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Abstract

This thesis has been carried out within a project at AR Lab (Autonomous Robot Laboratory)
and IAS-Lab (Intelligent Autonomous Systems Lab) of Shanghai Jiao Tong University and Univer-
sity of Padua respectively. The project aims to create a system to recognize and localize multiple
object classes for an autonomous wheelchair called JiaoLong, and in general for a mobile robot.

The thesis had as main objective the creation of an object recognition and localization system
in an indoor environment through a RGB-D sensor. The approach we followed is based on the
recognition of the object by using 2D algorithm and 3D informations to identify location and
size of it. This will help to obtained robust performance for the recognition step and accurate
estimation for the localization, thus changing the behaviour of the robot in accordance with the
class and the location of the ojbect in the room.

This thesis is mainly based on two aspects:

• the creation of a 2D module to recognize and detect the object in a RGB image;

• the creation of a 3D module to filter point cloud and estimate pose and size of the object.

In this thesis we used the Bag of Features algorithm to perform the recognition of objects and faces
and a variation of the Costellation Method algorithm for the detection; 3D data are computed with
several filtering algorithms which leads to a 3D analysis of the object, then are used the intrinsic
informations of point clouds for the pose and size estimation. We will also analyze the performance
of the algorithm and propose some improvements aimed to increase the overall performance of the
system besides research directions that this project could lead.
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Chapter 1

Introduction

1.1 Summary
The purpose of this work is recognize the class of an object and extract useful information

about it, through a RGB-D sensor. The main objective consists in build a robust system that can
distinguish objects in different and changable environments, then estimate pose and size of them,
to change the behaviour of the robot, this helps it to improve the performance and interact better
with people, for example when recognize a desk, could estimate if there is enough space or not
to dock in a wheelchair, or when it recognize a door if there is enough space to pass through it
saftely. In order to obtain this, we have been used a more conservative approach for the recognition
step, to take advantage of informations contained on point clouds, which allows more accurate
spatial/geometric information. The decision of first part is due to the poor state of the arts and
performance of algorithms working on only 3D information, which push us to choose on the 2D
literature, which has decades of research and develop, then gives more robust and fast techniques
for recognition and detection. Opposite consideration regards the second part, where the only 2D
data does not allow accurate information about size and pose in the real world, conversely the 3D
data gained with the camera used in this project (Microsoft Kinect) which shows a precision of
0.5mm at shortest distance of 50cm and 7cm at farest distance of 5m [1]. To do that has been
developed a first module called 2d_processing that recognize and detect the object on the 2D
world and a second module called 3d_processing that extract and estimate informations. Finally
the results of the work are shown.

1.2 State of the art
Many works exist about object recognition and localization by using RGB cameras only

[2][3][4][5][6][7] or 3D sensors only [8][9][10][11].
Works which face only with 2D informations lead to good results in term of performance or time

processing, but they tend to focus on single view objects, small variations of position or different
views but for a single classe of object. These lead to a lose of spatial and geometric informations,
useful for a better reppresentation of the environment, and potential tasks. Different situation
regards the 3D works where many approaches have been put forth, but many of these methods
require that the target be segmented from the background, which makes them difficult to apply
to real-subtle shape variations, especially with large parts of the shape missing from the scene.
Moreover in several cases, no informations are given about the computational time needed by the
algorithms and results are reported for some sequences acquired from a static platform.

However, when dealing with mobile robots, the need for robustness and real time capabilities
usually led researchers to tackle these problems by combining appearance and depth information,
which is the direction followed in our project.

1



1.3 Content
This document is structured as follows:

• Chapter 2 describes the main hardware and software that form the system.

• Chapter 3 describes the approach we followed to set up the whole system.

• Chapter 4 and 5 describe in details the two main phases namely 2D and 3D module.

• Chapter 6 shows both analytical results about our approach and a real-world application of
the system.

• Chapter 7 contains the final conclusions about the work.



Chapter 2

Work Environment

2.1 Microsoft Kinect

Microsoft Kinect1 (Figure 2.1) is an accessory for the Microsoft Xbox 360 video game platform.
It is considered a “controller-free gaming and entertainment experience”. In fact, it can interpret
3D scene information using a RGB camera, a depth sensor and a multi-array microphone. The
depth sensor consists of an infrared laser projector (which creates a grid of points) combined with
a monochrome CMOS sensor, which interprets the infrared light captured creating a depth map.
It is also equipped with a motorized pivot that permits the sensor to tilt up to 27◦ either up or
down and has an angular field of view of 57◦ horizontally and 43◦ vertically.

Video stream. Kinect sensor outputs video at a frame rate of 30Hz as a combination of two
different streams. The first one is provided by the RGB camera which uses 8-bit VGA resolution
(640×480 pixels) with a Bayer color filter, the other one, instead, is produced by the monochrome
depth sensor with the same resolution and 2,048 levels of sensitivity (11 bits).

Software technology. The software technology provided to the Xbox developers enables ad-
vanced gesture recognition, facial recognition and voice recognition as well as tracking up to six
people simultaneously (declared but probably it is able to track how many people can fit in the
field-of-view of the camera), including two active players for motion analysis with a feature ex-
traction of 20 joints per player.

Figure 2.1: Microsoft Kinect sensor.

1http://www.xbox.com/en-US/kinect
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2.2 JiaoLong
JiaoLong[12][13] is an intelligent wheelchair developed by the Autonomous Robot Lab2 of

Shainghai Jiao Tong University. Its design intention is based on human-guided method which
means users can give some simple guidance during application. Figure 2.2 shows that there are
three interactive ways to input the human guidance. One is microphone, another is joystick and
the other one is touch screen. That means users can interact with JiaoLong through voice, hands
or screen touch. Also users can get real-time information, such as the global map and current
velocity from touch screen.

Hardware and Software technology. Its length, width and height are respectively 110cm,
90cm and 105cm. It is powered by a group of 12V batteries which can supply power long as 6-8
hours continuously. The back wheels adopt DC motors which are controlled by a motor control-
ling board(DSP 2407) adopting two wheeled differential driving. It has an Industrial Computer
(WinXP, Intel Core2 Duo @ 2.0GHz CPU) for management of interactive information, and a Lap-
top (Linux, Intel ATOM N270 @ 1.6GHz CPU) for real-time execution of navigation algorithm.
The sensors are encoder-based odometer, laser range finder (LRF, SICK LMS100) and a RGB-D
camera (Microsoft Kinect).

Figure 2.2: Autonomous wheelchair JiaoLong.

2.2.1 Shared control
The share control has two key parts: the reactive control and the weight optimization. The

reactive control provides basic obstacle avoidance using MVFHVFF methods [14][15]. The weight
optimal algorithm optimizes three indicators which will be discussed in the following section to
obtain weight of reactive control and user.

