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Networked Te32. Networked Telerobots

Dezhen Song, Ken Goldberg, Nak Young Chong

Telerobots, remotely controlled robots, are widely
used to explore undersea terrains and outer space,
to defuse bombs, and to clean up hazardous
waste. Until 1994, telerobots were accessible only
to trained and trusted experts through dedicated
communication channels. This chapter describes
networked telerobots, a new class of telerobots
controllable over networks such as the Internet,
that are accessible to the general public. This
chapter will describe relevant network technol-
ogy, the history of networked telerobots within
the broader field of teleoperation, properties of
networked telerobots, how to build a networked
robot, example systems, and topics for future
research.
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32.1 Overview and Background

As illustrated in Fig. 32.1, the broader field of teleoper-
ation, where the primary concerns are stability and time
delay, is covered in Chap. 31. The field of networked
robots, where autonomous robots and sensors com-
municate over local networks, is covered in Chap. 41.
Networked telerobots, the subject of the present chapter,
focuses on teleoperated robot systems that are accessible
by the public via web browsers.

By 2006, several hundred networked telerobots have
been developed and put online for public use. Many pa-
pers have been published describing these systems and
a book on this subject by Goldberg and Siegwart is avail-
able [32.1]. Updated information about new research and
an archive/survey of networked telerobots is available
on the website of the IEEE technical committee on net-
worked robots, which fosters research in both networked
telerobots and networked robots (IEEE Technical Com-
mittee on Networked Robots http://tab.ieee-ras.org/).

Networked telerobots have the following properties

• The physical world is affected by a device
that is locally controlled by a network server,
which communicates with remote human users
through web browsers such as Internet Ex-
plorer or Firefox, which are generally referred
to as clients. As of 2006, the standard proto-
col for network browsers is the hypertext transfer
protocol (HTTP), a stateless transmission proto-
col.• Most networked telerobots are continuously acces-
sible (online), 24 hours a day, 7 days a week.• Since hundreds of millions of people now have
access to the Internet, mechanisms are needed to
handle client authentication and contention.• Input and output for networked telerobots is usually
achieved with the standard computer screen, mouse,
and keyboard.• Clients may be inexperienced or malicious, so online
tutorials and safeguards are generally required.
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32.2 A Brief History

Like many technologies, remotely controlled devices
were first imagined in science fiction. In 1898, Nicola
Tesla [32.2] demonstrated a radio-controlled boat in
New York’s Madison Square Garden. The first ma-
jor experiments in teleoperation were motivated by the
need to handle radioactive materials in the 1940s. Go-
ertz demonstrated one of the first bilateral simulators in
the 1950s at the Argonne National Laboratory [32.3].
Remotely operated mechanisms have been designed
for use in inhospitable environments such as under-
sea [32.4] and space exploration [32.5]. At General
Electric, Mosher [32.6] developed a two-arm teleoper-
ator with video cameras. Prosthetic hands were also
applied to teleoperation [32.7]. More recently, teleoper-
ation has been considered for medical diagnosis [32.8],
manufacturing [32.9], and micromanipulation [32.10].
See Chap. 31 and the book from Sheridan [32.11] for
excellent reviews on teleoperation and telerobotics re-
search.

The concept of hypertext (linked references) was
proposed by Vannevar Bush in 1945 and was made
possible by subsequent developments in computing and
networking. In the early 1990s, Berners-Lee introduced
the HTTP. A group of students led by Marc Andreessen
developed an open-source version of the first graphi-
cal user interface, the Mosaic browser, and put it online
in 1993. The first networked camera, or webcam, went
online in November 1993 [32.12].

Approximately nine months later, the first networked
telerobot went online. K. Goldberg and M. Mascha’s
Mercury Project combined an IBM industrial robot
arm with a digital camera and used the robot’s air
nozzle to allow remote users to excavate for buried
artifacts in a sandbox [32.13, 14]. Working indepen-
dently, a team led by K. Taylor and J. Trevelyan
at the University of Western Australia demonstrated
a remotely controlled six-axis telerobot in September
1994 [32.15, 16]. These early projects pioneered a new
field of networked telerobots. See [32.17–25] for other
examples. An online archive of Networked Telerobots
is at: http://ford.ieor.berkeley.edu/ir/.

