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Abstract. Inimage-based robot navigation, the robot localisesfitsetompar-

ing images taken at its current position with a set of refeeemages stored in
its memory. The problem is then reduced to find a suitableioteticompare im-
ages, and then to store and compare efficiently a set of intagegrows quickly

as the environment widen. The coupling of omnidirectionahge with Fourier-
signature has been previously proved to be a viable franiefeoimage-based
localization task, both with regard to data reduction andrtage comparison.
In this paper, we investigate the possibility of using a speaariant camera, with
the photosensitive elements organised in a log polar laybus resembling the
organization of the primate retina. We show that an omnitiimeal camera us-
ing this retinal camera, provides a further data compresaia excellent image
comparison capability, even with very few components inRberier signature.

1 Introduction

A mobile robot that moves from place to place in a large scalérenment needs to
know its position in the environment to successfully plangath and its movements.
The general approach to this problem is to provide the robiht avdetailed descrip-
tion of the environment (usually a geometrical map) and ® amme kind of sensors
mounted on the robot to locate in its world representatianfotdunately, the sensors
used by the robots are noisy, and they are easily misled bgahmplexity of the en-
vironment. Nevertheless, several works successfullyesdehd this solution using high
precision sensors like laser range scanners combined wihrobust uncertainty man-
agement systems [13] [2]. Another solution, very populaegd-life robot applications,
is the management of the environment. If artificial landrsaskich as stripes or reflect-
ing dots, are added to the environment, the robot can use tigscts, which are easy
to spot and locate, to calculate its position on a geométnizg. An example of a
successful application of this method is the work of Hu [6hftttunately, these two
approaches are not always feasible. There are situatiomkigh an exact map of the
environment is either unavailable or useless for exampleld or unexplored build-
ings or in environments in which the configuration of objéntthe space changes fre-
qguently. So, the robot needs to build its own representatidrthe world. This means
that in most cases a geometrical map contains more infoom#tian that needed by
the robot to move in the environment. Often, this adds ursssrg complexity to the
map building problem. In addition to the capability of reaismy about the environment



topology and geometry, humans show a capability for recgihemorised scenes that
help themselves to navigate. This implies that humans haarteof visual memory
that can help them locate themselves in a large environmbate is also experimental
evidence to suggest that very simple animals like bees atsduge visual memory to
move in very large environments [3]. From these considanatia new approach to the
navigation and localization problem developed, namelagaibased navigation. The
robotic agent is provided with a set of views of the environirieken at various loca-
tions. These locations are called reference locationsusedae robot will refer to them
to locate itself in the environment. The corresponding iesagre called reference im-
ages. When the robot moves in the environment, it can contpareurrent view with
the reference images stored in its visual memory. When thetrinds which one of
the reference images is more similar to the current viewaritiofer its position in the
environment. If the reference positions are organised ietioal map, an approximate
geometrical localization can be derived. With this techgighe problem of finding the
position of the robot in the environment is reduced to theébfmm of finding the best
match for the current image among the reference images. iidgm now is how to
store and to compare the reference images, which for a wideo@ament can be a large
number. In order to store and match a large number of imadieteetly, it has been
shown in [9] the transformation of omnidirectional views$dra compact representa-
tion by expanding it into its Fourier series. The agent mésesreach view by storing
the Fourier coefficients of the low frequency componentss Tastically reduces the
amount of memory required to store a view at a referenceitotdtlatching the current
view against the visual memory is computationally inexpenwith this approach.

We show that a further reduction in memory requirements amdputations can be
met by using log-polar images, obtained by a retina-likeseerwithout any loss in the
discriminatory power of the methods.

2 Materials

2.1 Omnidirectional Retinal Sensor

The retina-like sensor used in this work is the Giotto candesseloped by Lira-Lab at
the University of Genova [11] [12] and by the Unitek Consamti[4]. It is built using
the 35um CMOS technology, and arranging the photosensitive elesriare log-polar
geometry. A constant number of elements is placed on coriceinigs, so that the size
of these elements necessarily decreases from the peritaveayd the center. This kind
of geometric arrangement has a singularity in the origirerghthe element dimension
would shrink to zero. Since this dimension is constrainedheybuilding technology
used, there is a ring from which no dimension decrement isiplesfor accomodat-
ing a constant number sensitive elements. Hence, the aie ithis limiting ring does
not show a log-polar geometry in the arrangement of the al¢snbut is nevertheless
designed to preserve the polar structure of the sensor athe aame time tessellate
the area with pixels of the same size. This internal regidhhve called thefoveaof
the sensor for its analogy with the fovea in the animal retimiaereas the region with
constant number of pixels per ring will be callpdriphery

The periphery is composed bY,., = 110 rings with A/ = 252 pixels each, and the



Fig. 1. The central part of the electronic layout of the retinal serfgom [4]).

fovea is composed b¥s,, = 42 rings (see Fig. 1). This lead to a log-polar image hav-
ing size of MxN = 252x152, whereN = (N, + Ny,,), and the image is obtained
from a sensor with 38.304 photosensitive elements. It isngd in [4] that given its
resolution, the log polar sensor yields an image equivateat1 090x1090 image ac-
quired with a usual CCD: a sample image acquired with thisezaris shown in Fig. 2,
together with its cartesianig:retina remapping in Fig. 3

Fig.2. A sample252x152 image acquired
with the retina-like camera.

