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Telerobotics31. Telerobotics

Günter Niemeyer, Carsten Preusche, Gerd Hirzinger

In this chapter we present an overview of the
field of telerobotics with a focus on control as-
pects. Motivated by an historical prespective and
some challenging applications of this research area
a classification of control architectures is given,
including an introduction to the different strate-
gies. An emphasis is taken on bilateral control and
force feedback, which is a vital research field to-
day. Finally we suggest some literature for a closer
engagement with the topic of telerobotics.
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31.1 Overview

Telerobotics is perhaps one of the earliest aspects of
robotics. Literally meaning robotics at a distance, it is
generally understood to refer to robotics with a human
operator in control or human-in-the-loop. Any high-
level, planning, or cognitive decisions are made by the
human user, while the robot is responsible for their
mechanical implementation. In essence, the brain is
removed or distant from the body.

Herein the term tele, which is derived from the Greek
and means distant, is generalized to imply a barrier
between the user and the environment. This barrier is
overcome by remote-controlling a robot at the environ-
ment, as indicated in Fig. 31.1. Besides distance, barriers
may be imposed by hazardous environments or scaling
to very large or small environments. All barriers have
in common that the user cannot (or will not) physically
reach the environment.

While the physical separation may be very small,
with the human operator and the robot sometimes oc-
cupying the same room, telerobotic systems are often at

least conceptually split into two sites: the local site with
the human operator and all elements necessary to sup-
port the system’s connection with the user, which could
be joysticks, monitors, keyboards, or other input/output
devices, and the remote site, which contains the robot
and supporting sensors and control elements.

To support this functionality, telerobotics integrates
many areas of robotics. At the remote site, to operate the
robot and execute the human’s commands, the system
may control the motion and/or forces of the robot. We
refer to Chaps. 6 and 7 for detailed descriptions of these
areas. Also, sensors are invaluable (Chap. 4), including
force sensors (Chap. 19) and others (Part C). Meanwhile,
at the local site information is often displayed haptically
(Chap. 30).

A recent addition to telerobotics is the use of com-
puter networks to transmit information between the two
sites. This is the focus of Chap. 32 and opens up new pos-
sibilities in architectures. For example a single robot may
be shared between multiple users or a single user may
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Fig. 31.1 Overview of a telerobotic system (from [31.1], adapted
from [31.2])

control multiple robots. Web interfaces are simplifying
this process, allowing access from anywhere on demand.
In this chapter, we focus on point-to-point architectures
with continual communications and operation.

We should also point out the relation between
telerobotics and human exoskeletons, as described in
Chap. 33. Exoskeletons are also controlled by a human
operator, leaving all planning and high-level challenges
to the user, and their control systems share many aspects
with telerobotics. However, the two sites may be com-
bined in an exoskeleton as the user directly touches and
interacts with the robot. In this chapter, we will disallow
any such connection.

The inclusion of the human operator makes
telerobotics very attractive to handle unknown and
unstructured environments. Applications are plentiful
(Part F) and range from space robotics (Chap. 45) to
dealing with hazardous environments (Chap. 48), from
search and rescue situations (Chap. 50), to medical sys-
tems (Chap. 52) and rehabilitation (Chap. 53).

Before proceeding, we first define some basic ter-
minology. Indeed many other terms are used nearly
synonymously with telerobotics, in particular teleop-
eration and telemanipulation. Telerobotics is the most
common, emphasizing a human’s (remote) control of
a robot. Teleoperation stresses the task-level operations,
while telemanipulation highlights object-level manipu-
lation.

Within telerobotics, a spectrum of control architec-
tures has been used. Direct control or manual control
falls at one extreme, indicating that the user is control-
ling the motion of the robot directly and without any
automated help. At the other extreme, supervisory con-
trol implies that user’s commands and feedback occur at
a very high level and the robot requires substantial in-
telligence and/or autonomy. Between the two extrema

lie a variety of shared control architectures, where some
degree of autonomy or automated help is available to
assist the user.

In practice, many systems involve at least some level
of direct control and include a joystick or similar device
in the user interface, to accept the user’s commands. As
an instrumented mechanical device, this joystick can it-
self be viewed as a robot. The local and remote robots
are called master and slave, respectively, while the sys-
tem is referred to as a master–slave system. To provide
direct control, the slave robot is programmed to follow
the motions of the master robot, which is positioned by
the user. It is not uncommon for the master robot (joy-
stick) to be a kinematic replica of the slave, providing
an intuitive interface.

Some master–slave systems provide force feedback,
such that the master robot not only measures motions but
also displays forces to the user. The user interface be-
comes fully bidirectional and such telerobotic systems
are often called bilateral. The human–master interac-
tions are a form of human–robot interaction (Chap. 57).
The field of haptics (Chap. 30) also discusses bidirec-
tional user interfaces, involving both motion and force,
though more commonly to interface the user with vir-
tual instead of remote environments. We should note
that both motion and force may become the input or
output to/from the user, depending on the system archi-
tecture.