Networked telerobots are a special case of super-
visory control telerobots, as proposed by Sheridan and
colleagues [32.11]. Under supervisory control, a local
computer plays an active role in closing the feedback
loop. Most networked robotics are type c supervisory
control systems (see Fig. 32.2).

Although the majority of networked telerobotic sys-
tems consist of a single human operator and a single
robot [32.26–33], Chong et al. [32.34] propose a useful
taxonomy: single operator single robot (SOSR), single
operator multiple robot (SOMR), multiple operator sin-
gle robot (MOSR), and multiple operator multiple robot
(MOMR).

The decade from 1995–2005 witnessed extensive de-
velopment in networked telerobots. New systems, new
experiments, and new applications now go well beyond
the traditional fields such as defense, space, and nuclear
material handing [32.11] that motivated teleoperation
in early 1950s. As the Internet introduces universal ac-
cess to every corner of life, the impact of networked
robots becomes broader and deeper in modern soci-
ety. Recent applications range from education, industry,
commercial, health care, geology, and environmental
monitoring, to entertainment and arts.

Networked telerobots provide a new medium for
people to interact with a remote environment. A net-
worked robot can provide more interactivity beyond
that provided by a normal videoconferencing system.
The physical robot not only represents the remote per-
son but also transmits multimodal feedback to the
person, which is often referred as telepresence in the
literature [32.29]. Paulos and Canny’s personal roving
presence (PRoP) robot [32.35] and Jouppi and Thomas’s
surrogate robot [32.29] are recent representative work.

Networked telerobots have great potential for educa-
tion and training. In fact, one of the earliest networked
telerobot systems [32.36] originated from the idea of
a remote laboratory. Networked telerobots provide uni-
versal access to the general public, who may have little
to no knowledge of robots, with opportunities to under-
stand, learn, and operate robots, which were expensive
scientific equipment limited to universities and large
corporate laboratories before. Built on networked teler-
obots, online remote laboratories [32.37, 38] greatly
improve distance learning by providing an interactive
experience; for example, teleoperated telescopes help
students to understand astronomy [32.39]. Teleoperated
microscopes [32.40] help student to observe microor-
ganisms. The Tele-Actor project [32.41] allows a group
of students to remotely control a human tele-actor to visit
environments that are normally not accessible to them
such as cleanroom environments for a semiconductor
manufactory facility and DNA analysis laboratories.

Part
D

3
2
.2



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 2008 1

Networked Telerobots 32.3 Communications and Networking 761

32.3 Communications and Networking

Below is a short review of relevant terminologies and
technologies on networking. For details, see the texts
by [32.42].

A communication network includes three elements:
links, routers/switchers, and hosts. Links refer to the
physical medium that carry bits from one place to an-

Networking

Teleoperation

Robotics Chap.41

Chap.32Chap.31

Fig. 32.1 Relationship between the subjects of networked
telerobots (Chap. 32, the present chapter), teleoperation
(Chap. 31), and networked robots (Chap. 41)
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Fig. 32.2 A spectrum of teleoperation control modes adapted from Sheridan’s text [32.11]. We label them (a–e), in order
of increasing robot autonomy. At the far left would be a mechanical linkage where the human directly operates the robot
from another room through sliding mechanical bars, and on the far right is the system where the human role is limited to
observation/monitoring. In (c–e), the dashed lines indicated that communication may be intermittent

other. Examples of links include copper or fiber-optic
cables and wireless (radio frequency or infrared) chan-
nels. Switches and routers are hubs that direct digital
information between links. Hosts are communication
end points such as browsers, computers, and robots.