Fig.3. The sample image of Fig. 2 trans-
formed in a1090x1090 cartesian image.

To obtain the omnidirectional sensor, the retina-like canig coupled with an hy-
perbolic mirror with a black needle at the apex of the miroom¥oid internal reflections



on the glass cylinder [7]: the sensor can be seen in Fig. A(single omnidirectional
image gives 860° view of the environment, as can be seen in Fig. 4(b).

(a) (b)

Fig.4. (a) The omnidirectional sensor composed by the retinadi®era and the hyperbolic
mirror. (b) A sample image acquired with the omnidirectiamdinal sensor.

3 Methods

3.1 Log-Polar Omnidirectional Image

The pixel coordinates of the output image of the retinal sease polar coordinates
(p, ), that are related to the usual cartesian coordinateg) via:

p = log (\/!EQ + y2) (1)

9= arctan (%)
There are two main issues to be considered while dealinglagi#polar images. The
first is that there is a singularity in the transformationmiie origin, where the pixel
dimension tend to zero. The transformation can thus be deresil exact only in the re-
gion outside the fovea, whereas inside the fovea the mapjgpgnds on the particular
arrangement of the retinal sensor.
The second point is the consideration that given the saqatipolar coordinates in-
duced by the sensor, moving from the center toward the pemnypbf the image, the
mapping is not bijective fronp;, ;) — (z;,y;), but rather one point in the log polar
image correspond to a sector of annular ring:

(pis Vi) = {(z,9)lp € [pi, pix1[NY € [0i, Vg [} (2)

This means that from the center of the image toward its owdanbary, the resolution
decreases, as a pixel in the log-polar image gather infeom&bm a bigger area than



a pixel, e.g., in the fovea.

An interesting property of the retinal sensor appears whisncoupled with an hyper-
bolic mirror, so to provide an omnidirectional sensor. Ictthe space-variant resolution
of the sensor, if matched with the hyperbolic projectiorvite an omnidirectional im-
age of nearly constant resolution. Moreover, the imageieedby this omnidirectional
sensor is already in the form of a panoramic cylinder, withreaed of further transfor-
mations [12, 10].

3.2 Fourier Signature

In image-based navigation the main problem is the storagefefence images and
the comparison of these images with those acquired durmpttalization. In [9] was
shown the effectiveness of using a small number of Fourieffioents to characterize
an image: that method both reduce drastically the dimernsidhe information to be
stored and proved to be enough to discriminate differengasawithout the need of
image alignment as in [1] [5] [8].

The Fourier signature is computed in two steps. First, weutale the 1-D Fourier
transform of every line of the log-polar image and we stora imatrix the Fourier
coefficients line by line. Then, we keep only a subset of tharieo coefficients, those
corresponding to the lower spatial frequencies, as sigadtu the image.

To fully exploit the further dimensionality reduction imged by the retina-like sensor,
we have to recall that in the fovea the effective physicat|sixand therefore the amount
of information) is 1 in the center, that is mapped in first lofehe log-polar image, 4
in the second innermost ring, mapped in the second line, ammhsuntil the number
of pixels in the ring match that of the periphery, where th@ant of pixels per ring is
constant. A number of physical pixels smaller than the nurnbenage pixels induces
a smaller band on the signal than it would be possible givenirttage dimension.
This leads to the consideration that in the foveal region @edrto retain less Fourier
coefficients than in the periphery to achieve a storage effayi without loosing any
information. The choice is therefore to decrease linedrty number of coefficients
used to build the signature: from the,,, per line in the periphery (rowd’s,, + 1 to
N in the log-polar image), to the 1 coefficient of the first lirfettee image. Hence for
the rowy:

— kmam_N ov 1
iy = ) TRty + e iy < Nipoy 3
(y) = . ®)
kma;ﬂ If Yy > NfOU

with [2] meaning the ceiling of.

3.3 Dissimilarity measure

Given an imagéd, and the discrete set of its Fourier coefficients for the {jne, .,
withy = 1,..., N, we can define the Fourier signature as the veEtoontaining the
juxtaposition of all Fourier coefficients of the signatuoe éach line:

F(I) = [a1,1,- Q1 k(1) - OGN, -5 AN (V) (4)



A distance between two imagésandl; can be evaluated as tieé norm between the
two vectors of their Fourier signature:

d(I;, I;) = [F(L;) — F(L;)], (5)

When a database of images is available, and a new image h&#edompared with
those in the database to find the best match, is often moriévetto use a measure of
relative distance of the image under examination from onkérdatabase, given all the
images in the database:

d(I;, I;)

L ) = = e A 1)
( J) max; ;(d(1;, I;))

(6)
This is a normalized distance in the database, assumingwaiuhe intervalo, 1], and
can therefore be viewed as a probabititgosterioriof an imagel; to be equal to image
I, withj =1,..., N, and N the number of images in the database.

