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Abstract— This paper describes a visual feature detector and
descriptor scheme designed to address the specific problems of
humanoid robots in the tasks of visual odometry, localization,
and SLAM (Simultaneous Localization And Mapping). During
walking, turning, and squatting movements, the camera of a
humanoid robot moves in jerky and sometimes unpredictable
way. This causes an undesired motion blur in the images grabbed
by the robot camera, that negatively affects the performance of
the image processing algorithms. Indeed, the classical features de-
tector and descriptor filtering techniques, that proved to work so
well for wheeled robots, do not perform so reliably in humanoid
robots. This paper presents a method to detect image interest
points (invariant to scale transformation and rotations) robust
to motion-blur introduced by the camera motion. Our approach
is based on a preprocessing step to estimate the Point Spread
Function (PSF) of the motion blur. The PSF is used to deconvolve
the image reducing the blur. Then, we apply a feature detector
inspired by SURF approach and the feature descriptor from
SIFT. Experiments performed on standard datasets corrupted
with motion blur and on images taken by a camera mounted on
a small humanoid robot show the effectiveness of the proposed
technique. Our approach presents higher performances and
higher reliability in matching features in the different images
of a sequence affected by motion-blur.

I. INTRODUCTION

Local invariant features descriptors are widely used in the
last years in many robotics tasks. In particular, several authors
proposed localization techniques based on vision systems
which exploit the process of matching invariant features along
image sequences. Just to give some examples: in [11] interest
points extracted from a perspective camera are used to build
a topological map of the environment; in [1] a Monte-Carlo
localization scheme based on feature matching of panoramic
images is presented; in [22] the kidnapped robot problem is
solved matching distinctive landmarks using a stereo camera;
in [8] an invariant feature-based SLAM approach is presented
using a perspective camera and EKFs (Extended Kalman Fil-
ter); in [3] a stereo-camera is used in a FastSLAM framework,
in [2] a location graph-based Visual SLAM using an omnidi-
rectional camerais presented; in [20] a visual odometry system
based on feature detection and matching able to estimate the
motion of a stereo camera or a perspective camera is presented.
With respect to humanoid robot research, Bennewitz et al. [6]
present a Monte-Carlo localization approach using invariant
features tested on a humanoid robot equipped with a single
perspective camera, Stasse et al. [23] present a 3D SLAM
application for humanoid robots based on a standard EKF
framework. In [26] invariant features are used to identify and

localize objects in concrete humanoid scenarios. Despite that,
image processing in humanoid robot is a very complex task:
design and motion of the robot introduce a lot of blurring
phenomena in the images grabbed by the camera. While in
[26] is used the big and very expansive HRP-2 humanoid that
perform a very stable slow walk, in [?] (where it is used
a Sony QRIO robot) the motion-blur problem is taken into
account and their approach attempts to minimize this problem.
Bennewitxz et al. highlight in [6] that due to unstable motion
of the humanoid platforms, missing odometers, severe body
vibrations, and shaking of the camera, standard localization
techniques are less robust on a humanoid robot compared to
a wheeled robot. As noted by Berthoz in his plenary talk at
ICRA 2007 the gait of a humanoid robot should be designed in
order to stabilize the head and so to simplify perception as it is
done by animals and humans. However, this is not simple for
the current humanoid technology. Moreover, we are interested
in working with small humanoid robots. Indeed, the final aim
of our work is the development of a robust visual odometry
for small and cheap humanoid robots, that usually have no
odometry information from its servo-motors. In addition, small
humanoid robots oscillate and vibrate a lot while moving, and
usually are equipped with low cost cameras, which are high
sensitive to motion blur phenomena.

This work proposes an invariant features detector-descriptor
scheme robust to motion-blur effect. The basic idea is to intro-
duce a blind-deconvolution step before starting the invariant
feature detection and description process. During this step,
the parameters of the unknown blurring function (PSF, Point
Spread Function) are estimated using a direct method. If a
motion blur is detected (the PSF magnitude is over a preset
threshold), the image is deblurred according to the estimate
PSF using an efficient Wiener filter. The invariant features
detection and description is then performed in the restored
image.

A. Overview

In Section II are summarized previous works on detection
and description of invariant features and some known tech-
niques in image motion-blur estimation and deconvolution.
Section III introduces our interest point detector and descriptor
scheme, based on the state-of-the art previous methods. In
Section IV is presented the technique we use for the blind-
deconvolution of the image before searching for interest points.
Experiments and comparisons with other techniques on stan-



dard dataset and on images grabbed by our small humanoid
robot are presented in Section V.

