
1

1 2



2

Omnidirectional vision scan matching for robot
localization in dynamic environments

E. Menegatti, Member, IEEE, , A. Pretto, A. Scarpa and E. Pagello, Member, IEEE,

Abstract— The localization problem for an autonomous robot
moving in a known environment is a well studied problem
which has seen many elegant solutions. Robot localization in
a dynamic environment populated by several moving obstacles,
however, is still a challenge for research. In this paper, we
use an omnidirectional camera mounted on a mobile robot to
perform a sort of scan matching. The omnidirectional vision
system finds the distances of the closest color transitions in
the environment, mimicking the way laser rangefinders detect
the closest obstacles. The similarity of our sensor with classical
rangefinders allows the use of practically unmodified Monte
Carlo algorithms, with the additional advantage of being able to
easily detect occlusions caused by moving obstacles. The proposed
system was initially implemented in the RoboCup Middle-Size
domain, but the experiments we present in this paper prove
it to be valid in a general indoor environment with natural
color transitions. We present localization experiments both in the
RoboCup environment and in an unmodified office environment.
In addition, we assessed the robustness of the system to sensor
occlusions caused by other moving robots. The localization system
runs in real-time on low-cost hardware.

Index Terms— mobile robot localization, omnidirectional vi-
sion, scan matching, Monte-Carlo Localization

I. INTRODUCTION

LOCALIZATION is the fundamental problem of estimat-
ing the pose of the robot inside the environment. Some

of the most successful implementations of robust localization
systems are based on the Monte Carlo Localization approach
[5], [23]. The Monte Carlo Localization approach has been
implemented on robots fitted either with rangefinder sensors or
with vision sensors. Lately, vision sensors have been preferred
over rangefinders, because they are cheaper and provide richer
information about the environment. Moreover, they are passive
sensors, so they do not interfere with other sensors and do not
pose safety concerns in populated environments.

In this work, we consider the problem of Monte Carlo
Localization using an omnidirectional camera. The vision
system has been designed to extract the distances of the closest
color transitions of interest existing in the environment. Our
system uses an omnidirectional camera to emulate and enhance
the behavior of rangefinder sensors. This results in a scan
of the current location similar to the one obtained with a
laser rangefinder, enabling the use of Monte Carlo algorithms
only slightly modified to account for this type of sensors.
The most significant advantages with respect to classical
rangefinders are: (i) a conventional rangefinder device senses
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the vertical obstacles in the environment, while our system
is sensitive to the chromatic transitions in the environment,
thus gathering richer information, and (ii) our system can
reject measurements if an occlusion is detected. Combining the
omnidirectional vision scans with the Monte Carlo algorithms
provides a localization system robust to occlusions and to
localization failures, capable of exploiting as localization clues
the natural color transitions existing in the environment. The
Middle-Size RoboCup field is a highly suitable testbed for
studying the localization problem in a highly dynamic and
densely populated environment. In a dynamic multi-agent
world, precise localization is necessary to effectively perform
high level coordination behaviors. At the same time, the
presence of other robots makes localization harder to perform.
In fact, if the density of moving obstacles in the environment
is high, occlusion of the robot’s sensors is very frequent.
Moreover, if, like in RoboCup Middle-Size, collisions among
robots are frequent, the localization system must be able to
recover from errors after collisions.

In this paper, we explicitly discuss the robustness of our
system with respect to the classical problems of global lo-
calization, position tracking, and robot kidnapping [17]. We
also provide a detailed discussion of the robustness against
sensor occlusion when the robot moves in a densely popula-
ted environment [18]. In addition, we present experimental
evidence that the system developed is not limited to the
RoboCup domain, but works in a generic unmodified office-
like environment. The only requirements for our system are:
(i) an environment with meaningful color transitions, (ii) a
geometric map of that environment, and (iii) inclusion of the
color transitions in the map.

The following section discusses previous research related
to this topic. Section III describes how we process the om-
nidirectional image to obtain range information. Section IV
summarizes the well-known Monte Carlo Localization al-
gorithm and discusses the motion model and sensor model
used in the experiments, as well as the modifications to the
classical Monte Carlo Localization to adapt it to our sensor.
In Section V, we present the experiments performed with the
robot in a RoboCup Middle-Size field and in the corridors
of our department. A detailed analysis of the performance
and robustness of the localization system is presented, paying
particular attention to occlusions caused by other robots.
Finally, in Section VI, conclusions are drawn.

II. RELATED WORK

The seminal works on Monte Carlo Localization for mobile
robots used rangefinders as main sensors. The rangefinders



3

were used to perform scans of static obstacles around the robot
and the localization is calculated by matching those scans
with a metric map of the environment [5], [24]. However, in
dynamic environments, the static features that are detectable
are often not enough for a robust localization (as illustrated in
Fig. 1), or they may be occluded by moving obstacles. One
possibility is to design algorithms able to filter out the moving
obstacles in the range scans, leaving only the static obstacles
that can be used as landmarks. This is exemplified by distance
filters [9], but it should be noted that usually these algorithms
are computationally intensive. Another possibility is to use a
sensor, such as a color camera, that provides richer information
and consequently a more reliable ”scan matching”. In the
present work we adopted the latter approach.