4 Results and Discussion

To test the proposed measure, an image database was budtblyiag a frame from

different positions in an indoor environment, using thénatomnidirectional camera
described previously. The acquisition sites were 15 locat2Ocm apart.

First of all, we made experimentations to evaluate whichhérhinimum number of
Fourier coefficients necessary to construct a Fourier sigadhat retains all and only
the necessary information. Hence, we calculated the dgityilaf each input image
against all the reference image of the dataset varying thebeuof coefficients per row
(kmaz) Of the Fourier signature. Since the Nyquist frequency cheaw is f, = %
the maximum number of coefficients of the DFT which yield effiee information is
& Therefore, we made,... € K = [1,...,%].

For eachk,,.. € K we first evaluated the similarity measure Eg. (6) of each Enag
in the reference database from every other image in theemderdatabase. By this
mean, we show that Eq. (6) is an effective measure to digshglifferent images, and
can therefore be used to provide a good localization pedog®a in autonomous robot
navigation tasks. In Fig. 7 we show three successive samyagas (relative distance
equal to 15cm) from the reference database, and the sityilelue of an input image
taken at a location corresponding to the second referenagenThe similarity value
yields a correct match between input and reference.

In Fig. 5 and Fig. 6, it is shown the values of the similarityuefor different values
of k., Of an image in the reference database with every other imadmath figures,
the similarity peak corresponds to the correct image, aedithilarity values decrease
around the peak, the highkr, ..., the sharper the decrease.

The choice oft,,.... influences the trade off between dissimilarity accuracyiamaje
storage efficiency. A good measure of the accuracy of theqaegpmeasure is the mini-
mum difference between-d(I;, I;) for i # j. This is equivalent to evaluatectassifier
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Fig. 5. Similarity measure(Is, I;) forj = 1,..., N, for kmaz = 1,63, 126. Itis clear that the
correct image always yields a similarity measure of 1, wagtbe decreasing in the similarity is
sharper for high values @f,.q.
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Fig. 6. Similarity measure(Iio,I;) forj =1,..., N, for kmas = 1,63, 126. Itis clear that the
correct image always yields a similarity measure of 1, wagtbe decreasing in the similarity is
sharper for high values @f,.q.

margin, in the separation between two different images. In Fig.8sthow that after a
monotonic increase in this margin whith the number of cokeffits, it reaches a kind of
plateau aftek,, ., ~ 20.

The storage efficiency achieved is clear when comparing timber of Fourier
coefficients needed to form the Fourier signature of a logipgomage with the number
of the equivalent cartesian image, which has dimensiex1090 pixels. In Fig. 9
we show for different,,,ax the dimension of the Fourier signature for the equivalent
cartesian image, for the log-polarimage with, .. coefficients per row, and for the log-
polar image withk(y) coefficients per row, meaning that we have a reduced number of
coefficients in the foveal rings. It is well apparent the at@ reduction that can be
achieved using a retina-like sensor.



(a) Reference Image 1 (b) Reference Image 2

(c) Reference Image 3 (d) Input Image

Fig. 7. Three reference image taken 15 cm apart, to be confrontédanitnput image acquired
at location (b). Withk,,.... = 10, the similarity value of the input image with image (a) is9.5
with (b) is 0.96, and with (c) is 0.54: the correct match hashtghest similarity value.

5 Conclusions

In this paper we show that retinal omnidirectional images loa successfully used to
localize an autonomous robot with the image-based navigatpproach. Within this
approach, the direct comparison of images is not robushasomputationally cum-
bersome, and the storage of the whole images requires asstx&enemory space.
Representing the images with their Fourier signature haa peoved a viable way to
overcome these problems. In this paper, we showed thatioguibiis technique with
log-polar sensor yields a further dimensionality reduttth sufficient accuracy.

The reduction is achieved by exploiting the different baiutlv of each ring of the
retina-like sensor with respect to the constant bandwiflth cartesian sensor, where
each row contains the same number of photosensitive elefkistallows to keep a
decreasing number of Fourier coefficients in the signatameing from the periphery
toward the center of the sensor.

Despite the storage requirement reduction, we show thagusisimpleL; norm on
difference of signature vectors have an excellent discrdtary power in distinguish-
ing images taken at different sites.
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Fig. 8. Minimum difference in the proposed similarity measw(d;, I;) for every different im-
age in the database, and for.. = 1,...,126. The solid line represent the mean minimum
differencey, and the gray area represent the variability of this value o

Number of elements in the Fourier Signature

Fig. 9. Total number of coefficients needed to form the proposedi€o8ignature, with respect
t0 kmaaw-
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