II. RELATED WORK

A. Local features detector and descriptors

The best-known and widely used feature detector and de-
scriptor scheme it was introduced by Lowe [14] and called
SIFT (Scale-invariant feature transform). SIFT features are
invariant to image scale and rotation, and are quite robust
in matching across affine transformations and changing of
viewpoint. For scale space analysis, images are convolved
with a Gaussian kernel (the only possible smoothing kernels
for scale space representation, as showed by Lindeberg [13]).
Interest points are efficiently detected using a Difference-of-
Gaussian (DoG) filter and taking the maxima over spatial
and scale dimensions. At each extracted point, it is as-
signed an orientation using orientation gradients of neighbour
sample points, computed on smoothed image correspondent
on characteristic scale of the extracted point. According to
the orientation, it is assigned a 128-dimensional vector, that
represent the local oriented gradients in a region around the
point. As shown in [17], SIFT features outperformed previous
features detectors-descriptor schemes (e.g. shape context [5],
steerable filters [9], differential invariants [10]). Ke et al.
proposed a variation of the SIFT features, called PCA-SIFT:
applying PCA in the gradient images, the descriptor is reduced
to a 36-dimensional vector, matching step is so faster. PCA-
SIFT are robust to focus-blur noise, but are less distinctive
compared with SIFT [17]. Mikolajczyk et al. [18] proposed
a novel approach for detecting interest points invariant to
scale and affine transformation: interest points are chosen
by detecting the local maxima of the Harris function of the
image over location, and the local maxima of the Laplacian-
of-Gaussian (LoG) over the scale. The affine shape of a
point neighborhood is then estimated based on second mo-
ment matrix. In [17] is presented a novel descriptor called
GLOH (Gradient location-orientation histogram), an extension
of the SIFT descriptor designed to increase its robustness and
distinctiveness: it also uses PCA to reduce the dimension of
the descriptor. GLOH obtains little better performance than
SIFT but at cost of less computational efficiency. Recently,
Bay et al. [4] present a novel and computationally efficient
scale and invariant feature detector-descriptor called SURF
(Speeded Up Robust Features): to detect interest points, the
maxima over location and scale of the determinant of the
Hessian are selected. The Hessian is computed over scaled
images using an efficient approximation based on the integral
images technique. Descriptors are obtained calculating Haar
Wavelet responses in the regions around interest points using
integral images. Repeatability and distinctiveness performance
are similar to previous proposed schemes, but SURF features
can be computed much faster.

B. Blind deconvolution

Motion blur is the effect of the relative movements be-
tween the camera and the objects of the observed scene

during the exposure time (i.e., the integration time of the
grabbed image). Using deconvolution techniques, the image
can be partially deblurred. Richardson-Lucy algorithm [15]
and Expectation-Maximization [12] method are well known
iterative deconvolution procedure, Wiener filter [21] is a non-
iterative image restoration technique that tries to build an
”optimal” estimate of the unblurred image. In order to restore
the image with deconvolution techniques, the motion blur
parameters (direction and extent) must be known: if they
are unknown, the image restoration process is called blind
deconvolution. In [25] is presented the whitening method: this
is a non-iterative method that identify the PSF by high-pass
filtering the blurred image. The filtered image is characterized
mostly by the correlation property of the blur function. In
[24] the PSF is obtained searching for image moments that
are invariant with respect to the motion blur. In [16] blur
direction is determined by an inertia-like tensor, while the
extent is determined finding zeros of the blur slice of the
power spectrum or bispectrum in this direction. In [19] PSF
is estimated by using Radon transform to find direction and
fuzzy set concepts to find its extend.

III. INTEREST POINT DETECTOR AND DESCRIPTOR
SCHEME

The proposed invariant features scheme takes advantage of
two successfully approaches: we use a detector method similar
to SURF features [4] and the descriptor proposed in SIFT
features scheme[14].

A. Interest Point Detector

The first step is to select a set of interest point that are
invariant to scale transformation. This is performed searching
for features in a scale space representation of the images [13],
obtained convolving the original images I(x, y) with Gaussian
smoothing filters G(x, y, σ) and increasing standard deviation
values σ (normally referred as the scale of the smoothed
image):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

The scale space is divided in octaves (i.e. the last smoothed
image of the octave has twice the scale of the first). As in
[14], each octaves is divided into an integer number s of
intervals, with scales σi = σi−1 ∗ 2