Finally, telepresence is often discussed as an ulti-
mate goal of master–slave systems and telerobotics in
general. It promises to the user not only the ability to
manipulate the remote environment, but also to perceive
the environment as if encountered directly. The human
operator is provided with enough feedback and sensa-
tions to feel present in the remote site. This combines
the haptic modality with other modalities serving the hu-
man senses of vision, hearing or even smell and taste.
We focus our descriptions on the haptic channel, which
is created by the robotic hardware and its control sys-
tems. The master–slave system becomes the medium
through which the user interacts with the remote en-
vironment and ideally they are fooled into forgetting
about the medium itself. If this is achieved, we say that
the master–slave system is transparent.

The chapter first examines telerobotic hardware and
systems, before discussing various control architectures
to operate these systems. A specific focus is placed on
bilateral master–slave systems, which make the operator
feel most connected to the remote environment and also
present the largest stability and control problems.
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31.2 Telerobotic Systems and Applications

Like mobile, industrial, and most areas of robotics, tele-
robotic systems are designed specifically with their tasks
and requirements in mind. As such, many unique sys-
tems have evolved, of which we present an overview
for different applications. We begin with a short histori-
cal perspective, then describe different applications with
various robot designs and user interfaces.

31.2.1 Historical Perspective

Teleoperation enjoys a rich history and dates back to
nuclear research by Raymond C. Goertz in the 1940s
and 1950s. In particular, he created systems for humans
to handle radioactive material from behind shielded
walls. The first systems were electrical, controlled by
an array of on–off switches to activate various mo-
tors and move various axes [31.3]. Without any feel,
these manipulators were slow and somewhat awkward
to operate, leading Goertz to build pairs of mechani-
cally linked master–slave robots [31.3,4]. Connected by
gears, linkages, and cables these systems allowed the
operator to use natural hand motions and transmitted
forces and vibrations through the connecting structure,
yet they limited the distance between the operator and
environment and required the use of kinematically iden-
tical devices, see Fig. 31.2. Goertz quickly recognized
the value of electrically coupled manipulators and laid
the foundations of modern telerobotics and bilateral
force-reflecting positional servos [31.5].

Fig. 31.2 Raymond C. Goertz used electrical and mechan-
ical teleoperators in the early 1950s to handle radioactive
material. (Courtesy Argonne National Labs)

At the beginning of the 1960s the effects of time
delay on teleoperation started to become a topic of re-
search [31.6, 7]. To cope with this problem the concept
of supervisory control was introduced [31.2] and in-
spired the next years of development. In the late 1980s
and early 1990s theoretical control came into play with
Lyapunov-based analysis and network theory [31.8–13].
Using these new methods bilateral control of teler-
obotic systems became the vital research area it is today
see Sect. 31.4. The growth of the Internet and its use
as a communication medium fueled further this trend,
adding the challenges of nondeterministic time delay.

On the hardware side, the Central Research Labora-
tory model M2 of 1982 was the first telerobotic system
which realized force feedback while separating master
and slave electronics. It was developed together with the
Oak Ridge National Laboratory and was used for some
time for a wide range of demonstration tasks includ-
ing military, space or nuclear applications. The National
Aeronautics and Space Administration (NASA) tested

Fig. 31.3 The telerobotic system CRL Model M2 is used
to verify the assembly of space truss structures (1982).
(Courtesy of the Oak Ridge National Laboratory)
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the M2 system to simulate the ACCESS space truss as-
sembly with excellent results (Fig. 31.3). The advanced
servomanipulator (ASM) was developed from the M2 to
improve the remote maintainability of manipulators and
intended as a foundation for telerobotic systems [31.14].

Also driven by the nuclear application, bilateral
servomanipulators for teleoperation were developed
in France in the Commission de Energie Atomique
(CEA) by Vertut and his colleagues [31.15]. With the
MA 23 they demonstrated telerobotic operation includ-
ing computer-assisted functionalities to improve the
operator’s performance [31.16]. The assistance included
software jigs and fixtures or virtual walls and restric-
tions [31.17], see also Sect. 31.3.2.

For space applications a dual-arm force reflecting
telerobotic system was developed by Bejczy et al. at
the Jet Propulsion Laboratory (JPL) [31.18]. In this
approach for the first time kinematically and dynam-
ically different master and slave systems were used,
requiring control in Cartesian space coordinates. Fig-
ure 31.4 shows the master control station with its two
back-drivable hand controllers. This system was used
for simulating teleoperation in space.

In the 1980s and 1990s, as nuclear power activi-
ties began to decline, interest shifted to other areas such
as space, medicine or undersea. Efforts were acceler-
ated by the availability of increasing computer power as
well as the introduction of novel hand controllers, e.g.,
the PHANToM device [31.19], popularized by haptic
applications in virtual reality (see Chap. 30).

Fig. 31.4 JPL ATOP control station (early 1980s). (JPL
no. 19902Ac, courtesy of NASA/JPL-CALTECH)

Fig. 31.5 ROTEX, the first remotely controlled robot in
space (1993). Telerobot in space and ground operator sta-
tion. (Courtesy of the German Aerospace Center, DLR)

In 1993 the first telerobotic system was flown in
space with the German Spacelab Mission D2 on board
the Space Shuttle Columbia. The robot technology
experiment (ROTEX) demonstrated remote control of
a space robot by means of local sensory feedback,
predictive displays, and teleoperation [31.20]. In this
experiment the round trip delay was 6–7 s, such that
it was not feasible to include force feedback into the
control loop.