Weight optimization. In the previous work [12], indicators of wheelchair’s performance were
proposed: safety, comfort and obedience. Safety measures the probability of collision. Comfort
measures the variation of angular velocity. Obedience measures the degree of obedience to the
user’s control intention. These indicators are defined as:

safety = 1− exp(−α � dis);
comfort = exp(−β|ω − ω0|);
obedience = exp(−γ|ξ − ξ∗|).

where, dis measured the distance between the wheelchair and the nearest obstacle in its path;
ω and ω0 are the desired and current angular velocity; ξ∗ is the orientation of user command

2http://robotics.sjtu.edu.cn/English/

http://robotics.sjtu.edu.cn/English/
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calculated from the user’s input νmach and ωmach; ξ is the orientation of final command determined
by ν and ω; α , β and γ are constants.

The aim of weight optimization is to maximize all three indicators. However, these indicators
are usually contradictory to each other. Therefore, there is no absolute optimum solution for
maximize the three indicators at the same time. So we proposed of solving this problem is: always
improve the smallest indicator among the three. In accordance with this principle we choose the
minimax method to simplify this multi-objective optimization problem to a single objective one.

maxk(min(safety, comfort, obedience))
s.t
ν(t) = νuser(t)
ω(t) = kωuser(t) + (1− k)ωmach(t)
1 ≥ k ≥ 0

where, k and (1 − k) is the user weight and the reactive control weight; ν(t) and ω(t) is
the linear and angular velocity to be sent to the wheelchair. This equation means that find-
ing the user weight is equivalent to finding the proper k to maximize the objective function
min(safety, comfort, obedience) under the restrictions stated after s.t.. As the linear velocity in
MVFH is equal to νuser(t) as long as there is no possible collision, we restrict ν(t) to be equal to
νuser(t).

Previous equation as a linearly constrained nonlinear programming problem, there is generally
no analytical solution, since we use one-dimensional search algorithm to solve the optimization:
First, use rough search algorithm to determine the interval that contain the maximum of the
objective function min(safety, comfort, obedience); Second, implement Golden section search
algorithm in the interval mentioned above to find the k at maximum of the objective function.

Odometry Sensor
Information

Motion
ControlOptimizer

Weight

User

LRF

Controller
Reactive

Obs_Info & ν0, ω0

ωoptωmach νfinal

ωfinal

νuser , ωuser

Figure 2.3: Architecture of remote control system.

2.3 ROS - Robot Operating System
ROS3 (Robot Operating System) is a framework for robot software development, providing

operating system-like functionality on top of a heterogeneous computer cluster. ROS was originally
developed by the Stanford Artificial Intelligence Laboratory but, as of 2008, development continues
primarily at Willow Garage4 with more than twenty institutions collaborating in a federated
development model.
ROS provides standard operating system services such as hardware abstraction, low-level device
control, implementation of commonly-used functionalities, message-passing between processes,
and package management. It is based on a graph architecture where processing takes place in

3http://www.ros.org
4http://www.willowgarage.com

http://www.ros.org
http://www.willowgarage.com
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nodes that may receive, post and multiplex sensor, control, state, planning, actuator and other
messages. The library is geared towards a Unix-like system (Ubuntu Linux is listed as “supported”
while other variants such as Fedora and Mac OS X are considered “experimental”). ROS has two
basic “sides”: the operating system side called ros as described above and ros-pkg, a suite of
user contributed packages that implement functionalities such as simultaneous localization and
mapping, planning, perception, simulation etc. ROS is released under the terms of the BSD
license, and is open source software. It is free for commercial and research use.

2.3.1 Computation graph architecture
As already mentioned, ROS is based on a graph architecture. From the computational point

of view the graph is the peer-to-peer network of ROS processes that share data. So let’s have a
quick overview of these graph concepts.

Nodes. A node is substantially a process that performs computation: it is where all the main
operations are done, the principal entity in the graph. Nodes communicate with each other
by using streaming topics, RPC services or the Parameter Server.

Messages. In ROS, a message is intended as a simple data structure comprising typed fields.
Standard primitive types are supported, as are arrays of primitive types or previously defined
messages.

Topics. A topic is a named bus over which nodes exchange messages. Topics have anonymous
publish/subscribe semantics, which decouples the production of information from its con-
sumption and are intended for unidirectional, streaming communication. There can be
multiple publishers and subscribers to a topic.

Services. The publish/subscribe model is a very flexible communication paradigm, but it is not
appropriate for RPC request/reply interactions. Request/reply is done via a service which
is defined by a pair of messages: one for the request and one for the reply.

Master. Name service for ROS. It provides name registration and lookup to the rest of the
computation graph. Without the Master, nodes would not be able to find each other,
exchange messages, or invoke services.

Parameter Server. It is a shared, multi-variate dictionary that is accessible via network APIs.
Nodes can use this server to store and retrieve parameters at runtime.

Bags. Bags are a format for saving and playing back ROS message data. They are an important
mechanism for storing data, such as sensor data, that can be difficult to collect but is
necessary for developing and testing algorithms.

An example of a graph created during a ROS session is visible in figure 2.4.

Figure 2.4: Graphical representation of nodes (ellipses) and topics (rectangles).
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2.4 Libraries
2.4.1 PCL

The PCL5 (Point Cloud Library) is a large scale, open project for point cloud processing [16].
The PCL framework contains numerous state-of-the art algorithms including filtering, feature
estimation, surface reconstruction, registration, model fitting and segmentation. These algorithms
can be used, for example, to filter outliers from noisy data, stitch 3D point clouds together, segment
relevant parts of a scene, extract keypoints and compute descriptors to recognize objects in the
world based on their geometric appearance, and create surfaces from point clouds and visualize
them. It is well integrated into ROS which also provides some functionalities as ready to use
nodes.

PCL is released under the terms of the BSD license and is open source software. It is free
for commercial and research use and it is supported by companies such as Google, NVidia and
Toyota.

2.4.2 OpenNI
OpenNI6 (Open Natural Interaction)[17] is a multi-language, cross-platform framework that

defines APIs for writing applications utilizing Natural Interaction.
NI (Natural Interaction) refers to the concept that Human-Machine-Interaction is achieved by
human senses and, most of all, vision and hearing. OpenNI aims to define a standard API that
is able of dealing with both vision and sensors, and a vision and audio perception middleware,
allowing communication between the two components.
OpenNI provide two types of APIs:

1. implemented APIs: allow to deal with the sensor device;

2. not implemented APIs: allow to deal with the middleware components.

The clear distinction between sensors and middleware components is based on the "write once,
deploy everywhere" principle. In fact OpenNI allows the porting of applications and moreover
enables to write algorithm that works with known raw data independently from the sensor that
has generated them. From the producer point of view, instead, OpenNI offers the possibility of
building sensors for applications by just providing raw data and not APIs on how to deal with
them. An application of OpenNI is for example the tracking of real-life 3D scenes.
OpenNI is an open source API that is publicly available.

The OpenNI Framework is an abstract layer (Figure 2.5) that provides the interface for both
physical devices and middleware components. Multiple components can register to this framework
based on the specific API and they are called modules.
A module is responsible for producing and processing the data of the sensor and the currently
supported ones are:

1. 3D sensor;

2. RGB camera;

3. IR camera;

4. audio device.

Based on this, OpenNI provides also the following middleware components:

1. full body analysis;
5http://www.pointclouds.org
6http://www.openni.org

http://www.pointclouds.org
http://www.openni.org
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Figure 2.5: The OpenNI abstract layered structure.

