms: Rprop and Levemberg-Marquard.
Better results have been obtained using the Rprop learning algorithm, obtaining an
absolute mean localization error of about 45 cm.
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Fig. 10. Average performances of sound localization using Speech and DTMF tones

The training is performed offline and the system operates really fast only using
the pre-learned neural network. Using such approach we can obtain better results
than using linear intersection algorithm of Rabinkin 2.

In Fig. 11 a comparison between geometric linear intersection localization and
neural network localization (trained using Rprop) is presented: the histograms re-
port the mean absolute localization error (in meter) for two types of signal used,
namely Speech and DTMF tones. It is evident that the neural network approach
gives better performances.

4.2. Microphone array and beamforming
4.2.1. Preliminaries

A sensor can be viewed as a window, called aperture, through which a field of cer-
tain physical quantities is measured. '* The aperture is described by its aperture
function, which contains information on dimension and shape of the window, and
describes how the measure depends on the direction of arrival of the variable phys-
ical quantities. If we consider a situation where there is a source generating a field
which propagates in the space, identified by f(z,t), and a finite number of aper-
tures, we have a signal which is the result of a spatial sampling of the field, that is
the signal y,,,(t) = f(m-d,t) where d is the spatial distance between the apertures,
or the sampling interval in space. As in temporal sampling, the original signal can
be reconstructed from its spatial samples using the sampling function, where the
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Fig. 11. Comparison between geometric linear intersection and neural localization.

spatial frequency, instead of the oscillation frequency, is used. Each signal y,, (t)
measured at the m-th aperture can be modified by multiplying the signal itself by a
weight w,,. Let us consider the weighted signal z(t) = Z%;()l WY (t — T ). This
is the simplest form of beamforming, called delay and sum, since if the delays 7,
are chosen equal to the time delay of arrival (TDOA) of the second to the M-th
microphone relative to the first microphone, the signal coming from a certain direc-
tion is incremented while the signal coming from other directions is decremented.
The delay and sum beamforming operation can thus be described, in the spectral
domain, as Z(w) = Z%;Ol Wiy Yo (W)e?“Tm . Defining the steering vector spr(w) as
the set of elements which cancel the plane-wave signal’s propagation related phase,
more precisely sys(w) = [1,e77¢72, e7Iw™ . e=J“TM] the beamforming operation
is described as Z(w) = Z%;[)l Yo (w)w sty

4.2.2. Minimum variance beamforming

When the acoustic agent receives the position of the intruder from the static vision
agent, a beamforming algorithm is used to direct the microphone array toward the
acoustic source, i.e. the intruder. The beamforming algorithm in frequency domain
is performed using the circular microphone array, obtaining a directional main lobe
in the reception diagram. In other words, the inputs of the microphone array are
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Fig. 13. A schematical representation of the beamforming algorithm.

combined in order to obtain a directional microphone. In Fig. 12 a reception diagram
is reported; in this case the array is steered towards a —30 degree direction and the
interfering noise coming from the broadside direction (0 degree) is de-emphasised.
The beamforming algorithm is schematically depicted in Fig. 13.

The adaptive algorithms for beamforming apply a vector of weights W, =
wie~“Tm to the vector of observations (i.e. the signals coming from the micro-
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phones in the frequency domain), in order to minimise the mean square value of
the weighted observations, such that w; = argminE[|z(¢)?|]. Minimizing power pre-
sumably reduces the effect of noise and unwanted signals. Using the method of the
Lagrange multipliers the general solution of the minimization problem is described
by
-1
Wopt = T (7)

where R is the normalized cross power spectral density.

The beamforming algorithm is applied to frames derived from an incoming sig-
nal. As a sequence of frame is obtained, the signal can be reconstructed using the
overlap-add method to the result of the IFFT block.

4.3. Speaker classification

The acoustic signal obtained by beamforming is therefore cleaned up by most of the
noise and can now be used to train an HMM (Hidden Markov Model) to recognize
the speech of the talking person '°. The learnt HHM can be used to identify the
person while moving in the environment by his/her voice from another person, so
allowing audio tracking of a walking person. A HMM can be trained to recognize
an unknown voice in five acquisitions of the acoustic agent.

5. The sensor fusion module

Robots’ Network

Omnidirectional |
Image VA
Scene

Encoders — Module

Localization

Module |

) Acustic Distributed Vision

Soundl\/ﬁ Module Module

Action Selection Module

Fig. 14. The architecture of the sensor fusion module.
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To improve the localization results, the measurements on the position of the in-
truder coming from the static vision agent and the static acoustic agents are fused
using the technique described by Menegatti et al.'®8. This technique was developed
to fuse position data coming from heterogeneous sensors. The only assumption
on the measurements is that each measurement could be described as a Gaussian
probability distribution and that each measurement is labeled with a time stamp in-
dicating the time at which they were acquired. This system uses a modified Kalman
filter to fuse the measurements coming from different sensors and the information
on the position of the tracked objects where stored in tracks. The peculiarity of this
system is that it can accept measurements coming from heterogeneous sources with
different errors associated to every estimation, and that the measurements can ar-
rive in the wrong time order, since they can be reordered thanks to the time-stamp
associated to every measure. The architecture of the module performing the data
fusion is sketched in Fig. 14.