With the first transatlantic telesurgery demonstration
in 2001, Computer Motion demonstrated the feasibil-
ity of telerobotic systems even in the delicate field of
surgery [31.21]. A surgeon in New York (USA) used
a ZEUS system to perform a laparoscopic cholecystec-
tomy on a patient located in Strasbourg (France), as
depicted in Fig. 31.6. The system did not include force
feedback, so the surgeon had to rely on visual feedback
only.

In this perspective we gave only reference to the sys-
tems, that are seen to be milestones within the history of
telerobotics. Several different systems have been devel-
oped and added value to the research field, which could
not be mentioned here.

31.2.2 Applications

Telerobotic systems have been motivated by issues of
human safety in hazardous environments (e.g., nuclear
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or chemical plants), the high cost of reaching remote en-
vironments (e.g., space), scale (e.g., power amplification
or position scaling in micromanipulation or minimally
invasive surgery), and many others. Not surprisingly,
after their beginning in nuclear research, telerobotic sys-
tems have evolved to many fields of application. Nearly
everywhere a robot is used, telerobotic systems can be
found. The following are some of the more exciting uses.

In minimally invasive surgery telerobots allow
procedures to be performed through small incisions, re-
ducing the trauma to the patient compared to traditional
surgery [31.22]. The da Vinci system, made by Intuitive
Surgical Inc. [31.23] and shown in Fig. 31.7, is the only
commercially available device at present. Other efforts,

Fig. 31.7 Intuitive Surgical Inc. makes the da Vinci teler-
obotic system, which is used in minimally invasive surgery.
(Courtesy c©2008 Intuitive Surgical, Inc.)

however, include Computer Motion [31.24] and endoVia
Medical [31.25] on the commercial side, as well as the
University of Washington [31.26], Johns Hopkins Uni-
versity [31.27], the German Aerospace Center [31.28],
and many others.

Fig. 31.8 tEODor, A telerobotic system for disarming
of explosives. (Courtesy telerob Gesellschaft für Fern-
hantierungstechnik mbH, Ostfildern, Germany)
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Haptic control

Stereo video

Fig. 31.9 ROKVISS, a telerobotic system providing stereo vision
and haptic feedback to the ground operator. (Courtesy of the German
Aerospace Center, DLR)

Protecting the operator from having to reach into
a hazardous environment, telerobotic systems are widely
used in nuclear or chemical industry. Some systems have
been developed for the maintenance of high-voltage
electrical power lines, which can be safely repaired
without service interruption by a human operator using
a telerobotic system. Disarming of explosives is another
important task. Many systems like the telerob explo-
sive ordnance disposal and observation robot (tEODor)
shown in Fig. 31.8 or PackBot, made by iRobot [31.29],
are used by police and military to disarm mines and
other explosives. Similar vehicles are remote controlled
for search and rescue in disaster zones [31.30].

Space robotics is a classic application, in which dis-
tance is the dominating barrier, as discussed in Chap. 45.
The NASA rovers on Mars are a famous example. Due
to the time delay of several minutes, the rovers are com-
manded using supervisory control, in which the human
operator is defining the goal of a movement and the
rover achieves the goal by local autonomy using sensory
feedback directly [31.31].

In orbital robotics the German technology experi-
ment ROKVISS (robot component verification on ISS) is
the most advanced telerobotic system [31.32]. Launched
in 2004, it is installed outside the Russian module of
the international space station. In this experiment ad-
vanced robot components of a slave system, including
torque sensors and stereo video cameras, are validated
in real space conditions. Due to a direct communica-
tion link between the space station and the operator
station at DLR (German Aerospace Center), the time
delay was reduced to about 20 ms allowing a bilateral
control architecture with high-fidelity force feedback
to the operator [31.33] (Fig. 31.9). This technology is
leading toward robotic service satellites, called Robo-
nauts, which can be remotely controlled from the
ground to help real astronauts during extravehicular
activity (EVA) or to perform repair and maintenance
tasks [31.34].

31.3 Control Architectures

Compared to plain robotic systems, in which a robot
executes a motion or other program without further
consultation of a user or operator, telerobotic systems
provide information to and require commands from the
user. Their control architectures can be described by the
style and level of this connection, as shown in Fig. 31.10.
Organized in a spectrum, the three main categories are

• direct control• shared control• supervisory control

In practice, however, control architectures often include
parts of all strategies.

Direct control implies no intelligence or autonomy in
the system, so that all slave motion is directly controlled
by the user via the master interface. If task execution
is shared between direct control and local sensory feed-
back and autonomy, or if user feedback is augmented
from virtual reality or other automatic aids, the architec-

ture is denoted as shared control. In supervisory control
the user and slave are connected loosely with strong
local autonomy, i. e., the operator is giving high-level
commands, which are refined and executed by the tele-
robot. The following explains the architectures in reverse
order, followed by a detailed treatment of direct and bi-
lateral control in Sect. 31.3.3, which introduces the basic
ideas for Sect. 31.4.