1
s , where σ0 is the initial

scale chosen to be 1.6. We choose s = 3, so we compute eq.
(1) at scales 1.6, 2.0159, 2.5398, 3.2, 4.0317. The latest scale
is computed to detect local scale space maxima at the higher
scale of the octave, i.e. 3.2. Once an octave is completed, the
image is resampled to half its original size: this image has
obviously twice the scale of the original image. A new octave
is then processed on the resampled (smaller) image, using the
same σi values. Normally the number of the octaves is 4,
it can be reduced to obtain much faster computation of the
detector. In order to detect interest points, the scaled images
L(x, y, σ) are convolved with filters that response mainly
to invariant local features of the image. Harris and Hessian
based detectors response to corners and highly textured points,



whereas Difference-of-Gaussian (DoG) (used in [14]) and
Laplacian-of-Gaussian (LoG) based detectors response mainly
to blobs: the latters descriptors are less stable due to the
possibility to detect points closed to contours of straight edges
[18]. As in [4], we use the determinant of Hessian of the scaled
image for selecting both location and characteristic scale of
the interest points: the trace of Hessian is the LoG, taking the
determinant points in witch the second derivative change in
only one direction are penalized (e.g. straight edges):

det(σ2H(x, y, σ)) =

det

[
σ2Lxx(x, y, σ) σ2Lxy(x, y, σ)
σ2Lxy(x, y, σ) σ2Lyy(x, y, σ)

]
(2)

where in eq. (2) Lxx, Lyy, Lxy are the second derivatives
of the scaled images L(x, y, σ). The second derivatives are
multiply with the square of the scale σ: this is due to the
fact that the amplitude of spatial derivatives decreases with
scale, so normalization is required for true scale invariance
[13]). The implementation strategy is to convolve the initial
image with Gaussian smoothing filter at different scales: at
this scope, we use an efficient Gaussian smoothing algorithm
provided with OpenCV library1. First and second derivatives
are then computed in scaled images: in eq. (3) the first and
second Gaussian derivatives in x direction are computed.

Lx(x, y, σ) = L(x+ 1, y, σ)− L(x− 1, y, σ)
Lxx(x, y, σ) = Lx(x+ 1, y, σ)− Lx(x− 1, y, σ)

(3)

First derivatives are stored in memory for efficient computation
of the descriptors (see Section III-B), second derivatives are
used to compute the determinant of Hessian (eq. 2). In Figure
1 are showed the resulting derivative based filters using in our
approach. To improve computation speed of the detector, it

Fig. 1. Gaussian derivatives up to second order (σ = 3.6).

can be used more approximated Gaussian derivatives: in [4]
discretised and cropped filter are used, computed using the
integral images technique. We show only a slight degradation
of the descriptor reliability using this fast method. Once
computed the determinant of Hessian for each location of
the multi-scaled image, interest point are detected searching
for local maxima over scale and location space in a 3 ×
3 × 3 neighbourhood of each point: only local maxima with
determinant of Hessian greater than a threshold are selected
as interest points. Finally the location and the scale (called
characteristic scale) of the extracted points are interpolated
[7] by fitting a 3D quadratic to the scale-space determinant

1http://sourceforge.net/projects/opencvlibrary/

of Hessian and taking the maxima of this quadratic. This step
is useful to obtain a more accurate characteristic scale of the
point (negatively affected by the discrete nature of the scale
space) and to reduce the localization errors.

B. Interest Point Descriptor

In our experience we note that the SIFT descriptor is slightly
more stable than SURF descriptor. We decided to implement
SIFT descriptor, tuning the parameters of the algorithm to
improve reliability.

1) Orientation assignment: In order to assign orientations
to detected interest points, we compute gradients orientations
and magnitudes of 16×16 regularly spaced sample points into
a square window centered around the interest point. The side
length of the window is equal to 12∗scale, where scale is the
interpolated characteristic scale (see Section III-A). Gradients
magnitudes and orientation of sample points are computed
using the stored first Gaussian derivatives in the discretised
scale closed to the characteristic scale of the interest point:

m(x, y, σ) =
√
Lx(x, y, σ)2 + Ly(x, y, σ)2

θ(x, y, σ) = tan−1

(
Ly(x, y, σ)
Lx(x, y, σ)

) (4)

The magnitudes are Gaussian-weighted with a circular bivari-
ate Gaussian centered in the interest point with standard devi-
ation equals to 2.5 ∗ scale. Magnitudes are then accumulated
into an orientation histogram with 36 bins representing the
discretised orientations of the gradients. After an histogram-
smoothing step, the bins with values greater than 0.8 the
global histogram maximum are selected: multiple interest
points are created with the initial location and scale but
with these different orientations (interpolated with histogram
neighborhood).

2) Descriptor assignment: It is selected a square window
centered around the interest point with side length of 20∗scale
and oriented according with its orientation. This region is reg-
ularly divided into 4× 4 smaller sub-regions, each containing
4×4 regularly spaced sample points. The gradients orientations
and magnitudes of the sample points are computed as in
Section III-B.1. Magnitudes are then Gaussian-weighted with
a circular bivariate Gaussian with standard deviation equals
to 6.7 ∗ scale in order to increase stability of the descriptor
towards small affine transformation and localization errors.
To avoid high variations in the distribution of the gradients
inside a sub-region caused by small pixels shift, magnitudes
are further weighted with a weight of 1 − d, where d is
the distance of the sample point from the central value of
the bin as measured in units of the histogram bin spacing
[14]. Each sample point gradient is rotated according to the
interest point orientation, then its magnitude is accumulated
in a orientation histogram with 8 bins (i.e., 8 discretised
orientations) characteristic of the sub-region. The 4 × 4 8-
bins histograms form the 128-entry descriptor of the selected
interest point. The descriptor is finally normalized to an unit
vector in order to obtain invariance toward contrast variations.