2. hand point analysis;

3. gesture detection;

4. scene analyzer (segmentation, clustering and coordinates framing).

OpenNI relies on Production Nodes. They represents the productive part of the system, that is
they create the data required for the interaction. These data can be either low level ones, RGB for
example, either composited ones. In fact production nodes can also control lower level production
nodes and they can in turn be used by higher level ones. In order to define communication and
hierarchy these nodes are organized in production chains.

2.4.3 OpenCV
OpenCV7 (Free Open Source Computer Vision) is a library of programming functions mainly

aimed at real time computer vision [18][19]. Example applications of the OpenCV library are
Human-Computer Interaction (HCI), object identification, segmentation and recognition, face
recognition, gesture recognition, motion tracking, ego motion, motion understanding, structure
from motion (SFM), stereo and multi-camera calibration and depth computation, mobile robotics.
As for PCL, OpenCV is completely integrated into ROS which also provides image type conversions
between OpenCV and ROS formats. It has a BSD license and it is free for commercial or research
use.

7http://opencv.willowgarage.com

http://opencv.willowgarage.com


Chapter 3

System overview

The recognition approach we decided to follow in order to accomplish our objectives is an
hybrid approach with uses 2D data to recognize several classes of objects and 3D data to compute
localization and pose estimation. Such approach involves several steps for each frame, that will be
resume in next sections. The main challenges when using an object detector are that the resulting
output is unreliable and sparse, i.e., detectors only deliver a discrete set of responses and usually
yield false positives and missing detections.

Our purpose of performing this operation from a mobile robot makes this task even more
challenging. We need to face problems like changing views, variable environments or the conversion
from the local coordinates system to the world one.

The chapter is organized as follows. Sections 3.1 and 3.2 explain briefly the approaches we
followed to create a 2D and a 3D processing module by combining existing methodologies with
the data generated by our sensors, in particular the Kinect. Then, in section 3.3, 3.3.1 and 3.3.2,
we describe the implementation and two main nodes of the system.

3.1 2D Module
An object recognition system finds objects in the real world from an image of the world,

using object models which are known a priori. This task is surprisingly difficult [20]. Humans
perform object recognition effortlessly and instantaneously. Algorithmic description of this task
for implementation on machines has been very difficult. Object recognition in RGB images is
an active research area in computer vision and, in past decades, numerous approaches have been
proposed. Among them, there are consolidated techniques that recognize object really well and
consist in computing interesting features in the frame and check if its match with others references
features of our objects. One of these techniques make is called Bag of Feature and use a dictionary
of visual word to train a classifier as SVM (Support Vector Machine) to recognize different classes
of objects. The drawback of this approach is that the performance can be easily affected by
background clutter and occlusions and, not less important, it usually can’t detect in which area
the object is recognized.

Our idea is to use a second method to detect the area when the class of the object is recognized,
with fast search structures that allowed to store several images with different angle of view for the
same object. To reduce the number of false matching a double control is applied, with a NN ratio
test and the homography of the remaining points. A simple overview of our approach is visible in
Figure 3.1.

3.2 3D Module
Once we have a class and an area which contains the object, we need a method to extract

location and pose and, its size for every dimensions. For this step we used the pointclouds cor-

9
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Kinect Recognizer Detector Class
and ROI

RGB

RGB class corners

Figure 3.1: Our 2D module.

rispondent to the area previously detected, then filtering all the useless information and obtain
only the object. These operations are high cost computationally, but with a reduced number of
points the time dropped drastically, and consist on downsampling, filtering by distance, clustering,
deleting of ground plane and removing of outliers, then the biggest cluster is selected.

Problems can arise when dealing with full occlusions (e.g. an object can be located behind
another one). In this case, since our objective is a full detection, we need a method to recover the
original shape of the object. Our idea consists in finding a corrispondence between different parts.
An overview of the 3D module is visible in Figure 3.2, while a detailed description of the method
is reported in chapter 4.

2D Module

Kinect Extractor Locator Pose
and Info

points

corners

points info

Figure 3.2: Our 3D module.

3.3 Implementation
The whole system has been developed to run exclusively with ROS and to use all of its poten-

tialities as much as possible. Thus, in the remainder of the text, we use the words program and
node indistinctly to refer to a standalone executable. When we talk about publishing or subscribing
it means we use the message-passing architecture to exchange information among different nodes.

3.3.1 ROS Kinect node
The main source of data is the Kinect. We run it as a simple node that publishes both the

RGB image and the point cloud. While the time needed for the publication of the RGB image is
negligible, the generation and publication of a point cloud are quite a computationally expensive
task: it takes about one second to process 640 × 480 points. This time is decreased significantly
by reducing the number of points.
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3.3.2 JiaoLong Perception node
This node compute the data from the Kinect node and, to be sure to has the same corrispon-

dence between RGB image and the point cloud, it obtains the first one from the second one, with
the construction of the image from the colour information of the single point. Then with both data
can recognize, detect and extract informations about the object and published it on a dedicate
topic, where the autonomous robot can collect the results.





Chapter 4

2D Module

Object recognition is a key feature for building robots capable of moving and performing tasks
in human environments. This ability in real scenes is one of the most challenging problems in
computer vision, as it is necessary to deal with difficulties such as viewpoint changes, occlusions,
illumination variations, background clutter or sensor noise. Furthermore, in a mobile robotics
scenario a new challenge is added to the list: computational complexity. In a dynamic world,
information about the objects in the scene can become obsolete even before it is ready to be used
if the recognition algorithm is not fast enough. All these complications make object recognition
in real scenes a hard problem, that demand significant effort.
Moreover when an object is recognized becomes interesting detect in which area of the image is
positioned. Then the field of object detection is a natural evolution of object recognition, which
inherits all difficulties.

This chapter is organized as follows, first will be presented common techniques for the image
processing, then we will move to the core of 2D module or rather how are structured and built
the recognition and detections methods.

4.1 Image processing
Images collected by a robot or a sensor in the real world, are presented in a computer as a

matrix. Each pixel has a pixel value which describes how bright that pixel is, and/or what color
it should be, which needs to be discretized before to be elaborated. Despite the sensors used
on mobile robots have a low resolution, it return a huge amount of informations, that is hard
to compute with real-time constraints for a computer. For this reason, first task is reduce the
quantity of informations related to an image and at the same time, it must avoid to lose useful
informations. These will be used in a second time to obtain corrispondences between two (or
more) images of the same scene (or object).

4.1.1 Image acquisition
Over the years the computer vision has improved the basic techinques for image acquisition,

then we will present briefly an overview of these techniques more used:

• RGB camera;

• Stereo camera;

Traditional camera uses an array of millions of tiny light cavities or "photosites" to record an
image. When the exposure begins, each of these is uncovered to collect and store photons. With
a certain frequency there is a refresh step where, the camera closes each of these photosites, and

13
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then tries to assess how many photons fell into each. The relative quantity of photons in each
cavity are then sorted into various intensity levels, whose precision is determined by bit depth (0
- 255 for an 8-bit image).