31.3.1 Supervisory Control

Supervisory control, introduced by Ferell and Sheridan
in 1967 [31.2], is derived from the analog of supervis-
ing a human subordinate staff member. The supervisor
gives high-level directives to and receives summary
information from, in this case, the robot. Sheridan de-
scribes this approach in comparison with manual and
automatic robot control [31.35]: “Human operators are
intermittently programming and continually receiving
information from a computer that itself closes an au-
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tonomous control loop through artificial effectors and
sensors.”

Today the autonomous control loops may be closed
on the remote site, with only the state and model in-
formation being transmitted to the operator site. The
operator supervises the telerobotic system and decides
how to act and what to do. A special implementation
of supervisory control is the telesensor programming
approach, which is presented hereafter.

Telesensor Programming
The telesensor programming (TSP) approach is a shared
autonomy concept that distributes intelligence between
man and machine [31.36]. Presuming that sufficient in-
formation about the actual environment is available from
the sensor systems, partial tasks can be executed in-
dependently on the machine level. Specifications and
decisions on a high task planning level have to be done
by human operators. Local sensory feedback loops are
used by the robot system, while global task-level jobs
have to be specified interactively by a human operator.
This shared autonomy approach is the basis of the TSP
paradigm, with which the robot can be teleprogrammed
on a task directed level. The teaching of a robot system
occurs not on the joint or cartesian manipulator level but
on a higher language level, i. e., the operator plans ac-
tivities at a level which can be performed by the robotic
system independent of human intervention.

Figure 31.11 shows the structure of a TSP imple-
mentation, consisting of two control loops working in
parallel. One loop controls the real (remote) system,
which contains internal feedback for local autonomy.
The other loop establishes a simulation environment

which is structurally equivalent to the real system, with
a few exceptions.

Most importantly, any signal delay which may re-
sult from communication to the remote system, e.g.,
in space applications, is not duplicated in the simula-
tion. This makes the simulation predictive with respect
to the real system. A second exception is the display
of internal variables in the simulation, which cannot
be observed (measured) in the real system. This gives
the operator or task planner more insight into what is
happening or may happen in the system in response
to commands. Communication between the two loops
occurs via a common model data base which delivers
a priori knowledge for execution on the remote sys-
tem and a posteriori knowledge for model updating
in the simulated world. For such a telerobotic con-
trol system unique tools are necessary to implement
the required functionality. First a sophisticated simu-
lation system has to be provided to emulate the real
robot system. This includes the simulation of sensory
perception within the real environment. Beyond this
sensor simulation, the shared autonomy concept has
to provide an efficient operator interface to setup task
descriptions, to configure the task control parameters,
to decide what kind of sensors and control algorithms
should be used, and to debug an entire job execution
phase.

In the field of telerobotics with large time delays,
e.g., in space and undersea applications, this sensor-
based task-directed programming approach [31.36] has
advantages. Under direct visual feedback with a time
delay of a few seconds, is not feasible for the human op-
erator to handle the robot’s movements in a suitable way.
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Fig. 31.11 The concept of telesensor programming as demonstrated during the ROTEX mission

Predictive simulation allows the operator to telemanip-
ulate the remote system [31.37]. In addition, the use of
force reflecting hand controllers to feed back force sig-
nals in shared and teleoperated control modes [31.38]
or from the simulated predicted world can improve the
operator’s performance. Finally, an interactive supervi-
sory user interface makes it possible to configure the
environmental and control parameters.

Control
commands

Scale
pose

Shared
control

Camera image

Force feedback Scale
force

Fig. 31.12 An example for the shared control concept in telerobotic
surgery

The main feature of this telerobotic concept is to
replace the time-delayed visual feedback with predictive
stereo graphics including sensor simulation, providing
a supervisory control technique that will allow a shift of
more and more autonomy and intelligence to the robot
system.

31.3.2 Shared Control

To enable telepresence in long-distance or risky applica-
tions (e.g., space or surgery) a sufficient shared control
concept [31.39, 40] for the control of the teleoperator
can be preferable to guarantee the safety of the teleop-
erator and/or task. Herein, shared control is based on
local sensory feedback loops [31.41] at the teleopera-
tor site (Fig. 31.11), by which gross commands were
refined autonomously providing the teleoperator with
a modest kind of sensory intelligence. The human op-
erator originates gross path commands e.g. by using
a kinesthetic feedback device, which are fine-tuned by
the teleoperator.

In applications with large time delays the shared
autonomy concept distributes intelligence between the
operator and the teleoperator in the sense of a task-
directed approach [31.42]. Control of the task is
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distributed between the human operator and the (au-
tonomous) telerobot, such that each controls a subtask.
An example can be seen in Fig. 31.12, where the
autonomous part of the system controls and com-
pensates the patients movement, while the surgeon
controls the operation itself on a virtual stabilized pa-
tient [31.43].

A special application of shared control is the use of
virtual fixtures [31.44]. Virtual elements, such as vir-
tual surfaces, guide tubes, or other appropriate objects,
are superimposed into the visual and/or haptic scene
for the user. These fixtures help the operator perform
telerobotic or robot-assisted manipulation tasks by limit-
ing movement into restricted regions and/or influencing
movement along desired paths. Control is thus shared
at the master site, taking advantage of preknowledge
of the system or task to modify the user’s commands
and/or to combine them with autonomously generated
signals.