Usually, Monte Carlo Localization systems with vision
sensors use cameras to recognize characteristic landmarks
subsequently matched within a map [7], [21], or to find the
reference image most similar to the image currently grabbed
by the robot [11], [19], [20], [28], [29]. However, when the
robot has to match the current reading with a previous reading,
moving obstacles like people or other robots can impair the
localization process. Several solutions have been adopted. One
possibility is to look at features that cannot be occluded
by moving obstacles, like the ceiling in a museum hall [4].
However these features are not always available or they do
not carry enough information.

Our sensor is able to detect occlusions as non-expected color
transitions, so it can use only a subset of reliable distances
in the scan, obtaining a more precise localization. Color
transitions are usually available and yield rich information
about the environment structure (e.g., change of carpet color,
doors with a color different from the walls, etc).

In the RoboCup Middle-Size competitions, an approach
based only on laser rangefinders was used, very effectively,
by the CS Freiburg Team [27]. They extracted the lines of
the walls from the laser scans and matched them against a
model of the field of play. However, when in 2002 the walls
surrounding the field were removed, the reliability of this
approach was impaired by the lack of static features detectable
by a rangefinder sensor.

A B

Fig. 1. The metric maps used for the computation of the expected scans:
in A are represented the static obstacles (they are too sparse for an effective
localization), in B are represented all the chromatic transitions of interest in
the environment.

The static objects detectable by a rangefinder in the Middle-
Size field (with the layout used since 2003) are presented
in Fig. 1A. The only detectable objects are the two goals
and the four corner-posts. With a vision system sensitive to

color transitions, one can detect not only these static objects,
but also all existing color transitions (Fig. 1B). Schulenburg
et al. combined a laser rangefinder and an omnidirectional
camera to extend CS Freiburg’s approach by detecting lines
using both sensors [22]. However, the integration of laser data
with vision data does not significantly improve the localization
with respect to vision data alone (due to the shortage of
laser detectable features). Moreover, the image processing
algorithms used to extract the field lines are computationally
demanding. Most of the approaches that use a camera as the
only sensor extract geometric features (like lines and corners)
from the images, performing template matching against a
model of the environment [2]. Geometric features have also
been determined by detecting color transitions in visual re-
ceptors placed along radial lines (as previously proposed [3])
and the environment is represented by a 3D CAD model [12],
[25]. Roefer et al. located geometric features and bearings of
landmarks by detecting color transitions along vertical lines
[21]. In our approach, the chromatic transitions are not used
to extract geometric features, but to perform scan matching
against a 2D image file that is a geometric map of the
environment. In fact, we use the raw range scans and this
paper shows that a robust localization is achievable. Lenser and
Veloso have developed a system which mimics the working of
a sonar sensor using a monocular camera that detects obstacles
(as color transitions) along previously determined lines in the
image [14]. However, although the basic idea is similar, our
aim is much broader: we want to mimic the working of a
laser rangefinder with an omnidirectional camera (therefore
with a 360◦ field of view) in order to be able, not only to
avoid the obstacles as Lenser, but also to localize the robot
with a Monte Carlo Localization software almost unaltered
from the one proposed by Thrun et al. [24], in which they
used laser rangefinders. Another difference with the work of
Lenser and Veloso is that we do not color segment the whole
image, but we just look for color transitions along the radial
lines of Fig. 2, saving a considerable amount of computation.

III. AN OMNIDIRECTIONAL CAMERA AS A RANGEFINDER

The main sensor of our robot is an omnidirectional camera.
The camera is calibrated in order to be able to relate the
distances measured in the image with the distances in the real
world. Our “rangefinder” has a 360◦ field of view, much larger
than that of conventional rangefinders. The omnidirectional
camera is composed by a perspective camera pointed upward
to a multi-part mirror with a custom profile, depicted in
Fig. 3 [16]. This profile was designed to have good accuracy
both for short and long range measurements. In fact, conic
omnidirectional mirrors fail to obtain good accuracy for short
distance measurements (because the area close to the robot is
mapped in a very small image area), while hyperbolic mirrors
fail to obtain good accuracy for long distance measurements
(because of the low radial resolution far away from the sensor).
With our mirror, the area surrounding the robot is imaged in
the wide external ring of the mirror and the area far away
from the robot is imaged in the inner part of the mirror [16].
The inner part of the mirror is used to measure objects farther



4

Fig. 2. Omnidirectional image with the detected chromatic transitions. Green-
white chromatic transitions are highlighted with red crosses, green-yellow
transitions with blue crosses, black pixels represent the receptor pixels used
for the scan that is performed in a discrete set of distances. Notice the crosses
in the outer part of the mirror: this part is used for low distance measures.
If an unexpected color transition is detected (e.g., another robot is occluding
the sensor, like the three black robots in the image) the scan is stopped and
the value (FAKE RAY) is stored in the distances vector.

than 1 m away from the robot, while the outer part is used to
measure objects closer than 1 m from the robot, see Fig.2.

The omnidirectional image is scanned for what we called
chromatic transitions of interest. In the RoboCup domain,
we are interested in green-white, green-blue and green-yellow
transitions. These transitions are related to the structure of
the RoboCup field, where the playground is green, lines are
white, and goals and corner posts are blue or yellow. In the
office scenario, we are interested in the red-white and red-
gray transitions due to the colors available in the environment.
The image is scanned along radial lines 6◦ apart and with a
sampling step corresponding to 4 cm in the world coordinate
system, as shown in Fig. 2. We first scan for chromatic
transitions of interest close to the robot’s body (i.e., in the

Fig. 3. The plot of the profile of the omnidirectional mirror mounted on the
robot.

outer mirror part), we then scan the inner part of the image
for transitions up to 4 m away from the robot’s body.