(a) Cavity Array (b) Light Cavities

Figure 4.1: Creation of a grayscale image.

However, Figure 4.1 illustrate only the creation of grayscale images, since these cavities are
unable to distinguish how much they have of each color. To capture color images, a filter has to
be placed over each cavity that permits only particular colors of light. Virtually all current digital
cameras can only capture one of three primary colors in each cavity, and so they discard roughly
2/3 of the incoming light. As a result, the camera has to approximate the other two primary colors
in order to have full color at every pixel. The most common type of color filter array is called a
"Bayer array" shown in Figure 4.2.

(a) Color Filter Array (b) Color Filters

Figure 4.2: Creation of a color image.

Now we only need to compute these informations in a 2D world, where we have knowledge of
chromatic and luminance properties but not of depth, then we lose informations about position
and proportion in the real world. Over the years has been developed several techniques to extract
these information, however did not give high efficency results.

Stereo vision is the extraction of 3D information from digital images, such as obtained by a
CCD camera. By comparing information about a scene from two vantage points, 3D information
can be extracted by examination of the relative positions of objects in the two panels. This is
similar to the biological process Stereopsis that was a notion well known since the Renaissance
period.

In traditional stereo vision, two cameras, displaced horizontally from one another are used to
obtain two differing views on a scene, in a manner similar to human binocular vision. By compar-
ing these two images, the relative depth information can be obtained, in the form of disparities,
which are inversely proportional to the differences in distance to the objects. To compare the
images, the two views must be superimposed in a stereoscopic device, the image from the right
camera being shown to the observer’s right eye and from the left one to the left eye.
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In real camera systems however, several pre-processing steps required.

1. The image must first be removed of distortions, such as barrel distortion to ensure that the
observed image is purely projectional.

2. The image must be projected back to a common plane to allow comparison of the image
pairs, known as image rectification.

3. The displacement of relative features is measured to calculate a disparity map.

4. Optionally, the disparity as observed by the common projection, is converted back to the
height map by inversion. Utilising the correct proportionality constant, the height map can
be calibrated to provide exact distances.

(a) Principle of stereo vision (b) Disparity map

Figure 4.3: Stereo vision system.

4.1.2 Features computation
Feature detection [21] is the process of deciding where and at what scale to sample an image.

The output of feature detection is a set of keypoints that specify locations in the image with
corresponding scales and orientations. These keypoints are distinct from feature descriptors, which
encode information from the pixels in the neighborhood of the keypoints.

There is a substantial body of literature that focuses on detecting the location, we will focus
more on the ones developed from the goal of finding keypoints useful for image registration that
are stable under minor affine and photometric transformations. These feature detection methods
are referred to as Interest Point Operators.

While there are many variations, an interest point operator typically detects keypoints using
scale space representations of images. A scale space represents the image at multiple resolutions,
and is generated by convolving the image with a set of guassian kernels spanning a range of s
values. The result is a data structure which is, among other things, a convenient way to efficiently
apply image processing operations at multiple scales. Interest point operators detect locally dis-
criminating features, such as corners, blob-like regions, or curves. Responses to a filter designed
to detect these features are located in a three dimensional coordinate space, (x; y; s), where (x;
y) is the pixel location and s is the scale. Extremal values for the responses over local (x; y; s)
neighborhoods are identified as interest points. Interest point operators are designed to be robust
to small affine and photometric image transformations, with the goal of being able to find the
same keypoints in two similar but distinct images.
Main characteristics for a good detector are:

Repeatability. The skill to detect many features point independently by trasformations related
to the images.
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Distinctiveness/informativeness. The intensity patterns around the features point detected
should contains a lot of "information", this must increase the efficency of matching step.

Locality. Features should be detected by analyzing as much local context as possible, to avoid
the probabilty that a feature includes occlusions and/or other objects.

Quantity. Should be detected many features, also in small objects.

Accuracy. The detection must be accurate, not only spatially, but also respect to the scale.

Efficiency. Often is required to use it in real-time context.

Figure 4.4: Example of features extracted, as we can see there is a high distribution on areas
with high density of "information".

In addition to determining where and to what extent a feature exists in an image, there is a
separate body of research to determine how to represent the neighborhood of pixels near a localized
region, called the feature descriptor. The simplest approach is to simply use the pixel intensity
values, scaled for the size of the region, or an eigenspace representation thereof.
Main characteristics for a good descriptor are:

Repeatability. Gives two features corrispondent, the descriptor should be as much as possible
the same, independently by the transformations that regard the two images.

Distinctiveness/informativeness. The "information" on the patch should be accurate, in order
to make easy distinguish each feature from the others.

Compactness. A compact descriptor does not contain redundant data neither high correlated
data. Not only this has a deep impact on memory constraints, but also on the performance
of matching process.

Efficiency. Should be many feature points, then it is necessary describe them quickly.

4.2 Object recognition
Numerous methods for object recognition have been developed over the last decades, but few

of them actually scale to the demands posed by a mobile robotics scenario. We should like to
identify processes that are sufficiently generic to cope with many object types simultaneously and
which are readily extended to new object types. At the same time, these processes should handle
the variations in view, imaging, lighting and occlusion, typical of the real world, as well as the
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intra-class variations typical of semantic classes of everyday objects. Two successful general object
recognition approaches include: the constellation method proposed by Lowe together with its
interest point detector and descriptor SIFT [3] and a bag of features approach, the one developed
by Nister and Stewenius [5]. The authors of both approaches have specifically addressed the
issue of computational complexity and claim that proper implementations of their algorithms can
recognise a significant number of objects in real time.

For this part we have decided to use bag of features approach, then with some variations using
the costellation method for the detection task.

A Bag of Features corresponds to a histogram of the number of occurrences of particular
image patterns in a given image. The main advantages of the method are its simplicity, its
computational efficiency and its invariance to affine transformations, as well as occlusion, lighting
and intra-class variations. This approach can be motivated by an analogy to learning methods
using the bag-of-words representation for text categorization [22][23][24]. The idea of adapting text
categorization approaches to visual categorization is not new. Zhu et al [6] investigated the vector
quantization of small square image windows, which they called keyblocks. They showed that these
features produced more “semantics oriented” results than color and texture based approaches,
when combined with analogues of the well-known vector-, histogram-, and n-gram-models of text
retrieval.
Now we explain the categorization algorithms and the choice of their components.

4.2.1 The method
The main steps of our method are:
• Detection and description of image patches.

• Assigning patch descriptors to a set of predetermined clusters (a vocabulary) with a vector
quantization algorithm.

• Constructing a bag of keypoints, which counts the number of patches assigned to each cluster.

• Applying a multi-class classifier, treating the bag of keypoints as the feature vector, and
thus determine which category or categories to assign to the image.

Ideally these steps are designed to maximize classification accuracy while minimizing compu-
tational effort. Thus, the descriptors extracted in the first step should be invariant to variations
that are irrelevant to the categorization task (image transformations, lighting variations and oc-
clusions) but rich enough to carry enough information to be discriminative at the category level.
The vocabulary used in the second step should be large enough to distinguish relevant changes in
image parts, but not so large as to distinguish irrelevant variations such as noise.