Capitalizing on the accuracy of robotic systems,
while sharing control with the operator, telerobotic sys-
tems with virtual fixtures can achieve safer and faster
operation [31.45]. Abbott et al. describe the benefits by
comparison to the common physical fixture of a ruler:
“A straight line drawn by a human with the help of
a ruler is drawn faster and straighter than a line drawn
freehand. Similarly, a [master] robot can apply forces or
positions to a human operator to help him or her draw
a straight line.” Based on the nature of the master robot
and its controller, the virtual fixtures may indeed appear
as impedance or admittance objects, i. e., providing cor-
rective forces or positions to the user, respectively. In
both cases, however, and in contrast to physical fixtures,
the level and type of assistance can be programmed and
varied.

31.3.3 Direct and Bilateral Teleoperation

To avoid difficulties in creating local autonomy, most
telerobotic systems include some form of direct control:
they allow the operator to specify the robot’s motions. In
the following we assume a master–slave system, i. e., the
user is holding a joystick or master mechanism serving
as an input device. We first describe unilateral operation,
before focusing on bilateral control where the master
also serves a display device.

Unilateral Acceleration or Rate Control
For underwater, airborne, or space applications, a slave
robot may be a vehicle actuated by thrusters. Direct con-
trol thus requires the user to power the thrusters, which

in turn accelerate the vehicle. For other applications, the
user may be required to command the rate or velocity of
the vehicle or slave robot. In both scenarios, the input
device is commonly a joystick, often spring centered,
where the commands are proportional to the joystick
displacement. For six-degree-of-freedom (DOF) appli-
cations, i. e., when the slave needs to be controlled in
translation and orientation, a 6D-Space Mouse or alter-
natively often two joysticks are used for translation and
orientation respectively.

Acceleration and rate control can require consider-
able effort for the operator to reach and hold a given
target location. As expected, users can more accurately
position a system under rate control than under ac-
celeration control [31.46]. Indeed acceleration control
necessitates users to regulate a second-order system ver-
sus a first-order system for rate control. Assuming the
slave has local position feedback available, a control
system is often incorporated locally, such that the user
may specify position commands and is relieved from the
dynamic control problem.

Position Control and Kinematic Coupling
Assuming that the slave is under position control,
we next consider the kinematic coupling between
master and slave, i. e., the mapping between master
and slave positions. In particular, we must remem-
ber that the master mechanism moves in the master
workspace, while the slave robot moves in the slave
workspace. These two spaces are nearly always some-
what different.

Clutching and Offsets. Before even discussing how the
two robots are coupled, we must understand that they
are not always coupled, for example, before the system
is turned on, master and slave robots may, for whatever
reason, be placed in some initial position/configuration.
We have three options of how to engage the system:
(1) first autonomously move one or both robots so they
come to the same position, (2) wait until someone (the
user) externally moves one robot to match the location
of the other, or (3) connect the two robots with some
offset.

Once connected, most systems also allow a tempo-
rary disconnection between the two sites. The reason
is twofold: to allow the user to rest without affect-
ing the slave state and to allow a shift between
the two robots. The later is most important if the
workspaces of both robots do not perfectly overlap.
This is much like picking up your mouse off your
mouse pad to reposition without moving the cursor.
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In telerobotics the process is called clutching or some-
times also indexing. If clutching is allowed, or both
robots are not constrained to start at the same loca-
tion, the system must allow for offsets between the two
robots.

Kinematically Similar Mechanisms. The simplest sce-
nario involves a master and slave mechanism that are
kinematically equivalent if not entirely identical. In this
case, the two robots can be connected at a joint level.
With q denoting joint values and subscripts ‘m’ refer-
ring to the master, ‘s’ to the slave, ‘offset’ to a shared
offset, and ‘d’ to a desired value, we can write

qsd = qm +qoffset ,

qmd = qs −qoffset . (31.1)

At the instance the two robots are to be connected or
reconnected, the offset is computed as

qoffset = qs −qm . (31.2)

Most kinematically similar master–slave systems have
the same workspace at both sites and do not allow
clutching. By construction the offset is then always
zero.

Depending on the controller architecture, the joint
velocities may be similarly related, taking derivatives of
(31.1). An offset in velocities is not necessary.

Kinematically Dissimilar Mechanisms. In many cases,
the master and slave robots differ. Consider that the
master is connected to the human user and thus should
be designed accordingly. Meanwhile the slave works in
some environment and may have a very different joint
configuration and different number of joints. As a result,
connecting the robots joint by joint may not be feasible
or appropriate.

Instead kinematically dissimilar robots are con-
nected at their tips. If x is a robot’s tip position, we
have

xsd = xm + xoffset ,

xmd = xs − xoffset . (31.3)

If orientations are also connected, with R describing
a rotation matrix, we have

Rsd = Rm Roffset ,

Rmd = Rs R�
offset , (31.4)

where the orientational offset is defined as slave relative
to master

Roffset = R�
m Rs . (31.5)

Again velocities and angular velocities may be con-
nected if needed and do not require offsets.

Finally note that most telerobotic systems use a video
camera at the remote site and a monitor at the local
site. To make the connection appear natural, the slave
position and orientation should be measured relative to
the camera, while the master position and orientation
should be measured relative to the user’s view.