Omnidirectional
Vision Sensor
¥ o

User Interface
Board

Omnidirectional
Wheels

Fig. 15. (Left) The mobile robot on which the mobile vision agent is mounted. This is an holo-
nomic robot with an omnidirectional vision system where the mirror has a custom profile. (Center)
A close-up view of the principal robot’s carachteristics. (Right) A close-up view of the omnidirec-
tional camera of the static VA with the hyperbolic mirror. Note the two omnidirectional cameras
have very different mirrors, so they produce very different images.

6. The Mobile Vision Agent

The mobile vision agent is implemented on board of a Golem platform developed
by the Golem Team °. The Golem platform is an holonomic robot driven by three
motors with omnidirectional wheels. It mounts an omnidirectional vision system

realised with a Hitachi camera and a customly designed omnidirectional mirror 7.
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The processing power is assured by a PC-104 with a AMD K6 400MHz CPU. As
one can notice in Fig. 15, the omnidirectional camera on the mobile robot is very
different from the omnidirectional camera mounted on the tripod (the SVA).

Fig. 16. Three pictures taken during the preliminary experiments: (Top) the robot is patrolling;
(Middle) an intruder enters in the surveilled room; (Bottom) the robot approaches the intruder
directed by the Static VA on the right of the picture and recognize it in its omnidirectional image.

The mobile robot receives from the static vision agent its own position and



May 29, 2006 14:36 WSPC/INSTRUCTION FILE emglJAITO06

Combining Audio and Video Surveillance with a Mobile Robot 19

the position of the intruder. From these data, it calculates the relative position
of the intruder with respect to itself and moves toward this position driven by
the odometric data. An update on its position and the position of the intruder is
received ten times per second and on this short time interval the odometric data
can be considered reliable. Once the robot has reached the position communicated
by the SVA, it analyses its current images to identify the intruder. Because the two
mirrors of the omnidirectional cameras are different the appearance of the intruder
in the two vision sensor will be very different. So the robot identifies the intruder by
locating in the image the three blob of the colours transmitted by the static agent.
If the intruder is identified in the image the grabbed image is sent to the monitoring
station, where a graphical interface displays it to the operator, as shown in Fig. 17.

7. Experimental results

For testing the data fusion and tracking system some preliminary experiments were
performed. In the first one, an intruder enters the surveilled room from the left in
Fig. 16. Once the position of the intruder is acquired, the mobile robot moves toward
the intruder, and a close-up image of the intruder is grabbed and sent back to the
monitoring station that can display it to the remote operator with the graphical
interface depicted in Fig. 17. The graphical interface displays also the paths followed
by the intruder and by the robot, obtained fusing the measurements of the different
Sensors.

Surveilance Configuration View Help

| @ N2 [ Calbration &

++++ % H+++++H+
¥
++

~Robot Control System |
Remote Control Activated

Distributed Video Surveillance System (server)
Avanti |

Sinistra| | Picture | | Destra Loading configuration fle: config/configodvss
oaded

ANet started

Indietro

Ready.

Fig. 17. A screenshot of the graphical user interface at the server. (Top left) The tracks of the
intruder (light gray) and of the robot (dark gray) obtained fusing the measurements of the static
vision agent and of the static acoustic agent. (Bottom left) The image grabbed by the mobile
vision agent. (Bottom centre) Five buttons to remotely control the robot. (Bottom right) Status
bar and system information display.

To evaluate qualitatively the performances of the different sensors and of the
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sensor fusion module a second experiment is presented in Fig. 18. In this experiment,
the person is walking in a room making a loop of 4 x 2m. The position of the person
along time is measured by two sensors: the Static Vision Agent and the Acoustic
Vision Agent. The position of the person is calculated by the Static Vision Agent
locating the position of the feet on the floor (triangles in Fig. 18) and by the
Acoustic Vision Agent by locating the noise of the step of the person (circles in
Fig. 18). The plot in Fig. 18 shows how both sensors are noisy and how several
measurements underestimate or overestimate the distance of the person from the
sensors. However, the fusion of the two kind of measurements and the integration
in time performed by a Kalman filter produce a reliable tracking of the walker. In
this experiment the walker moves at normal walking speed (about 1.3 m/s).
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Fig. 18. The actual and the estimated path followed by a person walking in the environment.
The static acoustic agent and the static vision agent are placed in the origin of the coordinate

system.

8. Conclusion and future work

In this work, we presented an intelligent surveillance system able to autonomously
monitor a room and to locate and track an intruder entering the room. The data
gathered by the heterogeneous sensory agents are fused to obtain a global estima-
tion of the position of the intruder. The system uses a static vision agent, a mobile
vision agent and a static acoustic agent, but it has been designed in order to con-
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nect any number of sensory agents. The experiments reported in this paper were
limited to qualitative tests of the system. More detailed experiments will produce a
quantitative evaluation of the system. In addition, even if the experiments produced
in this paper are limited to the tracking of one intruder, the system is designed in
order to track several intruders at the same time.

In the current implementation the mobile sensorial agents can only transmit their
data to the monitor, so a human operator can have a closer view of a particular
location. Future developments will be devoted to the fusion of the sensorial data.
One of the next steps will be to mount the omnidirectional acoustic sensor on the
robot to have a robot fitted with an omnidirectional camera and an omnidirectional
microphone. Moreover, the system is designed to integrate several mobile robots
in order to have a team of several surveillance robots that can “go and seek” for
different intruders.
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