In RoboCup, a color quantization is usually performed on
the image before any further image processing. Our system
looks for the chromatic transitions of interest only along the
receptors of the 60 rays depicted in Fig. 2. Therefore, we do
not need to color quantize the whole image, but only some
of the pixels lying along the 60 rays need to be classified
into one of the 8 RoboCup colors 1 plus a further class
that includes all colors not included in the former classes
(called unknown color). At the setup stage, the RGB color
space is quantized into the nine color classes. To achieve a
real-time color quantization, a look-up table is stored in the
main memory of the robot. The look-up table associates every
possible RGB triple to one of the 9 color classes.

The distances to the nearest chromatic transition of interest
are stored in three vectors2, one for each color transition
of interest. During the radial scan, we can distinguish three
situations:

1) a chromatic transition of interest is found, then the real
distance of that point is stored in the corresponding
vector;

2) no transition of interest is detected, then a characteristic
value called INFINITY is stored in the vector (this means
no transition can be found along this ray);

3) a non-expected transition is found, then a characteristic
value called FAKE RAY is stored in the vector (this
means something is occluding the vision sensor).

Moreover, we use the information about the static obstacles
extracted from the map of Fig. 1A to improve the scanning
process (e.g., if we find a yellow pixel, this is a goal or a
corner-post, so it is not worth looking farther for a white line
and we stop the scanning process along this ray).

The algorithm to find the nearest chromatic transitions
of interest is presented in pseudo-code in Algorithm 1 (to
simplify the comprehension, only the scan in the inner section
of the multi-part omnidirectional mirror is presented).

The scan obtained from the image is compared with the
scans extracted from the chromatic map of the environment,
called expected scans. The map in Fig. 1B shows the chromatic
characteristics of the environment. We use this map to compute
the expected scan by ray-tracing, as will be explained in
Section IV-B.

In summary, the advantages with respect to conventional
rangefinders are: we have three scans for every pose of the
robot (one for every chromatic transition of interest: green-
white, green-blue and green-yellow) and we immediately know
which rays of the scan should be discarded because of occlud-
ing objects (detected by non-expected chromatic transitions).
The limitations of our sensor are: a smaller accuracy than laser
rangefinders and the sensitivity to changes in the illumination,
strong enough to alter the appearance of the colors in the
environment.

1In RoboCup environment the ball is red, the lines are white, one goal is
blue and the other is yellow, the robots are black, the robots’ markers are
cyan and magenta

2The three vectors are called ”scans” in the remainder of the paper
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Algorithm 1 Omnidirectional vision as an enhanced
rangefinder.
Function QUANT(x,y) returns quantized color of pixel x,y.
Function REAL DIST(x,y) returns distance in real world of
pixel x,y.
Pixel(0, 0) is located in the image center.
Ensure: dist white[N RAY ], dist blue[N RAY ],

dist yellow[N RAY ]
for i = 1 : N RAY S do

dist white[i] = dist blue[i] = dist yellow[i] =
INFINITY
search for white = true
x = y = ray = 0
lastColor = QUANT (x, y)
for ray = 1 : MAX RAY do

x = ray ∗ cos(αi), y = ray ∗ sin(αi)
color = QUANT (x, y)
if color isn’t unknown or green then

if color is blue and lastColor is green then
dist blue[i] = REAL DIST (x, y)
break

else if color is yellow and lastColor is green then
dist yellow[i] = REAL DIST (x, y)
break

else if color is white then
if search for white then

search for white = false
if lastColor is green then

dist white[i] = REAL DIST (x, y)
else

dist white[i] = FAKE RAY
end if

end if
else

dist blue[i] = dist yellow[i] = FAKE RAY
if search for white then

dist white[i] = FAKE RAY
end if
break

end if
end if
lastColor = color

end for
end for

To manage the uncertainty in the measurements, we slightly
modified the classical Monte Carlo Localization algorithm.

IV. MONTE CARLO LOCALIZATION

Monte Carlo Localization is a well-known probabilistic
method, in which the current pose of the robot is modelled
as a posterior distribution conditioned by the sensors’ data
(Eq. 1). The posterior probability distribution of the robot
pose is also called the robot’s belief. The belief about the
robot’s position is represented with a set of discrete points in
the configuration space of the robot. These points are called

particles. To update the belief over time, the particles are
updated. Each particle is an hypothesis of the robot’s pose, and
it is weighted according to the posteriors. The belief about the
robot’s position is updated every time the robot makes a new
measurement (i.e. it grabs a new image or a new odometry
measure is available). This belief can be described by:

Bel(lt) = αp(ot|lt)
∫

p(lt|lt−1, at−1)Bel(lt−1)dlt−1 (1)

where lt = (xt, yt, θt) is the robot pose at time t and at

and ot are respectively the sensor and the odometry readings at
the time t. To calculate Eq. 1, two conditional densities, called
motion model and sensor model are needed. The motion model
expresses the probability the robot moved to a certain position
given the odometry measures (kinematics); see Section IV-A.
The sensor model describes the probability of having a certain
sensor measurement in a certain pose, see Section IV-B. The
motion model and the sensor model depend, respectively, on
the particular robot platform and on the particular sensor. The
localization algorithm is composed by 3 steps:

1) all particles are moved according to the motion model
of the last kinematics measure;

2) the weights of the particles are determined according to
the sensor model for the current sensor reading;

3) a resampling step is performed: high probability parti-
cles are replicated, low probability ones are discarded.
The process repeats from the beginning.