We refer to the quantized feature vectors (cluster centres) as "features" by analogy with “key-
words” in text categorization. However, in our case “words” do not necessarily have a repeatable
meaning such as “eyes”, or “car wheels”, nor is there an obvious best choice of vocabulary. Rather,
our goal is to use a vocabulary that allows good categorization performance on a given training
dataset. Therefore the steps involved in training the system allow consideration of multiple pos-
sible vocabularies:
• Detection and description of image patches for a set of labeled training images.

• Constructing a set of vocabularies: each is a set of cluster centres, with respect to which
descriptors are vector quantized.

• Extracting bags of features for these vocabularies.

• Training multi-class classifiers using the bags of features as feature vectors.

• Selecting the vocabulary and classifier giving the best overall classification accuracy.
We now discuss the choices made for each step in more detail.
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4.2.2 Feature extraction
For this project we decided to use SURF (SpeedUp Robust Features) which has shown fast and

accurate performance in several situations.
SURF [4] also known as approximate SIFT [3], employs integral images and efficient scale space

construction to generate keypoints and descriptors very efficiently. SURF uses two stages namely
keypoint detection and keypoint description[4]. In the first stage, rather than using DoGs as in
SIFT, integral images allow the fast computation of approximate Laplacian of Gaussian images
using a box filter. The computational cost of applying the box filter is independent of the size of
the filter because of the integral image representation. Determinants of the Hessian matrix are
then used to detect the keypoints. So SURF builds its scale space (Figure 4.11) by keeping the
image size the same and varies the filter size only.

Figure 4.5: Scale space on SURF.

The first stage results in invariance to scale and location. In the final stage, each detected
keypoint is first assigned a reproducible orientation. For orientation, Haar wavelet responses in
x and y directions are calculated for a set of pixels within a radius of 6σ where σ refers to the
detected keypoint scale. The SURF descriptor is then computed by constructing a square window
centered around the keypoint and oriented along the orientation obtained before. This window is
divided into 4 x 4 regular sub-regions and Haar wavelets of size 2σ are calculated within each sub-
region (Figure 4.12). Each sub-region contributes 4 values thus resulting in 64D descriptor vectors
which are then normalized to unit length. The resulting SURF descriptor is invariant to rotation,
scale, contrast and partially invariant to other transformations. Shorter SURF descriptors can
also be computed however best results are reported with 64D SURF descriptors.

Figure 4.6: SURF Descriptor.

4.2.3 Visual vocabulary construction
In our method, the vocabulary is a way of constructing a feature vector for classification that

relates “new” descriptors in query images to descriptors previously seen in training (Figure 4.7a).
One extreme of this approach would be to compare each query descriptor to all training descriptors:
this seems impractical given the huge number of training descriptors involved. Another extreme
would be to try to identify a small number of large “clusters” that are good at discriminating a
given class: for instance [7] operates with 6 parts per category. In practice the best tradeoffs of
accuracy and computational efficiency are obtained for intermediate sizes of clustering.
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Most clustering or vector quantization algorithms are based on iterative square-error parti-
tioning or on hierarchical techniques. Square-error partitioning algorithms attempt to obtain the
partition which minimizes the within-cluster scatter or maximizes the between-cluster scatter. Hi-
erarchical techniques organize data in a nested sequence of groups which can be displayed in the
form of a dendrogram or a tree. They need some heuristics to form clusters and hence are less
frequently used than square-error partitioning techniques in pattern recognition.

We use the simplest square-error partitioning method: k-means [25]. This algorithm proceeds
by iterated assignments of points to their closest cluster centers and recomputation of the cluster
centers (Figure 4.7b). Two difficulties are that the k-means algorithm converges only to local
optima of the squared distortion, and that it does not determine the parameter k. There exist
methods allowing to automatically estimating the number of clusters. However, in the present case
we do not really know anything about the density or the compactness of our clusters. Moreover, we
are not even interested in a “correct clustering” in the sense of feature distributions, but rather in
accurate categorization. We therefore run k-means several times with different number of desired
representative vectors (k) and different sets of initial cluster centers. We select the final clustering
giving the best tradeoff between the risk in categorization and the performance.

(a) (b)

(c) (d)

Figure 4.7: (a) A large corpus of representative images are used to populate the feature space
with descriptor instances. The white ellipses denote local feature regions, and the black dots denote
points in some feature space. (b) Next the sampled features are clustered in order to quantize the
space into a discrete number of visual words. The visual words are the cluster centers, denoted
with the large green circles. The dotted green lines signify the implied Voronoi cells based on the
selected word centers. (c) Now, given a new image, the nearest visual word is identified for each
of its features. This maps the image from a set of high-dimensional descriptors to a list of word
numbers. (d) A bag-of-features histogram can be used to summarize the entire image. It counts
how many times each of the visual words occurs in the image.
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4.2.4 Categorization
Once descriptors have been assigned to clusters (Figure 4.7c) to form feature vectors (Figure

4.7d), we reduce the problem of generic visual categorization to that of multi-class supervised
learning, with as many classes as defined visual categories. The categorizer performs two separate
steps in order to predict the classes of unlabeled images: training and testing. During training,
labeled data is sent to the classifier and used to adapt a statistical decision procedure for distin-
guishing categories. Among many available classifiers, we used the SVM since is it often known
to produce state-of-the-art results in high dimensional problems.

Figure 4.8: Example of zembra classification, as we can see it is a yes/no classifier.

The SVM classifier finds a hyperplane which separates two-class data with maximal margin [26].
The margin is defined as the distance of the closest training point to the separating hyperplane
(Figure 4.9). For given observations X, and corresponding labels Y which takes values ±1, one
finds a classification function:

f(x) = sign(wtx+ b) (4.1)

where w, b represents the parameters of the hyperplane.
Data sets are not always linearly separable. The SVM takes two approaches to this problem.

Firstly it introduces an error weighting constant C which penalizes misclassification of samples
in proportion to their distance from the classification boundary. Secondly a mapping Φ is made
from the original data space of X to another feature space. This second feature space may have
a high or even infinite dimension. One of the advantages of the SVM is that it can be formulated
entirely in terms of scalar products in the second feature space, by introducing the kernel

K(u, v) = Φ(u) · Φ(v) (4.2)

Both the kernel K and penalty C are problem dependent and need to be determined by the user.
In the kernel formulation, the decision function can be expressed as

f(x) = sign

(∑
i

yiαiK(x, xi) + b

)

where xi are the training features from data space X and yi is the label of xi.
Here the parameters αi are typically zero for most i. Equivalently, the sum can be taken only
over a select few of the xi. These feature vectors are known as support vectors. It can be shown
that the support vectors are those feature vectors lying nearest to the separating hyperplane. In
our case, the input features xi are the binned histograms formed by the number of occurrences of
each keypoint vi from the vocabulary V in the image Ii.

In order to apply the SVM to multi-class problems we take the one-against-all approach.
Given an m-class problem, we train m SVM’s, each distinguishes images from some category i
from images from all the other m-1 categories j not equal to i. Given a query image, we assign it
to the class with the largest SVM output.