Networks can be based in one physical area (local-
area network, or LAN), or distributed over wide
distances (wide-area network, or WAN). Access con-
trol is a fundamental problem in networking. Among
a variety of methods, the ethernet protocol is the most
popular. Ethernet provides a broadcast-capable multi-
access LAN. It adopts a carrier-sense multiple-access
(CSMA) strategy to address the multiple-access prob-
lem. Defined in the IEEE 802.x standard, CSMA allows
each host to send information over the link at any time.
Therefore, collisions may happen between two or more
simultaneous transmission requests. Collisions can be
detected either by directly sensing the voltage in the
case of wired networks, which is referred to as collision
detection (CSMA/CD), or by checking the time-out of
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an anticipated acknowledgement in wireless networks,
which is referred to as collision avoidance (CSMA/CA).
If a collision is detected, both/all senders randomly back
off a short period of time before retransmitting. CSMA
has a number of important properties: (1) it is a com-
pletely decentralized approach, (2) it does not need clock
synchronization over the entire network, and (3) it is
very easy to implement. However, the disadvantages
of CSMA are: (1) the efficiency of the network is not
very high and (2) the transmission delay can change
drastically.

As mentioned previously, LANs are interconnected
with each other via routers/switchers. The information
transmitted is in packet format. A packet is a string
of bits and usually contains the source address, the
destination address, content bits, and a checksum.
Routers/switchers distribute packets according to their
routing table. Routers/switchers have no memory of
packets, which ensures scalability of the network. Pack-
ets are usually routed according to a first-in first-out
(FIFO) rule, which is independent of the application.
The packet formats and addresses are independent of
the host technology, which ensures extensibility. This
routing mechanism is referred to as packet switching
in the networking literature. It is quite different from
a traditional telephone network, which is referred to as
circuit switching. A telephone network is designed to
guarantee a dedicated circuit between a sender and a re-
ceiver once a phone call is established. The dedicated
circuitry ensures communication quality. However, it
requires a large number of circuits to ensure the qual-
ity of service (QoS), which leads to poor utilization of
the overall network. A packet-switching network can-
not guarantee dedicated bandwidth for each individual
pair of transmissions, but it improves overall resource
utilization. The Internet, which is the most popular com-
munication media and the infrastructure of networked
telerobots, is a packet-switching network.

32.3.1 The Internet

The creation of the Internet can be traced back to US De-
partment of Defense’s (DoD) APRA NET network in the
1960s. There are two features of the APRA NET network
that enabled the successful evolution of the Internet.
One feature is the ability for information (packets) to be
rerouted around failures. Originally this was designed to
ensure communication in the event of a nuclear war. In-
terestingly, this dynamic routing capability also allows
the topology of the Internet to grow easily. The second
important feature is the ability for heterogeneous net-

works to interconnect with one another. Heterogeneous
networks, such as X.25, G.701, ethernet, can all con-
nect to the Internet as long as they can implement the
Internet protocol (IP). The IP is media, operating system
(OS), and data rate independent. This flexible design al-
lows a variety of applications and hosts to connect to the
Internet as long as they can generate and understand IP.

Figure 32.3 illustrates a four-layer model of the pro-
tocols used in the Internet. On the top of the IP, we have
two primary transport layer protocols: the transmission
control protocol (TCP) and the user data protocol (UDP).
TCP is an end-to-end transmission control protocol. It
manages packet ordering, error control, rate control, and
flow control based on packet round-trip time. TCP guar-
antees the arrival of each packet. However, excessive
retransmission of TCP in a congested network may intro-
duce undesirable time delays in a networked telerobotic
system. UDP behaves differently; it is a broadcast-
capable protocol and does not have a retransmission
mechanism. Users must take care of error control and
rate control themselves. UDP has a lot less overhead
compared to TCP. UDP packets are transmitted at the
sender’s preset rate and the rate is changed based on
the congestion of a network. UDP has great potential,
but it is often blocked by firewalls because of a lack
of a rate control mechanism. It is also worth mention-
ing that the widely accepted term TCP/IP refers to the
family of protocols that build on IP, TCP, and UDP.