The resampling step is performed with the Sampling Impor-
tance Resampling (SIR) algorithm [10] with the resampling
technique of [13]. The final estimation on the pose of the
robot is obtained simply averaging the poses of all particles.
For more details, refer to [5], [24].

A. Motion model

The motion model p(lt|lt−1, at−1) is a probabilistic repre-
sentation of the robot kinematics, which describes a posterior
density over possible successive robot poses. We implemented
the Monte Carlo Localization system on a holonomic robot,
called Barney. The peculiarity of this robot is that it can move
in any direction without the need of a previous rotation. A
movement between two poses lt−1 = (xt−1, yt−1, θt−1) and
lt = (xt, yt, θt) can thus be described with (αu, T, θf ), where
αu is the difference of heading between the two poses, T
is the translation and θf is the motion direction. Updating
the robot position according only to the kinematics does not
take into account errors given by odometry inaccuracy and
possible collisions of the robot with other obstacles. Therefore,
a random noise term is added to the values given by the
last odometry reading. Noise is modelled with Gaussian zero
centered random variables (∆α,∆T,∆rr,∆rT). They depend
on both the amount of translation and of rotation. So, the
motion model can be written as:

α′
u = αu + ∆α(αu) ;

T ′ = T + ∆T(T ) ;
θ′ = θ + ∆rr(θ) + ∆rT(T ) .
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For our holonomic platform, we found that good values
for the standard deviations of the added noise contributions
are σα = 30◦/360◦, σT = 200mm/m, σrr = 30◦/360◦,
σrT = 30◦/m. We experimentally verified that these values
overestimate the actual errors and so provide good perfor-
mance.

B. Sensor model

The sensor model p(ot|lt) describes the likelihood to obtain
a certain sensor reading given a robot pose. The sensor model
is used to compute the weights of the particles. For each
particle j, located in the pose ljt , the associated weight is
proportional to p(ot|ljt ) (i.e., to the likelihood of obtaining the
sensor reading ot when the robot has pose ljt ). To calculate
p(ot|ljt ), we need to know the ”expected scan” o(lt). The
expected scan is a scan that an ideal noise-free sensor would
measure in that pose, if there were no obstacles in the
environment, Fig. 4A. Given l the robot pose, the expected
scan o(l) for one of the three chromatic transitions of interest
is composed by a set of expected distances, one for each
αi, the rays of the scan (the black radial lines in Fig. 2):
o(l) = {g(l, i)|0 ≤ i < N RAY S}. We can compute the
expected distances g(l, i) for an ideal noise-free sensor in an
empty environment, using a ray tracing technique. The basic
idea is: (i) to reproduce the pose of the robot in the metric
maps of Fig. 1; (ii) to trace the rays exiting from the robot
until they encounter the first chromatic transition of interest;
(iii) to store the length of these rays in the expected scan. The
likelihood p(ot|lt) can be calculated as p(ot|lt) = p(ot|o(lt)).
In other words, the probability p(ot|o(lt)) models the noise in
the scan by the expected scan [5], [24].

Fig. 4 compares the expected scan A and the real sensor
scan C; in B is the image grabbed by the robot. The scan is
looking for the green-yellow chromatic transition of interest.
As such only rays with a correct value in the distance vector
are depicted in Fig. 4A, (i.e., the rays intercepting the yellow
goal and the corner posts). Due to the noise in the image, it
might happen that a color transition is not detected. Examples
are the rays striking the lower part of the yellow goal and
the ray striking the lower corner post (compare Fig. 4A and
Fig. 4C); the color transition can also be detected at the wrong
distance (like the fourth ray starting from the top in Fig. 4C),
or be falsely detected (like the second ray in Fig. 4C). It might
also happen that a color transition is not detected because of
occlusion (e.g., in Fig. 4B the goalkeeper occludes part of the
yellow goal), but we will discuss this in detail in Section V-B.
As such, we need to create a model of the sensor’s noise.

1) Sensor noise: The probability p(o|o(l)) models the noise
in the measured scan conditioned on the expected scan. For
every frame grabbed by the sensor we obtain three scans
(one for each chromatic transition of interest), so we have
to calculate three probability values. Since every scan is
composed by a set of distances, one for each ray, we first
model the probability that a single ray correctly detects the
chromatic transition and then we combine the measurements of
all rays. Ultimately, we need to combine the three probability
values given by the three chromatic transitions of interest.

A. Expected scan

B. Real image

C. Measured scan

Fig. 4. An example of expected and measured scans for the green-yellow
transition. Given a pose, in A is represented the expected scan for an ideal
noise-free sensor in a free environment. In B is shown the frame grabbed
by the robot in that pose, in B is represented the corresponding measured
scan. Only the rays with a correct measurement are shown. Rays with
INFINITY or FAKE RAY values are not displayed.