Chapter 4. 2D Module 21

Figure 4.9: The separation of hyperplane is ambiguous, for this reason it is used a margin that
leat to a more accurate separation.

4.3 Object detection

The branch of object detection is a natural evolution of object recognition, because if it is true
which the task of recognition is classify one or more classes on a image, from a list known a priori,
it is also true which does not compute spatial information of these classes of objects. In poor words
if the object recognition methods answer to the question "which class of object is present on this
image?", object detection answer to the question "which is the area that contains this object?".
As an evolution, it inherits the problems and difficulties previously found, in fact object class
detection in images is challenging because of two problems. First, objects exhibit large variations
due to intra-class variability, illumination changes, etc. Second, objects may appear anywhere in
an image with unknown scale, and need to be localised.
For this part we have decided to use a variation of the costellation method proposed by Lowe [3].

A Costellation Method approach is a single view object detection and recognition system
with some interesting characteristics for mobile robots, most significant of which are the ability
to detect and recognize objects at the same time in an unsegmented image. Another interesting
features is the best-bin-first algorithm [27] used for approximate fast matching, which reduces the
search time by two orders of magnitude for a database of 100,000 keypoints for a 5% loss in the
number of correct matches. The first stage of the approach consists on matching individually
the SIFT descriptors of the features detected in a test image to the ones stored in the object
database using the Euclidean distance. False matches are rejected if the distance of the first
nearest neighbor is not distinctive enough when compared with that of the second. In Figure
4.10, the matching features between a test and model images can be seen. The presence of some
outliers can also be observed. Once a set of matches is found, the generalized Hough transform
is used to cluster each match of every database image depending on its particular transformation
(translation, rotation and scale change). Although imprecise, this step generates a number of
initial coherent hypotheses and removes a notable portion of the outliers that could potentially
confuse more precise but also more sensitive methods. All clusters with at least three matches for
a particular image are accepted, and fed to the next stage: the Iterative Reweighed Least Squares
is used to improve the estimation of the affine transformation between the model and the test
images.
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Figure 4.10: Matching stage in the Lowe object recognition method.

As we say, costellation method is good for a single view object detection and recognition, but
we need of a robust system, which must be able to detect object from different angle of views.
Then we modified the basic method with some tricks, first we use as many structures as classes
are, the right structure will be selected using the result of previous section, second for each class
we save images of the same object from different angle of views. With these two simple variations
we still have a fast search structure and also we can use 2D information to detect a 3D object.

4.3.1 The method
The main steps of our method are:

• Detection and description of image patches for a each set of classes of images.

• Constructing a set of fast seach structures: each is a multiview container.

• Selecting the right structure, corrispondent to a class of objects.

• Search the best corrispondence between the features of a query frame and the ones stored.

• Filtering the results to discard false corrispondance and obtained the best match.

• Return the corners of the bounding area of the object detected on the frame.

We now discuss the choices made for each step in more detail.

4.3.2 Feature extraction
For this project we decided to use SURF (SpeedUp Robust Features) which has shown fast

and accurate performance in several situations.
SURF also known as approximate SIFT, employs integral images and efficient scale space

construction to generate keypoints and descriptors very efficiently. SURF uses two stages namely
keypoint detection and keypoint description. In the first stage, rather than using DoGs as in SIFT,
integral images allow the fast computation of approximate Laplacian of Gaussian images using a
box filter. The computational cost of applying the box filter is independent of the size of the filter
because of the integral image representation. Determinants of the Hessian matrix are then used
to detect the keypoints. So SURF builds its scale space (Figure 4.11) by keeping the image size
the same and varies the filter size only.

The first stage results in invariance to scale and location. In the final stage, each detected
keypoint is first assigned a reproducible orientation. For orientation, Haar wavelet responses in
x and y directions are calculated for a set of pixels within a radius of 6σ where σ refers to the
detected keypoint scale. The SURF descriptor is then computed by constructing a square window
centered around the keypoint and oriented along the orientation obtained before. This window is
divided into 4×4 regular sub-regions and Haar wavelets of size 2σ are calculated within each sub-
region (Figure 4.12). Each sub-region contributes 4 values thus resulting in 64D descriptor vectors
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Figure 4.11: Scale space on SURF.

which are then normalized to unit length. The resulting SURF descriptor is invariant to rotation,
scale, contrast and partially invariant to other transformations. Shorter SURF descriptors can
also be computed however best results are reported with 64D SURF descriptors.

Figure 4.12: SURF Descriptor.

4.3.3 Search structure construction
When we finished to extract the descriptors from the training set of images, becomes neces-

sary build a structure to store them and when needs, search inside quickly. For this reason we
decide to use a variation of kd-tree [28] called randomized kd-tree [29], which improves the general
performance and solve the problem of classical kd-tree.

Given a set of n data points X = {x1, ..., xn} with xi ∈ Rk being a k-dimensional point, the
goal is to build a tree structure to index these data points so that the nearest neighbors of a query
vector xq can be fast found.

Construction. A kd-tree (k-dimensional tree) is a special case of binary space partitioning trees,
which is constructed in a recursive manner. At the root, the data points are split into
two halves by a partition hyperplane. Then each half is assigned to one child node, and is
recursively split in the same manner to create a balanced binary tree. The leaf node may
contain a single point or more than one points in different implementations. In this way, each
node in the constructed kd-tree corresponds to a cell in Rk, bounded by a set of partition
hyperplanes (Figure 4.13).

Here, a partition hyperplane is perpendicular to a partition axis and decided by a partition
value. The partition axis in the conventional kd-tree is the coordinate axis with the greatest
variance, and the partition value is the median of the projections of the data points along
the partition axis.

Search. With the classical approach, the search time may become almost linear then is ineffi-
cient for big size of n. The reason of the efficiency diminishing in high dimensional data is
that searching a kd-tree usually takes a lot of time to backtrack through the tree to find
the optimal solution. By limiting the amount of backtracking, the certainty of finding the
true nearest neighbors is sacrificed and replaced with a probabilistic performance. Recent
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Figure 4.13: A simple example of the creation of a kd-tree from a set of points:(2, 3), (5, 4), (9,
6), (4, 7), (8, 1), (7, 2).

research has therefore aimed at increasing the probability of finding the true nearest neigh-
borwhile keeping backtracking within reasonable limits. For instance a priority search [30]
was proposed for fast approximate nearest neighbor search, and for its performance we have
decided to use it.
To find the nearest neighbor of a query point, a top-down searching procedure is performed
from the root to the leaf nodes. At each internal node, it is required to inspect which
side of the partition hyperplane the query point lies in, then the associated child node is
accordingly accessed. The descent down process requires log2 n (the height of the kd-tree)
comparisons to reach a leaf node. The data point associated with the first leaf node is the
first candidate for the nearest neighbor, which is not necessarily the true nearest neighbor.
It must be followed by a process of backtracking, or iterative search, in which other leaf
nodes are searched for better candidates. The widely used scheme with high chance to find
the true nearest neighbor early is priority search based on a priority queue, in which the
cells are searched in the order of their distances from the query point. The search terminates
when there are no more cells within the distance defined by the best point found so far.
The nearest neighbor (NN) search [31] in the high-dimensional case [27] may require visiting a
very large number of nodes, and even the process costs linear time. Therefore, alternatively,
an approximate nearest neighbor (ANN) search [3][27] is usually performed, through an
advanced search termination scheme, e.g., after searching a specified number of nodes, or
if the distance from the closest cell to the query exceeds δ = d(xp, xq)/(1 + ε), where xq

is the query point, xp is the NN found so far, and ε is a positive termination parameter,
which guarantees that no subsequent point to be found can be closer to q than δ. In this
manner, the search is guaranteed to have some certain probability to obtain the true nearest
neighbor.