In the application layer of the Internet protocols, the
HTTP is one of the most important protocols. HTTP
is the protocol for the World Wide Web (WWW). It
allows the sharing of multimedia information among

IP

X.25, G.701, Ethernet, token ring, FDDI, T1, ATM,
etc.

TCP

SSH/
SFTP

SMTP SNMP NFS H.263 TFTPHTTP

UDP

Fig. 32.3 A four-layer model of internet protocols (af-
ter [32.42])
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Table 32.1 Last-mile Internet speed by wired connection type. If not specified, the downstream transmission and the
upstream transmission share the same bandwidth

Types Bits per second

Modem (V.92) Up to 56 K

Integrated Services Digital Network (ISDN) BRI 64–128 K

High Data Rate Digital Subscriber Line (HDSL) 1.544 M duplex on two twisted-pair lines

Assymetric Digital Subscriber Line (ADSL) 1.544–6.1 M downstream, 16–640 K upstream

Cable modem 2–4 M downstream, 400–600 K upstream

Fiber to the home (FTTH) 5–30 M downstream, 2–5 M upstream

Internet II/III node ≥ 1 G (data are based on the service provided by Verizon)

Table 32.2 Survey of wireless technologies in terms of bit rate and range

Types Bit rate (bps) Band (Hz) Range (m)

Zigbee (802.15.4) 20–250 K 868–915 M/2.4 G 50

3G cellphone 400 K–1.15 M ≤ 3.5 G 15 000

Bluetooth 732 K 2.4 G 100

MWBA (802.20) 1 M ≤3.5 G 15 000

WiFi (802.11a,b,g) 11–54 M 2.4 G or 5.8 G 100

WiMax (802.16) 70 M 2–11, 10–66 G 50 000

heterogeneous hosts and OSs including text, image,
audio, and video. The protocol has significantly con-
tributed to the boom of the Internet. It also changes the
traditional client/server (C/S) communication architec-
ture to a browser/server (B/S) architecture. A typical
configuration of the B/S architecture consists of a web
server and clients with web browsers. The web server
projects the contents in hypertext markup language
(HTML) format or its variants, which is transmitted
over the Internet using HTTP. User inputs can be ac-
quired using the common gateway interface (CGI) or
other variants. The B/S architecture is the most acces-
sible because no specialized software is needed at the
client end.

32.3.2 Wired Communication Links

Even during peak usage, the network backbones of the
Internet often run at less than 30% of their overall capac-
ity. The average backbone utilization is around 15–20%.
The primary speed limitation for the Internet is the last
mile, the link between clients and their local Internet
service providers (ISP).

Table 32.1 lists typical bit rates for different con-
nection types. It is interesting to note the asymmetric
speeds in many cases, where upstream bit rate (from the
client to the Internet), are far slower than downstream
bit rates (from the Internet to the client). These asym-
metries introduce complexity into the network model

for teleoperation. Since the speed difference between
the slowest modem link and the fastest Internet II node
is over 10 000, designers of a networked telerobotic sys-
tem should anticipate a large variance of communication
speeds.

32.3.3 Wireless Links

Table 32.2 compares the speed, band, and range of
wireless standards as of 2006. Increasing bit rate and
communication range requires increasing power. The
amount of radiofrequency (RF) transmission power re-
quired over a distance d is proportional to dk, where
2 ≤ k ≤ 4 depending on the antenna type. In Table 32.2,
Bluetooth and Zigbee are typical low-power transmis-
sion standards that are good for short distances. WiMax
and MWBA are currently under development.