The scan performed by the sensor is composed by a set of
distances, one for each αi: o = {oi|0 ≤ i < N RAY S}. To
compute p(oi|l) (i.e. the probability to obtain for a single ray
a distance oi given the pose l), we can consider directly the
single expected distance g(l, i), so we can write p(oi|l) =
p(oi|g(l, i)). To create a statistical model of the distance
measurement along a single ray of the scan, we collected
a large number of omnidirectional images (about 2,000) in



7

different known poses in the field of play. For every image, we
calculated the estimated distance of the chromatic transition
of interest. The resulting measures are distributed along a
different probability density, one for each chromatic transition
of interest. As an example, the probability density of the
measured distance p(oi|l) for the green-white color transition
is plotted in Fig. 5A. We described this density with the
mixture of three probability densities of Eq. 2. The three
terms in Eq. 2 are respectively: an Erlang probability density,
a Gaussian probability density and a discrete density. The
numerical values of the parameters in Eq. 2 are calculated with
a modified EM algorithm iteratively run on the 2,000 images
[6]. The resulting mixture, for the green-white transition, is
plotted in Fig. 5B. The Erlang variable models wrong readings
in the scan caused by image noise and non-perfect color
segmentation. The index n depends on the profile of the
omnidirectional mirror used in the sensor. Our mirror (Section
III) maps the area around the robot in the outer image ring
where we have good accuracy and almost no noise, while in
the inner part a certain amount of noise is present. We set
the value of n, the Erlang variable, equal to the index of the
first pixel scanned in the inner part of the image. As such, the
Erlang density will have a peak at the distance corresponding
to the transition between the two mirror parts. The Gaussian
density models the density around the maximum likelihood
region (i.e., the region around the true value of the expected
distance). The discrete density represents the probability to
miss the detection of the chromatic transition, obtaining an
INFINITY value in the scan vector, as described in Section III.

p(oi|l) = ζe(
βnon−1

i e−βoi1(oi)
(n− 1)!

)+

ζg
1√
2πσ

e
−(oi−g(l,αi))

2

2σ2 + ζdδ(oi −∞)
(2)

The mixture coefficients are ζe, ζg, ζd, and normalization
implies ζe + ζg + ζd = 1. A different density mixture was
computed for each one of the three chromatic transitions.

Once the p(oi|l) is computed, it is possible to compute the
probability of the whole scan given a pose l multiplying all
the p(oi|l), Eq. 3.

p(o|l) =
∏

i

p(oi|l) =
∏

i

p(oi|g(l, i)) (3)

2) Sensor occlusion: To cope with unexpected measures
due to occlusion of the sensor by moving objects in the
environment (i.e., the other robots in the field or the ball),
we filtered out all the rays in which the distance oi equals the
FAKE RAY value, see Section III (the FAKE RAY value
is represented by φ in Eq. 4). We called this process ray
discrimination. The detection of occluding obstacles along
the rays of a scan is very frequent in a densely crowded
environment like the Middle-Size RoboCup field. In conven-
tional rangefinders there is no ray discrimination system, so
all measured distances contribute to the computation of p(o|l).
If a large number of distances are affected by the presence of
other agents around the robot, the localization process might
fail. Our ray discrimination technique enables to compute the

A

B

Fig. 5. In A the experimental distribution of measured distances for an
expected known distance. The peak is at the expected distance. The measures
before the expected one are due to the image noise. The last peak on the right
of the plot means that due to image noise several time the chromatic transition
has not been detected. In B the density p(o|l) that represent our sensor model
computed using EM-algorithm. The curve is the result of three contributions:
(i) an Erlang variable with index n which depending on the geometry of
the mirror, (ii)a Gaussian distribution centered at the expected distance and
(iii) a discrete distribution representing the measurements resulting in the
INFINITY value.

sensor model only with a subset of reliable distances, obtaining
a faster and more reliable localization.

p(o|l) =
∏

{i|oi 6=φ}

p(oi|l) =
∏

{i|oi 6=φ}

p(oi|g(l, i)) (4)

From this equation, it follows that if the occlusion of the
sensor increases, more and more rays will be discriminated
and less information will be available for localization. Never-
theless, in our system all reliable information is exploited. As
will be shown in Section V, the ray discrimination technique
enables to correctly localize the robot even in situations of
severe occlusion.

C. Weights Calculation

Returning to the Monte Carlo Localization, we can now
compute, the weight w(j) associated to each particle j. We
first calculate the quantity w̄(j) = p(o|lj) using Eq. 3, then all
w̄(j) are normalized such that

∑
j w̃(j) = 1

w̃ =
w̄(j)∑
j w̄(j)

(5)
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Since our system scans the acquired image for the three
chromatic transitions of interest, this provides three scans for
every frame, so three weight values are associated to every
particle. To obtain a single weight value, we compute the
product of the three weights (Eq. 6), and re-normalize all
weights with Eq. 5 again.

w(j) =
N∏

k=1

w̃
(j)
k (6)

A green-white B green-blue

C green-yellow D combination

Fig. 6. Probability distributions p(ot|lt) for all possible poses l = (x, y, θ)
of the robot in the field, given the scans of a single image (the heading
is not represented). Darker points correspond to a higher likelihood. The
arrowhead represents the actual robot pose. IN A, B, and C are represented the
probabilities given the scan for the green-white, green-blue , and green-yellow
transition, respectively, in D is shown the combination of the three.