Scaling and Workspace Mapping. Kinematically dis-
similar master–slave robots are commonly also of
different size. This means not only do they require
clutching to fully map one workspace to another, but
they often necessitate motion scaling. And so (31.3)
becomes

xsd = μxm + xoffset ,

xmd = (xs − xoffset)

μ
. (31.6)

The orientation, however, should not be scaled. The
scale μ may be set to either map the two workspaces
as best possible, or to provide the most comfort to the
user.

If force feedback, introduced below, is provided, an
equivalent force scale may be desired. This will prevent
distortion of the remote environmental conditions, such
as stiffness or damping, by the scaling.

Beyond linear scaling, several research efforts have
created nonlinear or time-varying mappings, which de-
form the workspaces. These may effectively change the
scale in the proximity of objects [31.47] or drift the offset
to best utilize the master workspace [31.48].

Local Position Control. By construction we are now
assuming that the slave follows a position command.
This necessitates a local slave controller to regulate its
position. In particular for kinematically dissimilar mech-
anisms, this will be a Cartesian tip position controller
with appropriate inverse kinematics. For details we refer
to Chap. 6.

If the slave robot has redundancies, these may be
controlled either automatically to optimize some cri-
terion or manually with additional user commands.
We refer here to Chap. 11 for appropriate tech-
niques.
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31.4 Bilateral Control and Force Feedback

In pursuit of telepresence and to increase task perfor-
mance, many master–slave systems incorporate force
feedback. That is, the slave robot doubles as a sensor
and the master functions as a display device, so that the
system provides both forward and feedback pathways
from the user to the environment and back. Figure 31.13
depicts the common architecture viewed as a chain of
elements from the user to the environment.

The bilateral nature of this setup makes the control
architecture particularly challenging: multiple feedback
loops form and even without environment contact or user
intervention, the two robots form an internal closed loop.
The communications between the two sites often inserts
delays into the system and this loop, so that stability of
the system can be a challenging issue [31.49].

To present force information without stability prob-
lems, it is possible to use alternate displays, such as audio
or tactile devices [31.50]. Meanwhile, the combination
of vibrotactile methods with explicit force feedback can
increase high-frequency sensations and provide benefits
to the user [31.51]. Tactile shape sensing and display
also extends the force information presented to the
user [31.52].

In the following we discuss explicit force feed-
back. We first examine the basic architectures before
discussing stability and some advanced techniques.

31.4.1 Position/Force Control

Two basic architectures couple the master and slave
robots: position–position and position–force. We as-
sume that the robot tips are to be connected by the
equations of Sect. 31.3.3, giving the control laws for
translation. Control of orientation or joint motions fol-
lows equivalent patterns.

Position–Position Architecture
In the simplest case, both robots are instructed to track
each other. Both sites implement a tracking controller,
often a proportional-derivative (PD) controller, to fulfill

Master
manipulator

Master
controller

Slave
controller

Environ-
ment

Communications Telerobot

T

T

CPU CPU

Human
operator

Fig. 31.13 A typical bilateral tele-
operator can be viewed as a chain
of elements reaching from user to
environment

these commands:

Fm = −Km(xm − xmd)− Bm
(
ẋm − ẋmd

)
,

Fs = −Ks(xs − xsd)− Bs
(
ẋs − ẋsd

)
. (31.7)

If the position and velocity gains are the same (Km =
Ks = K , Bm = Bs = B), then the two forces are the same
and the system effectively provides force feedback. This
may also be interpreted as a spring and damper between
the tips of each robot, as illustrated in Fig. 31.14. If
the two robots are substantially different and require
different position and velocity gains, the master–slave
forces will be scaled and/or distorted.

Note we have assumed the slave is under impedance
control and back-drivable. If the slave is admittance con-
trolled, i. e., it accepts position commands directly, the
second part of (31.7) is unnecessary.

Also note that by construction the user feels the
slave’s controller forces, which include forces associ-
ated with the spring–damper and slave inertia in addition
to environment forces. Indeed while moving without
contact, the user will feel the inertial and other dy-
namic forces needed to move the slave. Furthermore,
if the slave is not back-drivable, i. e., does not easily
move under environment forces, the environment force
may be entirely hidden from the user. Naturally this
defeats the purpose of force feedback. In these cases,
a local force control system may be used to render
the slave back-drivable. Alternatively, a position–force
architecture may be selected.

Position–Force Architecture
In the position–position architecture, the user is pre-
sented with the slave’s controller force. While this is
very stable, it also means the user feels the friction and
inertia in the slave robot, which the controller is actively
driving to overcome. In many scenarios this is unde-
sirable. To avoid the issue, position–force architectures
place a force sensor at the tip of the slave robot and
feedback the force from there. That is, the system is
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B

K

Hm Hs

Fig. 31.14 A position–position architecture effectively cre-
ates a spring and damper between the two robots

controlled by

Fm = Fsensor ,

Fs = −Ks(xs − xsd)− Bs
(
ẋs − ẋsd

)
. (31.8)

This allows the user to only feel the external forces
acting between the slave and the environment and
presents a more clear sense of the environment. How-
ever, this architecture is less stable: the control loop
passes from master motion to slave motion to environ-
ment forces back to master forces. There may be some
lag in the slave’s motion tracking not to mention any de-
lay in communications. Meanwhile the loop gain can be
very high: a small motion command can turn into a large
force if the slave is pressing against a stiff environment.
In combination, stability may be compromised in stiff
contact and many systems exhibit contact instability in
these cases.