By providing high-speed connectivity at low cost,
WiFi is the most popular wireless standard in 2006.
Its range is approximate 100 m line of sight and the
WiFi wireless network usually consists of small-scale
interconnected access points. The coverage range usu-
ally limits these networks to an office building, home,
and other indoor environments. WiFi is a good option
for indoor mobile robots and human operators. If the
robot needs to navigate in the outdoor environment, the
third-generation (3G) cellphone network can provide
the best coverage available. Although obvious overlap
exists among wireless standards in coverage and band-
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width, there are two import issues that have not been
covered by Table 32.2. One is mobility. We know that,
if an RF source or receiver is moving, the corresponding
Doppler effect causes a frequency shift, which could
cause problems in communication. WiFi is not designed
for fast-moving hosts. WiMax and 3G cellphone allows
the host to move at a vehicle speed under 120 km/h.
However, MWBA allows the host to move at a speed of
250 km/h, which is the only protocol that works for
high-speed trains. Both WiMax and MWBA are de-
signed with a transmission latency of less that 20 ms.
However, 3G cellphone networks have a variable latency
of 10–500 ms.

32.3.4 Properties
of Networked Telerobotics

As defined by Mason, Peshkin, and others [32.43, 44],
in quasistatic robot systems, accelerations and inertial
forces are negligible compared to dissipative forces. In
quasistatic robot systems, motions are often modeled as
transitions between discrete atomic configurations.

We adopt a similar terminology for networked teler-
obots. In quasistatic telerobotics (QT), robot dynamics

Users

Web server

Robot

Camera

The
Internet

Fig. 32.4 Typical system architecture for a networked telerobot

User Web server

Web browser HTTPD server

CGI scripts

HTML
HTTP Images

HTTP

Java applet

Fig. 32.5 A sample software architecture of a networked telerobot

and stability are handled locally. After each atomic mo-
tion, a new state report is presented to the remote user,
who sends back an atomic command. The atomic state
describes the status of the robot and its corresponding en-
vironment. Atomic commands refer to human directives,
which are desired robotic actions.

Several issues arise

• State-command presentation: How should state and
available commands be presented to remote human
operators using the two-dimensional (2-D) screen
display?• Command execution/state generation: How should
commands be executed locally to ensure that the
desired state is achieved and maintained by the
robot?• Command coordination: How should commands be
resolved when there are multiple human operators?

32.3.5 Building
a Networked Telerobotic System

As illustrated in Fig. 32.4, a typical networked teler-
obotic system typically includes three components:

• users: anyone with an Internet connection and a web
browser• web server: a computer running a web server soft-
ware• robot: a robot manipulator, a mobile robot, or any
device that can modify or affect its environment

Users access the system via their web browsers. Any
web browser that is compatible with W3C’s HTML
standard can access a web server. In 2006, the most
popular web browsers are Microsoft Internet Explorer,
Netscape, Mozilla Firefox, Safari, and Opera. New
browsers and updated versions with new features are
introduced periodically.

A web server is a computer that responds to HTTP
requests over the Internet. Depending upon the operating
system of the web server, popular server software pack-
ages include Apache and Microsoft Internet Information
Services (IIS). Most servers can be freely downloaded
from the Internet.

To develop a networked telerobot, one needs a basic
knowledge of developing, configuring, and maintaining
web servers. As illustrated in Fig. 32.5, the development
requires knowledge of HTML and at least one local
programming languages such as C, CGI, Javascript, Perl,
PHP, or Java.

Part
D

3
2
.3



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 2008 1

Networked Telerobots 32.3 Communications and Networking 765

It is important to consider compatibility with the va-
riety of browsers. Although HTML is designed to be
compatible with all browsers, there are exceptions. For
example, Javascript, which is the embedded scripting
language of web browsers, is not completely compati-
ble between Internet Explorer and Netscape. One also
needs to master the common HTML components such
as forms that are used to accept user inputs, frames that
are used to divide the interface into different functional
regions, etc. An introduction to HTML can be found
in [32.45].

User commands are usually processed by the web
server using CGI, the common gateway interface. Most
sophisticated methods such as PHP, Java Server Pages
(JSP), and socket programming can also be used. CGI
is invoked by the HTTP server when the CGI script is
referred in the Uniform Resource Locator (URL). The
CGI program then interprets the inputs, which is often
the next robot motion command, and sends commands to
the robot via a local communication channel. CGI scripts
can be written in almost any programming language. The
most popular ones are Perl and C.