In Fig. 6, we give a pictorial visualization of the weights
calculated by the three different scans of the three chromatic
transitions of interest. The real pose of the robot is marked
by the arrowhead. Higher weight values are depicted as
darker points, lower weight values are depicted as lighter
points. The weight contributions calculated by the scan looking
for the green-white transition are represented in Fig. 6 A;
due to the symmetry of the white lines in the field, two
symmetric positions resulted to have high likelihood. The
weight contributions calculated by the scan looking for the
green-blue transition are depicted in Fig. 6 B; all positions
far away from the blue goal have a high likelihood because
no green-blue transition was found in the image scan. The
weight contributions calculated by the scan looking for the
green-yellow transition are represented in Fig. 6 C; there is
an approximate symmetry around the yellow goal. All these
contributions are combined with Eq. 6 to calculate the overall
weights as depicted in Fig. 6 D, where indeed, the weights with
higher values are clustered only around the actual position of
the robot.

V. EXPERIMENTS

The robot we used in the experiments is a holonomic
custom-built platform, equipped with the omnidirectional sen-
sor described in Section III. This section is divided in

three parts. In the first, we evaluate the performance of the
localization system depending on the number of particles
used. In the second, the robustness of the system to sensor
occlusion is evaluated. In the third, we present experiments
in the corridors of our department to show that the proposed
system can be applied in any environment in which stable
color transitions can be identified.

In order to improve the time performance of the system, the
distances in the RoboCup and in the office environment are
divided in a grid of 5x5 cm cells; similar approaches have been
successfully used previously [9]. The expected distances for
all poses and the probabilities p(oi|g(l, i)) for all g(l, i) can
be pre-computed and stored in two look-up tables for every
chromatic transition. Each look-up table takes about 13 Mb. In
the RoboCup field we have 6 look-up tables (three chromatic
transitions of interest) and in the office environment we have
4 look-up tables (two chromatic transitions of interest). In this
way, the probability p(oi|l) can be quickly computed with two
look-up operations, which enables our system to work in real-
time at 10 Hz on a PC-104 Pentium III 700 MHz fitted with
128 Mb of RAM using 1000 particles.

A. Localization in the RoboCup field of play

We tested the system on five different paths (an example
path is shown in Fig. 7). For each path, we collected a
sequence of omnidirectional images with the ground truth
positions where those images were grabbed and with the
odometry readings between two consecutive positions. During
the experiments, in order to take into account the odometric
errors, the robot was moved using its own motors between
the reference locations. This was done by sending position
commands to the robot controller and not by moving the robot
by hand. We tested our algorithms using different amounts of
particles calculating the mean localization error for the three
fundamental localization problems: (1) the global localization
problem (the robot must be localized without any a priori
knowledge on its actual position), (2) the position tracking
problem (a well localized robot must maintain the localization)
and (3) the kidnapped robot problem (a well-localized robot is
moved to a different pose without any odometry information).
In our experiments the kidnap was done by lifting the robot by
hand and moving it about 3 m away. In every trial, the robot
was moved to a different location; this is intended to simulate
situations in which, for whatever reason, the robot is lost and
must be able to recalculate its correct localization starting from
a wrong belief. Moving the robot by 3 m takes into account
also possible situations of incorrect localization generated by
collisions with other robots (a problem that can frequently
occur in a highly populated environment like the RoboCup
games, where robots often push each other while trying to win
the ball). We performed specific experiments about collisions,
in which we pushed or blocked a moving robot, but the results
are very similar to those of the kidnapping experiment; the
only difference is that the localization error is usually smaller
for a collision than for a kidnapping situation. To address the
kidnapped robot problem, we adopted the classical technique
to reserve a certain percentage of the particles to this scope and
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B
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D

Fig. 7. A sequence of global localization and position tracking. The gray
spot represents the actual robot pose, the red line represents the ground-truth
path, the black line represents the estimated path of the robot, the black dots
represent the particles (1000 particles are used). Note the heading of the
particle is not displayed.

to randomly scatter them in the environment to act as seeds
for a re-localization process in case of localization failure [8].

One of the five test paths is shown in Fig. 7. Initially, the

particles are uniformly distributed (no knowledge is available
on robot position), Fig. 7A. After the robot moved 2 m, having
grabbed 4 images and obtained 4 odometry readings, the
particles are condensed around three possible poses, Fig. 7B.
After 4 m, 6 images and 6 odometry readings, uncertainty
is solved and particles are condensed around the actual pose
of the robot, Fig. 7C. After 14 steps, one can see that the
position of the robot is well tracked along the ground-truth
path (position tracking), as shown in Fig. 7D. The particles
that are still dispersed in the environment are the particles
scattered to solve the kidnapped robot problem.

Fig. 8. The average error in the global localization problem for a specific
path with different amounts of particles.

Both reactivity and the accuracy of the localization system
increase with the number of particles, but the computational
load is also increased. We tested the performance of the
system with different numbers of particles. In Fig. 8 is shown
the average localization error for global localization using
100, 500, 1,000, and 10,000 particles when the same path
is repeated 100 times. A thousand particles is compatible
with real-time requirements and assures a robust and accurate
localization. This number is also a good value for the position
tracking problem. In Fig. 9 is shown the average and the
maximum localization error in the position tracking phase for
all test paths using different amounts of particles. With 1,000

Fig. 9. The average error and maximum error in the position tracking problem
over the five reference paths, calculated with different amounts of particles.
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particles it is already possible to achieve a good accuracy,
an acceptable average error (about 10 cm) and an acceptable
maximum error (about 30 cm), without burdening the CPU of
the robot.