Search on multiple trees. With multiple trees, we need to expand the concept of a priority
search on a single tree. Conceptually, searching m trees with a limitation of n search nodes
is simply searching each tree for n/m nodes. This can be easily implemented by searching
trees sequentially. However, this is not optimal, and besides does not scale to a case where
we impose no limitation on the number of searched nodes (searching for the true nearest
neighbour) because we would already nd the best solution and would not be required to
search extra trees.
After descending each of the trees to nd an initial nearest-neighbour candidate, it is selected
the best one from all the trees. Then it is pooled the node ranking by using one queue to
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order the nodes from all m trees. In this way, nodes are not only ranked against other nodes
within the same tree, but also ranked against other nodes in all trees. As a result, nodes from
all the trees are searched in the order of their distance from the query point simultaneously.

Randomized KD-Tree. This method of doing independent multiple searches is to create mul-
tiple kd-trees with different orientations. Suppose we have a data set X = {x1}. Creating
kd-trees with different orientations simply means creating kd-trees from rotated data Rxi,
where R is a rotation matrix. A principal (a regular) kd-tree is one created without any
rotation, R = I. By rotating the data set, the resulting kd-tree has a different structure and
covers a different set of dimensions compared with the principal tree. Instead of explicitly
rotating the tree, using randomness on parameters can also alter the tree structure.
In accordance with the principle of selecting a partitioning value in the dimension with the
greatest variance, it is considered creating extra search trees with the following idea. In the
standard kd-tree, the dimension which the data is divided is the one in which the data has
the greatest variance. In reality, data variance is quite similar in many of the dimensions,
and it does not make a lot of difference in which of these dimensions the subdivision is made.
It is adopted the strategy of selecting at random (at each level of the tree) the dimension
in which to subdivide the data. The choice is made from among a few dimensions in which
the data has high variance. Multiple trees are constructed in this way, different from each
other in the choice of subdivision dimensions. In this randomisation strategy, in contrast
to rotating the data explicitly, the data set stays in the original space, thus, saving some
computation on data projection while building the tree.

4.3.4 Matching
Once features have been extracted from all n images (linear time), and stored in multiple

randomized kd-tree, they must be matched with query features. Then are required some techniques
to reduce false corrispondences and outiers.
Ratio of distances. The best candidate match for each feature is found by identifying its nearest

neighbor in the database of features from training images. The nearest neighbor is defined
as the feature with minimum Euclidean distance for the invariant descriptor vector.
However, many features from an image will not have any correct match in the training
database because they arise from background clutter or were not detected in the training
images. Therefore, it would be useful to have a way to discard features that do not have
any good match to the database. A global threshold on distance to the closest feature does
not perform well, as some descriptors are much more discriminative than others. A more
effective measure is obtained by comparing the distance of the closest neighbor to that of the
second-closest neighbor. This measure performs well because correct matches need to have
the closest neighbor significantly closer than the closest incorrect match to achieve reliable
matching. For false matches, there will likely be a number of other false matches within
similar distances due to the high dimensionality of the feature space. We can think of the
second-closest match as providing an estimate of the density of false matches within this
portion of the feature space and at the same time identifying specific instances of feature
ambiguity.
The probability density functions for correct and incorrect matches are shown in terms of
the ratio of closest to second-closest neighbors of each keypoint. For our object detection
implementation, we reject all matches in which the distance ratio is greater than 0.8, which
eliminates 90% of the false matches while discarding less than 5% of the correct matches.
When the index of the best matched view is found, a second control is applied to the
descriptors with a more strict threshold, this guarantee accurate results.

Homography. Since homography simplifies the relationship between correspondences and its
computation cost is relatively small, homograhpy is used extensively in computer vision
systems and plays an important part in multiple view geometry.
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(a) (b) (c)

Figure 4.14: (a) Show a high number of false matches gives by a low value of distance. (b) Show
a low number of positive matches give by a high value of distance. (c) Show a right number of
matches give by the value suggested by Lowe.

Single view geometry indicates how the world scene is imaged into the final image we see,
which is also referred as camera model. A 3D/2D correspondence (x,X), where x and X
are both in homogeneneous form and the world coordinate is defined on the plane 3D point
X is laid on, should satisfy the following equation:

x = PX = K[ R t ]


X
Y
0
1

 = K[r1, r2, t] =

XY
1

 = HX

where P is known as projective camera matrix, K is the camera’s intrinsic matrix, and R and t
are the pose matrix, which is referred as the rotation matrix and translation vector respectively.
ri is the i-th column of R. H is the homography matrix relating 3D/2D correspondences on a
world plane.

For a 2D/2D correspondence (x, x′), when it refers to 3D point on a plane, it will satisfy:

x′ = Hx H−1x′ = x

where H is the homography matrix relating two views of planar target. Unlike fundamental matrix
F in epipolar geometry, which images a point to a line, H describes a “Point-Point” imaging. H
is a full rank matrix. Four point correspondences can be used to get a unique solution of H up to
a scale.

Current vision registration methods can be classified as model based and move-matching based.
When a model of the target scene is defined, 3D/2D feature correspondences can be extracted for
every frame. Using these correspondences, though the features would be of various kinds (points,
lines, free curves, etc.), cost functions or equations based on the pose variables are setup, because
these correspondences must satisfy certain camera model. Move-matching refers to the multiple
view geometry among several adjacent frames.

The acquired correspondence set can be denoted as P . Surely, P has outliers. RANSAC
(RANdom SAmple Consensus) algorithm can help the computing of homography beginning with
P , known as putative correspondence set. RANSAC is an iterative method to estimate parameters
of a mathematical model from a set of observed data that contains outliers, as depicted in Figure
4.15. It is a non-deterministic algorithm in the sense that it produces a reasonable result only
with a certain probability. The final results of this method are a set of inliers and a reliable H.
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(a) A data set for which a line has to
be fitted.

(b) Fitted line with RANSAC; out-
liers have no influence on the result.

Figure 4.15: A simple overview of how RANSAC algorithm works.

4.4 Implementation details
To implement the recognition and detection phase, we have created two different classes into a

main package called 2d_processing. The first, namely object_recognition, which receive the
RGB image obtained from the point cloud. The second class, the object_detector, performs
the remaining operations, using the result of previous node to "activate" the right structure. Both
parts are connected and implemented under ROS.