Fig. 32.6 Browser’s view of the first networked telerobot
interface [32.46]. The schematic at lower right gives an
overhead view of position of the four-axis robot arm (with
the camera at the end marked with X), and the image at
the lower left indicates the current view of the camera. The
small button marked with a dot at the left directs a 1 s burst
of compressed air into the sand below the camera. The
Mercury Project was online from August 1994 to March
1995

A simple networked telerobotic system can be con-
structed using only HTML and CGI. However, if the
robot requires a sophisticated control interface, a Java
applet is recommended. Java applets run inside the web
browser on the client’s computer. Information about Java
can be found at Sun Microsystems’ official Java home
page.

Most telerobotic systems also collect user data and
robot data. Therefore, database design and data process-
ing program are also needed. The most common used
databases include MySQL and PostgresSQL. Both are
open-source databases and support a variety of platforms
and operation systems. Since a networked telerobotic
system is online 24 hours a day, reliability is also an
important consideration in system design. Website se-
curity is critical. Other common auxiliary developments
include online documentation, online manual, and user
feedback collection.

32.3.6 State-Command Presentation

To generate a correct and high-quality command
depends on how effectively the human operator under-
stands the state feedback. The state-command presenta-
tion contains three subproblems: the 2-D representation
of the true robot state (state display), the assistance
provided by the interface to generate new commands
(spatial reasoning), and the input mechanism.

Browser Displays
Unlike traditional point-to-point teleoperation, where
specialized training and equipment are available to ope-

Fig. 32.7 Browser interface to the Australian networked telerobot
which was a six-axis arm that could pick up and move blocks [32.16]
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Fig. 32.8 Use of a multicamera system for multi-viewpoint state
feedback [32.47]

Fig. 32.9 Camera control and mobile robot control in Patrick Saucy
and Francesco Mondada’s Khep on the web project

rators, networked telerobots offer wide access to the
general public. Designers cannot assume that operators
have any prior experience with robots. As illustrated
in Fig. 32.6, networked telerobotic systems must display
the robot state on a 2-D screen display.

The states of the teleoperated robot are often char-
acterized in either world coordinates or robot joint
configuration, which are either displayed in numerical
format or through a graphical representation. Fig-
ure 32.6 lists robot XYZ coordinates on the interface
and draws a simple 2-D projection to indicate joint con-
figurations. Figure 32.7 illustrates another example of
teleoperation interface that was developed by Taylor and
Trevelyan [32.36]. In this interface, XYZ coordinates are
presented in a sliding bar near the video window.

The state of the robot is usually displayed in a 2-D
view as shown in Figs. 32.6 and 32.7. In some systems,
multiple cameras can help the human operator to un-
derstand the spatial relationship between the robot and
the objects in the surrounding environment. Figure 32.8
shows an example with four distinct camera views for
a six-degree-of-freedom industrial robot.

Figure 32.9 demonstrate an interface with a pan–
tilt–zoom robotic camera. The interface in Fig. 32.9 is
designed for a mobile robot.

More sophisticated spatial reasoning can eliminate
the need for humans to provide low-level control by
automatically generating a sequence of commands after
it receives task-level commands from the human op-
erator. This is particularly important when the robotic
system is highly dynamic and requires a very fast re-
sponse. In this case, it is impossible to ask the human to
generate intermediate steps in the robot control; for ex-
ample, Belousov et al. adopt a shared autonomy model to
direct a robot to capture a moving rod [32.27]. Fong and
Thorpe [32.48] summarize vehicle teleoperation sys-
tems that utilize these supervisory control techniques.
Su et al. developed an incremental algorithm for better
translation of the intention and motion of operators into
remote robot action commands [32.32].