31.4.2 Passivity and Stability

The two basic architectures presented in Sect. 31.4.1
clearly illustrate one of the basic tradeoffs and chal-
lenges in force feedback: stability and performance.
Stability issues arise because any models of the sys-
tem depend on the environment as well as the user. Both
these elements are difficult to capture and, if we assume
we want to explore unknown environments, impossible
to predict. This issue makes a stability analysis very dif-
ficult. A common tool that avoids some of this issue
is the concept of passivity. Although passivity provides
only a sufficient (not a necessary) condition for stabil-
ity, it incorporates the environmental uncertainly very
well.

Passivity is an intuitive tool that examines the energy
flows in a system and makes stability assertions if energy

Controller Commu-
nication

Controller Slave EnvironmentHuman Master

Fig. 31.15 A teleoperator can be analyzed as a chain of-two port elements connecting the one-port operator to the one-port
environment

is dissipated instead of generated. Three rules are of
importance here. First, a system is passive if and only
if it can not produce energy. That is the output energy
from the system is limited by the initial and accumulated
energy in the system. Second, two passive systems can
be combined to form a new passive system. Third, the
feedback connection of two passive systems is stable.

In the case of telerobotics, we generally assume that
the slave robot will only interact with passive environ-
ments, that is, that the environments do not contain active
motors or the like. Without the human operator, stabil-
ity can therefore be assured if the system is also passive,
without needing an explicit environment model.

On the master side the operator closes a loop
and has to be considered in the stability analysis.
In general, the master robot will be held by the
user’s hand and arm. A variety of models and pa-
rameters describe the human arm dynamics, mainly in
the form of a mass–damper–spring system. In [31.53]
we find a summary of model parameters used by
different authors. For an impedance-controlled haptic
interface, common to most systems, the worst-case
scenario for stability is the situation when the op-
erator is not holding the haptic device [31.54, 55].
Thus we may elect to ignore the human operator in
the analysis, assuming the human force equals zero
(Fhuman = 0). A system then found to be stable will
also be stable if the operator is interacting with the
device.

To apply passivity, we take the system originally de-
picted in Fig. 31.13 and describe it as two-port elements
in Fig. 31.15. We choose a sign convention, such that
the power at every boundary is positive if flowing to
the right. For example, at the first boundary, the posi-
tive power flow is the product of master velocity times
applied (human) force

Pleft = ẋ�
m Fhuman . (31.9)

Meanwhile at the last boundary, the positive power flow
is the product of the slave velocity times the environment
force (which ultimately opposes the human force)

Pright = ẋ�
s Fenv . (31.10)
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Therefore the entire telerobotic system is passive if

t∫

0

Pinput dt =
t∫

0

(Pleft − Pright)dt

=
t∫

0

(
ẋ�

m Fhuman − ẋ�
s Fenv

)
dt

> −Estore(0) . (31.11)

To simplify the analysis, we can examine the pas-
sivity of each two-port element and then deduce the
overall passivity. The master and slave robots are me-
chanical elements and hence passive. The controllers
of a position–position architecture mimic a spring and
damper, which are also passive elements. So without
delay, a position–position architecture is passive.

While powerful to handle uncertainty, passivity
can be overly conservative. Many controllers are over-
damped if every subsystem is passive. In contrast, the
combination of an active and a passive subsystem may be
passive and stable and show less dissipation. This is par-
ticularly true for the cascaded arrangement of two-port
elements in the telerobotic system of Fig. 31.15. From
network theory, the Llewellyn criterion specifies when
a possibly active two-port connected with any passive
one-port becomes passive. This two-port is then labeled
unconditionally stable, as it will be stable in connection
to any two passive one-ports. The Llewellyn criterion
may hence be used as a more general stability test for
telerobotic systems or components [31.56].

Passive controllers are also limited as they cannot
hide the dynamics of the slave robot. In the above
position–position architecture, the user will feel the
forces associated with the slave inertia. In contrast the
position–force architecture hides the slave inertia and
friction from the user. As such, when the user inserts
kinetic energy into the master without feeling any re-
sistance, the system itself creates and injects the kinetic
energy for the slave. This violates passivity and provides
another insight as to why the architecture suffers from
potential stability problems.

31.4.3 Transparency
and Multichannel Feedback

Both basic architectures can be captured by the
general teleoperator control system described by
Lawrence [31.13], and later expanded by Hashtrudi-
Zaad and Salcudean [31.56] and shown in Fig. 31.16.

Knowing that ideally a teleoperator would have the mas-
ter motion track the slave motion, as well as have the
operator’s force match the environment’s force, both ve-
locity (from which position may be integrated or vice
versa) and force may be measured at both sites, for ex-
ample, in this way the slave can start moving as soon as
the user applies a force to the master, even before the
master itself has moved.