Fig. 10. The average error in the re-localization phase after kidnapping
the robot, using 1,000 particles, and varying the rate of uniformly distributed
particles.

In Fig. 10 is shown the error for a kidnapped robot episode
using 1,000 particles and different rate of particles uniformly
distributed in the environment. With a higher rate of particles
scattered in the environment the re-localization is faster (there
is a higher likelihood that a particle is close to the actual
position of the robot), but the average error is higher due to the
lower number of particles clustered around the correct robot’s
pose. Notice that with 20% the re-localization is faster, but
once recovered the correct localization, the average position
error during position tracking is higher. This is because the
number of the randomly distributed particles is so high that
their contribution in the calculation of the center of gravity of
the particles spoils the correct estimation of the robot pose.
We therefore chose to distribute uniformly 10% of the 1,000
particles. This ensures low contribution in the calculation of
the center of gravity and acceptably fast recovery from the
kidnap situation.

B. Robustness to sensor occlusion

In order to show the robustness of our approach in crowded
environments, we tested the system on six different paths; an
example path is shown in Fig. 13. To understand how oc-
clusion of the omnidirectional camera affects the localization
process, consider the images in Fig. 12. The corresponding
plots (to the right of each image) show the probability distri-
butions of the robot’s pose. As occlusion increases ( 0%, 25%,
and 50%, respectively) the particles become more dispersed
around the true position of the robot. Uncertainty increases,
but most of the probability is still condensed around the correct
position. This is the result of the ray discrimination technique
presented in Section IV-B.2. To obtain a measurable amount
of occlusion, the sensor was covered with black strips; every
strip covers 12.5% of the sensor and adequately simulates the
presence of one robot close to the sensor. In real situations,

A

B

C

Fig. 11. An example of expected and measured scans for the green-white
color transition in presence of occlusion. The robot’s pose is represented by
the black spot. A represents the expected scan for an ideal noise-free sensor in
an empty environment. B shows the frame grabbed by the robot in that pose.
C represents the corresponding measured scan. In C, the solid lines represent
the measured distances, while the dotted lines represents the rays in which
an unexpected transitions was detected (FAKE RAYS). This can be caused by
image noise or other robots (represented with gray spots). As can be seen in
B, there is a robot (the goalkeeper) at the yellow goal; three rays of the scan
detected it, as shown in C. Along these rays, a black, unexpected color was
detected and FAKE RAYS values were stored instead of the proper distance.

like the one depicted in Fig. 11, it is extremely hard to have
more than two robots close to the sensor, while other robots
are usually quite far and occlude only a small fraction of the
sensor. The actual amount of occlusion during a real game
strongly depends on the shape of the opponent robots. There
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A B

C D

E F

Fig. 12. (On the left) The occlusion of the sensor is obtained with black
stripes simulating the presence of other robots close to the sensor,. This was
done in order to have a measurable amount of sensor’s occlusion (A 0%
of occlusion, C for 25% and E for 50%). (On the right) The probability
distributions calculated for the corresponding amount of sensor’s occlusion.
Notice that in the situations of higher occlusion D F, the particles are more
scattered than in B, but most of the probability is still condensed around the
correct position.

are robots like the ones of the Philips team [1] or IsocRob
team [15] that are quite large and tall, while other robots
like the ones of Fu-Fighter team [26] are rather small and
very short. Our experiment shows that the performance of
our system degrades slowly when occlusion increases. We
estimated that a 50% continuous occlusion is well above the
maximum occlusion that one robot can experience, but even
in this case, our system functions correctly.

For each path, we collected five sequences of omnidi-
rectional images with 0%, 12.5%, 25%, 37.5%, and 50%
occlusion, respectively. For every image, we recorded the
ground truth pose of the robot and the odometric readings
between two consecutive positions. In order to take into
account the odometry errors, robot movements were performed
by sending position commands to the robot. We tested our
algorithms for the three fundamental localization problems:
global localization (Fig. 13 A and B); position tracking (Fig.
13 C and D); and kidnapped robot (not shown).

In Fig. 14 is shown the average error for a global loca-
lization experiment along the same reference path for three
different amounts of sensor occlusion. Obviously, without
occlusion, localization is fast and accurate. Also in a “densely
crowded” environment (sensor always 50% covered) the robot
is able to localize itself and to maintain localization with good

A B

C D

Fig. 13. A sequence of global localization and position tracking in presence
of 12.5% of sensor occlusion. Note that, with respect to Fig. 7, the particles
are more scattered around the true position of the robot.

Fig. 14. The plots compares the global localization errors for a specific path
with different amount of sensor’s occlusion.

accuracy. We obtained very good results also in the kidnapped
robot problem. Recovery from a localization failure is obtained
thanks to a small amount of particles (10% of the total number
of particles) uniformly distributed in the environment. A few
steps after a kidnapping episode, most of the particles are again
concentrated around the correct position and the situation is
the same as that of the global localization experiment.