Human Operator Input
Most networked telerobotic systems only rely on mouse
and keyboards for input. The design problem is what
to click on in the interface. Given the fact that user
commands can be quite different, we need to adopt
an appropriate interface for inputs; for example, inputs
could be Cartesian XYZ coordinates in world coordi-
nate system or robot configurations in angular joint
configurations.
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For angular inputs, it is often suggested to use
a round dial as a control interface, as illustrated in bot-
tom left of Fig. 32.7 and the right-hand side of Fig. 32.9.
For linear motion in Cartesian coordinate, arrows oper-
ated by either mouse clicks or the keyboard are often
suggested. Position and speed control are often needed,
as illustrated in Fig. 32.9. Speed control is usually con-
trolled by mouse clicks on a linear progress bar for
translation and a dial for rotation.

The most common control type is position con-
trol. The most straightforward way is to click on the
video image directly. To implement the function, the
software needs to translate the 2-D click inputs into
three-dimensional (3-D) world coordinates. To simplify
the problem, the system designer usually assumes that
the clicked position is on a fixed plane; for example,
a mouse click on the interface of Fig. 32.6 assumes the
robot moves on the X–Y plane. The combination of
a mouse click on the image can also allow abstract task-
level command. The example in Fig. 32.12 uses mouse
clicks to place votes on an image to generate a com-

a)

b)

Fig. 32.10a,b A web-based teleoperation system that al-
lows robot to capture a fast-moving rod [32.27] (a) User
interface and (b) system setup

mand that directs a robot to pick up a test agent at the
task level.

32.3.7 Command Execution/State
Generation

When a robot receives a command, it executes the com-
mand and a new state is generated and transmitted back
to the human operator. However, commands may not
arrive in time or may get lost in transmission. Also,
because users are often inexperienced, their commands
may contain errors.

Belousov and colleagues demonstrated a system that
allowed a web user to capture a fast rod that is thrown
at a robot manipulator [32.27]. Over the limited com-
munication channel, it is impossible to ask the human to
control the manipulator directly. Computer vision and
augmented-reality-based local intelligence is required

Which test agent should we
add next?

Fig. 32.11 Spatial dynamic voting interface for the Tele-
Actor system [32.41]: the spatial dynamic voting (SDV)
interface as viewed by each user. In the remote environment,
the Tele-Actor takes images with a digital camera, which
are transmitted over the network and displayed to all par-
ticipants with a relevant question. With a mouse click, each
user places a color-coded marker (a votel or voting element)
on the image. Users view the position of all votels and can
change their votel positions based on the group’s response.
Votel positions are then processed to identify a consensus
region in the voting image that is sent back to the Tele-
Actor. In this manner, the group collaborates to guide the
actions of the Tele-Actor
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a)

b)

Requested
frames

Optimal camera
frame

Fig. 32.12a,b Frame selection in-
terface [32.49]. The user interface
includes two image windows. The
lower window (b) displays a fixed
panoramic image based on the cam-
era’s full workspace (reachable field
of view). Each user requests a camera
frame by positioning a dashed rect-
angle in (b). Based on these requests,
the algorithm computes an optimal
camera frame (shown with a solid
rectangle), moves the camera accord-
ingly, and displays the resulting live
streaming video image in the upper
window (a)

to assist the human operator. The rod is on bifilar sus-
pension, performing complicated oscillations. Belousov
et al. designed a shared-autonomy control to implement
the capture. First, an operator chooses the desired point
for capture on the rod and the capture instant using a 3-D
online virtual model of the robot and the rod. Then, the
capturing operation is performed automatically using
a motion prediction algorithm that is based on the rod’s
motion model and two orthogonal camera inputs, which
perceive the rod’s position locally in real time.

32.3.8 Collaborative Control

When more than one human is sharing control of the
device, command coordination is needed. According
to [32.50], multiple human operators can reduce the
chance of errors, cope with malicious inputs, utilize
operators’ different expertise, and train new operators.
In [32.51], a collaborative telerobot is defined as a tele-
robot simultaneously controlled by many participants,
where input from each participant is combined to gen-
erate a single control stream.