Following these concepts derived in [31.13], we can
examine the relationships between velocity and force,
in the form of impedances and admittances. Note we
do this in a single degree of freedom, assuming that all
degrees of freedom may be treated independently. The
environment will exhibit some impedance Z e(s) that is
not known in advance and relates the environment force
to the slave’s velocity

Fe(s) = Z e(s)vs(s) . (31.12)

If we describe the teleoperator in whole as a two-port
with a hybrid matrix formulation

(
Fh(s)

vm(s)

)

=
(

H11(s) H12(s)

H21(s) H22(s)

)(
vs(s)

−Fe(s)

)

(31.13)

Environment

Communi-
cation

channel

Slave

Master

Operator

1/Zs

1/Zm

+
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+
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+
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Fig. 31.16 In general, a controller will use both position
and force information from both master and slave robot
(after [31.56], adapted from [31.13])
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then the user will perceive the impedance

Z to(s) = Fh(s)

vm(s)
= (H11 − H12 Z e)(H21 − H22 Z e)−1 .

(31.14)

Transparency describes how close the user’s
perceived impedance comes to recreating the true en-
vironment impedance.

For a detailed treatment of passivity in telerobotics,
impedance and admittance interpretations and designs,
and transparency, we refer to some of the seminal works
in [31.11–13, 56–59].

31.4.4 Time Delay and Scattering Theory

When delays occur in the communications between the
local and remote site, even position–position architec-
tures can suffer from serious instabilities [31.60, 61].
This can be traced to the communications block in
Fig. 31.15, where the power entering the left side and
exiting the right side do not add up. Rather energy
may be generated inside the block, which feeds the
instability [31.9].

Several approaches to operate under delay have been
studied [31.62], in particular shared compliant con-
trol [31.63] and the addition of local force loops [31.64].
The use of the Internet for communication, adding vari-
ability to the delay, is also an area of interest [31.65,66].
This further evokes issues of data reduction [31.67].

Here we note that natural wave phenomena are
bilateral passive elements that tolerate delay. If the
control system is described in the frequency domain
and scattering matrices are used in place of impedance
and admittance matrices, the system can tolerate de-
lays [31.68]. Scattering matrices relate the sum of
velocity and force to their difference, so that passiv-
ity becomes a condition on the system gain, which is
unaffected by the delay. Alternatively, passivity may
be explicitly observed and enforced to ensure stabil-
ity [31.69–71].

31.4.5 Wave Variables

Building on the realization that delay communications
can be active and that wave phenomena circumvent the

issue, wave variables provide an encoding scheme that
is tolerant of delay [31.72]. Consider the power flow-
ing through the system and separate the power moving
forward and returning.

P = ẋT F = 1

2
uTu− 1

2
vTv = Pforward − Preturn ,

(31.15)

where the forward and returning power by construction
have to be nonnegative. This leads to the definition of
the wave variables

u = bẋ+ F√
2b

,

v = bẋ− F√
2b

, (31.16)

where u is the forward-moving and v the returning
wave.

If the normal signals are encoded into these wave
variables, transmitted across the delay, and decomposed
into regular variables, the system remains passive re-
gardless of delay. In fact, in the wave domain, passivity
corresponds to a wave gain of less than or equal to unity.
No requirements are placed on phase and so lag does
not destroy stability.

The wave impedance b relates velocity to force and
provides a tuning knob to the operator. Large b values
mean the system increases force feedback levels at the
cost of feeling high inertial forces. Small values of b
lower any unwanted sensations, making it easy to move
quickly, but also lower the desirable environment forces.
Ideally the operator would lower b when there is no risk
of contact and raise b when contact is imminent.

Recent developments are incorporating both
position–position and position–force architectures
within the wave frame work, so the resulting sys-
tem is stable with any environment, stable with any
delay, yet maintains the feedback of high-frequency
forces that help the operator identify happenings at
the remote site [31.73]. To improve performance and
assist the operator, predictors may also be incorpo-
rated [31.74].

31.5 Conclusions and Further Reading

Despite its age, telerobotics remains an exciting and vi-
brant area of robotics. In many ways, it forms a platform

which can utilize the advances in robotic technologies
while simultaneously leveraging the proven skills and
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capabilities of human users. Compare this, for example,
with the development of the automobile and its relation
to the driver. As cars are gradually becoming more so-
phisticated with added electronic stability control and
navigation systems, they are becoming safer and more
useful to their operators, not replacing them. Similarly
telerobotics serves as a pathway for gradual progress
and, as such, is perhaps best suited to fulfill robotics
long-held promise of improving human life. It is seeing
use in the challenging area of search and rescue. And
with the recent developments and commercializations
in telerobotic surgery systems, it is indeed impacting
on the lives of tens of thousands of patients in a pro-
found fashion and extending the reach of robotics into
our world.

For further reading in the area of supervisory con-
trol, we refer to Sheridan [31.35]. Though published
in 1992, it remains the most complete discussion on
the topic. Unfortunately few other books are devoted
to or even fully discuss telerobotics. In [31.75] many
recent advances, including methods, experiments, appli-
cations, and developments, are collected. Beyond this,
in the areas of bilateral and shared control, as well as
to understand the various applications, we can only
refer to the citations provided. Finally, in addition to
the standard robotics journals, we note in particular
Presence: Teleoperators and Virtual Environments, pub-
lished by the MIT Press. Combined with virtual-reality
applications, it focuses on technologies with a human
operator.
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