Finally, we performed a statistical evaluation of our ap-
proach in the conventional situation of position tracking,
repeating 100 times all reference paths with different amounts
of occlusion. In Fig. 15 are reported the average error and
the maximum error over all reference paths. Notice that
both remain small also in a densely and constantly crowded
environment.

C. Localization in an office environment

Even though our system was developed for the RoboCup
domain, it was designed from the beginning having in mind
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Fig. 15. Statistical evaluation of our system in the position tracking problem
for all our reference paths. Accuracy (average error end maximum error)
is represented for different amount of sensor’s occlusion (0%, 12.5%, 25%,
37.5%, 50%).

its applicability to every-day environments. As a result, the
localization system is not dependent on specific chromatic
transitions. Chromatic transitions of interest can be of any
number and color combination. As stated before, the only
requirements for our system are: (i) an environment with
meaningful color transitions, (ii) a geometric map of that
environment, and (iii) inclusion of the color transitions in the
map.

Fig. 16. The office-like environment in which our localization system was
tested to prove its portability to real-world environments.

The environment in which we tested the generality of our
system are the corridors of our department, as shown in
Fig. 16. The floor of the corridor is composed of red tiles, the
walls are painted white, while doors and furniture are gray.
The corridor is 26 m long and its width ranges from a 2 m
to 4 m. The trapezoidal room is about 4 × 5 m. Along the
corridors there are two gray lockers 2 m wide. The plan of
the whole environment is depicted in Fig. 20.

This environment is much more challenging than the
RoboCup environment due to uneven illumination and to the

Fig. 17. The scanning algorithm at work on an image grabbed in a corridor of
an office-like environment. The colored crosses highlight the color transitions
of interest of the environment detected along the dotted radial lines in the
omnidirectional image.

low contrast between existing colors. Nevertheless, as our ex-
periments demonstrate, the system is able to locate sucessfully
the robot, even though the vision system sometimes mistakes
the type or misses the chromatic transitions. A typical input
image for the robot is the image shown in Fig. 17. The chro-
matic transitions of interest we selected in this environment
are red-white and red-gray. The red and yellow crosses mark
red-white and red-gray transitions, respectively. In Fig. 18 is
shown a comparison between the expected and the real scans
of the office-like environment for red-white transitions.

To test the robustness of the system in a general indoor
environment without any lighting control, we performed the
test on an overcast day. Due to low ambient light, the noise
in the image is high and the contrast between white and
gray is low. In this situation, some chromatic transitions of
interest are not detected (e.g., the one pointed by the arrow in
Fig. 18A) or are erroneously detected (e.g., the one pointed
by the arrow Fig. 18C). The probability distribution calculated
from the red-white transitions in the image shown in Fig. 18
are depicted in Fig. 19. Dark and light regions represent,
respectively, high and low probabilities to represent the correct
robot pose. As can be seen, the probability distribution is
quite sparse. Nevertheless, by combining both the information
from the second chromatic transition of interest, as well as
the information coming from different measurements using
the Monte Carlo Localization algorithm, a robust localization
can be achieved, as shown in Fig. 20. Starting without any
knowledge about the robot’s position (Fig. 20A) a few steps
later most of the particles condense around the true position
(Fig. 20D). As before, we randomly spread 10% of the
particles to address the kidnapped robot problem.

VI. CONCLUSIONS

In this paper, we propose a vision-based Monte Carlo
Localization system particularly suitable for densely popu-
lated environments, using a ray discrimination technique.
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A

B

C

Fig. 18. Detection of red-white transitions in an office environment. The
floor is represented in green, the gray objects are drawn in blue, and the
rays of the scan are painted in red.The black spot represents the pose of the
robot. In A is depicted a detail of the map with the expected scan for the
red-white transitions. In B is shown an acquired image, while C shows the
extracted scan. Note that C contains several wrong detections due to noise in
the image. The arrow in A represents a transition not detected in C; the arrow
in C represents an erroneously detected transition.

Fig. 19. The probability distribution calculated from the red-white transition.

The omnidirectional vision system emulates the behavior of
rangefinder devices and, due to the ability to distinguish
different color transitions, it can detect and reject wrong
measurements caused by occlusions. We developed our system
in the Middle-Size RoboCup domain, but we showed that it
can be used to localize the robot in any environment in which
meaningful chromatic transitions exist. Our system requires
only a map with the metric and chromatic characteristics of
the environment. This map must contain the static obstacles
and the chromatic transitions of interest, and can be as simple
as a drawing stored in an image file (representing a floor plan
plus the information on color transitions). From such a map,

A

B

C

D

Fig. 20. An example of global localization in the office-like environment
in our department. 10% of the particles are randomly distributed in the
environment to recover in case of wrong localization (kidnapped robot).

the system will automatically recalculate all look-up tables
used in the localization process.

The reliability of the localization system could be further
improved if a more robust color transition detection algorithm
is used (like the ones proposed in [12], [21]), but such studies
are beyond the scope of the present work. We are currently
implementing a color transition detector robust to illumination
changes to test our system in outdoor environments.

This paper presented successful experiments of global loca-
lization, position tracking, and robot kidnapping, both in the
RoboCup environment and in the corridors of our department.
We experimentally showed the robustness of the localization
system to sensor occlusion and to chromatic transitions with
poor contrast. The proposed system has characteristics that
enable its use in a variety of applications, including navigation
in populated environment, outdoor localization, and integration
with other localization systems.
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