IV. MOTION DEBLURRING

(a) (b)

Fig. 2. (a) The motion-blur direction identification: The global minimum fall
in the blur direction estimation (in degrees). (b) The average ACF used for
estimation of the extent. The global minimum fall in the blur extent estimation
(in pixels).

(a) (b)

Fig. 3. (a) The Blurred image. (b) The image restored with Wiener filter.

V. EXPERIMENTS

We tested our detector and descriptor using both a standard
dataset 2 with added synthetic motion-blur (some example in
Figure 4) and real images with motion-blur effect grabbed
by the CMOS camera that equip our humanoid robot (some
example in Figure 5). Aim of our tests is to evaluate the
effectiveness of the proposed method in matching images
taken in a real humanoid robot scenario in presence of
motion-blur phenomena. Testing image pairs are composed
by two viewpoint of the same scene, the second frame present
the motion-blur effect. Standard dataset we use is provided
with homographies (plane projective transformations) between
images: the map between images is known, every point in one
frame corresponds exactly to one point in the other frame.
We can determine in this case ground truth matches and also
the accuracy (i.e. the localization error of the matches). For
real images set , we count manually correct matches between
frames (Figure 8). Our approach is compared to the SIFT
features scheme [14] and to the SURF features scheme [4].
Comparisons are performed using well-known implementation
of these methods3 4, without changing the algorithms standard

2http://www.robots.ox.ac.uk/˜vgg/research/affine/
3http://web.engr.oregonstate.edu/˜hess/index.html
4http://www.vision.ee.ethz.ch/˜surf/

(a) (b)

(c) (d)

Fig. 4. Some of the standard dataset images used in the experiments. Second
image of every pair is blurred with a synthetic linear motion function with
different directions and extents.

parameters. SIFT features implementations usually double the
image size before starting features detection in order create
more sample points. This step increase the computational cost
and decrease robustness of matching in presence of motion-
blur phenomena: for these reasons, we skip the resize step.
We refer here to the proposed descriptor-detector scheme
as MoBIF (Motion-Blur Invariant Features). For all tested
approaches, we use the Nearest Neighbor Distance Ratio
matching strategy (see [17]), with distance ratio equal to 0.5.
In Figure 6 are presented matching results of the standard
dataset image pairs in Figure 4. Images 4(b) and 4(d) are
blurred with synthetic motion-blur function of directions -
45 and 23 degrees and extents of 30 and 20, respectively.
The matching accuracy is the distance in pixels between the
ground truth match and the obtained match. MoBIF approach
outperforms SIFT and SURF in both the number of correct
matches and the localization accuracy. This is very important
especially in visual odometry tasks, where the accuracy in
matching affect significantly results in motion estimation.
Results for some real images are presented in Figure 7: the
X axis represent the image pairs used in matching process.
Image pairs 1 and 2 are shown in Figure 5. Estimated motion-
blur extents are in these cases 13, 14, 12, 20, 23 and 19,
respectively. Also with real images MoBIF outperforms other
approaches, with higher number of correct matches (Figure
7(a)) and a very high and stable correct matches ratio over all
detected matches (Figure 7(b)). Especially with large motion-
blur function extent (test image pair 5, estimated extent equals
to 23) our approach preserves the reliability in matching
(Figure 8) where SIFT and SURF techniques tend to fail.

VI. CONCLUSIONS

In this paper we presented an invariant features detector
and descriptor scheme that outperforms the previous proposed



(a) (b)

(c) (d)

Fig. 5. Some of the real images used in the experiments. In (a),(b) the image
pair 1, in (c),(d) the image pair 2. Second image of every pair present some
motion-blur phenomena, PSF parameters are not a-priori known.

(a) (b)

Fig. 6. Correct matches for the standard dataset images of Figure 4. Accuracy
is the distance in pixels between the ground truth match and the obtained
match.

methods in presence of motion-blur phenomena introduced
by the camera movements. Experiment in artificially motion-
blurred images and in real blurred images taken from the
camera of a small humanoid robot shown the effectiveness
and robustness of the proposed method. The basic idea began
from the purpose of the authors to implement a robust visual-
odometry algorithm for small humanoids robot: in future
works we will present a visual-odometry framework for hu-
manoids robot based on the proposed invariant features.
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