When group inputs are in the form of direction
vectors, averaging can be used as an aggregation mech-
anism [32.52]. When decisions are distinct choices or at
the abstract task level, voting is a better choice [32.41].
As illustrated in Fig. 32.12, Goldberg and Song de-
velop the Tele-Actor system using spatial dynamic
voting. The Tele-Actor is a human equipped with an
audio/video device and controlled by a group of on-
line users. Users indicate their intensions by positioning
their votes on a 320 × 320 pixel voting image during
the voting interval. Votes are collected at the server and
used to determine the Tele-Actor’s next action based
on the most requested region on the voting image. (see
http://www.tele-actor.net)

Song and Goldberg [32.49,53] developed a control-
lable camera that allowed many clients to share control
of its camera parameters, as illustrated in Fig. 32.12.
Users indicate the area they want to view by draw-
ing rectangles on a panoramic image. The algorithm
computes an optimal camera frame with respect to the
user satisfaction function, which is defined as the frame
selection problem.
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32.4 Conclusion and Future Directions

As this technology matures, networked telerobots will
gradually go beyond university laboratories and find
application in the real world. A new project, the Collab-
orative Observatory for Nature Environments (CONE)
project, proposed by Song and Goldberg [32.54], aims
to design a networked robotic camera system to col-
lect data from the wilderness for natural scientists.
The fast development of networked telerobot system
is not limited to North America. Japan’s Advanced
Telecommunications Research Institute International
(ATR) Intelligent Robotics and Communication Lab-
oratory has also announced its networked robot project
led by Norihiro Hagita (ATR). Its mission is to develop
network-based intelligent robots for applications such
as service, medical, and safety. Hideyuki Tokuda (Keio
University) chaired the Networked Robot Forum in
Spring 2005, which promotes research and development
(R&D) and standardization on network robots through
activities to support awareness campaigns and verifica-
tion experiments in collaboration among wide-ranging
parties, which includes over 100 industry and academic
members. Korea’s Ministry of Information and Com-
munication has also announced the Ubiquitous Robotic
Companion (URC) project to develop network-based
intelligent robots.

Networked telerobots have allowed tens of thou-
sands of nonspecialists around the world to interact
with robots. The design of networked telerobots presents
a number of engineering challenges to build reliable sys-
tems that can be operated by nonspecialists 24 hours
a day, 7 days a week and remain online for years. Many
new research challenges remain.

• New interfaces: As portable devices such as cell-
phones and portable digital assistants (PDAs)
becomes grow in computation power, networked
telerobotics should be able to adopt them as new

interfaces. As computers becomes increasingly pow-
erful, they become capable of visualizing more
sophisticated sensor inputs. Designers of new inter-
faces should also keep track of new developments
in hardware such as haptic interfaces and voice
recognition systems. New software standards such
as flash, extensible markup language (XML), exten-
sible hyper text markup language (XHTML), virtual
reality modeling language (VRML), and wireless
markup language (WML) will also change the way
we design interface.• New algorithms: Algorithms determine perfor-
mance. Scalable algorithms that are capable of
handing large amounts of data such as video/sensor
network inputs and utilize fast-evolving hardware
capability such as distributed and parallel compu-
tation will become increasingly important in the
networked telerobotics.• New protocols: Although we have listed some pio-
neering work in changing the network environment
to improve teleoperation, there are still a large
number of open problems such as new protocols, ap-
propriate bandwidth allocation [32.55], QoS [32.56],
security, routing mechanisms [32.28], and many
more. Network communication is a very fast-
evolving field. The incorporation/modification of
network communication ideas into networked teler-
obotic system design will continue to be an active
research area. The common object request broker
architecture (CORBA) or real-time CORBA [32.19,
20, 57, 58] have great potential for networked teler-
obotics.• Applications: Many new applications are emerging
in areas such as security, inspection, education, and
entertainment. Application requirements such as re-
liability, security, and modularity will continuous to
pose new challenges for system design.
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