4.4.1 Object recognition
To recognize the objects we have to pass a folder containing a training set of images, the

number of training images for each class and the number of classes, if this step is just done, it is
possible pass only the files obtained from a previous step of training. In both case, the program
will return an index with the corrispondent class recognized on the scene.

The implementation of Bag of Features [32] is based on the one available in the OpenCV
library, the same for SURF features, while for the SVM has been used the library opensource
LIBSVM [33]. To build this part we followed the implementation described in [34].

4.4.2 Object detection
As in the previous step we have to pass a file setting which contains the links of the objects’

database, after that are built a vector of search structures in equal number of classes.
In each of these images are extracted and computed SURF descriptors, then these values are

stored in the search structures, based on FLANN [35] library of Muja and Lowe, which used 4
randomized kd-tree that will be searched in parallel and recursively traversed 64 times; a higher
value for this parameter would give better search precision, but also take more time. The training
step can be skipped if it has already done and saved the results.
The right structure will be selected by the index computed on the recognition step, then a k-nn
search is applied to find the best descriptors matching, which will be saved on a dedicated vector.

As described in the previous section, two refinement steps are applied to this vector, with a NN
ratio test on the 2 NN estimated by the search, and the homography, to delete false corrispondences
and outliers respectively. At the end, four coordinates’ point are obtained (Figure 4.16) by method
getCorners which used the homography matrix and the matched points to compute a perspective
transformation to compute the distorced corners of the object.
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(a) (b)

Figure 4.16: (a) Microsoft Kinect RGB image. (b) ROI obtained.



Chapter 5

3D Module

The estimation of the 3D orientation and location of an object is a fundamental task in com-
puter vision. The combination of these two values is referred to as the pose of an object, even
though this concept is sometimes used only to describe the orientation. This information can then
be used, for example, to allow a robot to manipulate an object [36][37] or to avoid moving into
the object [38][39] (i.e. robot navigation). However, pose estimation of objects in complex and
cluttered scenes is challenging because the appearance of an object in a 2D image is sensitive to
illumination, shadows, and lack of proportion and distance knowledge. In addition, the objects
may partially occlude each other. Some of these problems can be avoided using depth information.
Since recent depth acquisition systems have reached a high level of reliability, the use of RGB-D
data, to overcome some of these problems is promising.
To achieve this goal we need first to extract the object from the point clouds, which increase the
size of our problem. Previous step comes in our help, with the corners of the ROI which contains
the object, we can extract only a box of points in corrispondence with that values. With this
intermediate step, we drastically reduce the number of data to compute, then at this point we
segment the point clouds obtained to isolate the object from the background, groundfloor, and so
on. The last stage leads to the pose of the object in the space.

This chapter is organized as follows, first will be presented common techniques for the point
clouds, then we will move to the core of 3D module or rather how are structured and built the
point cloud segmentation and pose methods.

5.1 Point cloud processing
By denition, we will refer to a collection of 3D points as a point cloud structure P. Point

clouds represent the basic input data format for 3D perception systems, and provide discrete,
but meaningful representations of the surrounding world. Without any loss of generality, the
{xi, yi, zi} coordinates of any point pi ∈ P are given with respect to a fixed coordinate system,
usually having its origin at the sensing device used to acquire the data. This means that each
point pi represents the distance on the three dened coordinate axes from the acquisition viewpoint
to the surface that the point has been sampled on.

5.1.1 Data acquisition
Though there are many ways of measuring distances and converting them to 3D points, in the

context of mobile robotic applications [40], the most used approaches are:

• Stereo camera;

• LIDAR or rangefinder;

• Time-of-Flight camera;

29
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• RGB-D camera;

LIDAR (Light Detection And Ranging) is an optical remote sensing technology that can mea-
sure the distance to, or other properties of a target by illuminating the target with light, often
using pulses from a laser.

LIDAR technology is being used in Robotics for the perception of the environment as well as
object classification. The ability of this technology to provide three-dimensional elevation maps of
the terrain, high precision distance to the ground, and approach velocity can enable safe landing
of robotic and manned vehicles with a high degree of precision. 3D imaging (Figure 5.1) can be
achieved using laser ranging system that applies a pulsed laser and a fast gated camera, it can
also be performed using arrays of high speed detectors and modulation sensitive detectors arrays
typically built on single chips using CMOS and hybrid CMOS/CCD fabrication techniques. These
cameras have the disadvantage to be extremely expensive.

Figure 5.1: LIDAR and 3D map.

A Time-of-Flight Camera (ToF camera) is a range imaging camera system that resolves distance
based on the known speed of light, measuring the time-of-flight of a light signal between the camera
and the subject for each point of the image (Figure 5.2). The time-of-flight camera is a class of
scannerless LIDAR, in which the entire scene is captured with each laser or light pulse, as opposed
to point-by-point with a laser beam such as in scanning LIDAR systems.
In contrast to stereo vision or triangulation systems, the whole system is very compact: the
illumination is placed just next to the lens, whereas the other systems need a certain minimum base
line. In contrast to laser scanning systems, no mechanical moving parts are needed. Furthermore
it is very easy to extract the distance information out of the output signals of the ToF sensor,
therefore this task uses only a small amount of processing power. Lastly ToF cameras are able
to measure the distances within a complete scene with one shot. As the cameras reach up to 100
frames per second, they are ideally suited to be used in real-time applications. The cons of this
system are given by noise coming from artificial lighting or the sun, interference with other ToF
cameras and multiple reflections that leads at wrong distance.

Figure 5.2: Principle of ToF camera.

Furthermore in this scenario is entered a new technology called RGB-D, which merge the
depth to the colours information. The large scale diffusion of this new way to collect data is due
to Microsoft, first to present a cheap control for videogames named Kinect.

The majority of gestural control systems were based on the time-of-flight (ToF) method that
consists in sending an infrared light, or similar, into the environment, then at same time, VGA
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camera recording data, where for each pixel containing RGB informations will be added the depth
computed for its. Then there is a 1:1 corrispondence between RGB matrix and Depth map. The
pros of this solution are: cheap coast, high framerate with hig resolution and collecting of all the
interesting informations of the environment, where cons are almost the same of ToF camera.

5.1.2 Data Representation
Once a 3D point cloud dataset has been acquired using one of the methods presented in

the previous section, it needs to go through a series of geometric processing steps in order to
extract meaningful information that can help a robot in performing its tasks. It is the role of a
mapping system therefore to process and convert the raw input point cloud data into different
representations and formats based on the requirements imposed by each individual processing
step.

Point cloud needs a representation which hold multiple properties per point, the definition of
a point pi = {xi, yi, zi} changes to that of pi = {f1, f2, f3 · · · fn}, where fi defines a feature value
in a given space (color, class label, geometry, etc), thus changing the concept of a 3D point to a
nD one. From these requirements, we can deduce that an appropriate I/O data storage format
for a point cloud P, would be to save each point with all its attribute values on a new line in a
file, and thus have a file with n lines for the n total number of points in P.
A fictitious example is shown bellow:

x1 y1 z1 r1 g1 b1 d1 · · ·
x2 y2 z2 r2 g2 b2 d2 · · ·

· · ·
xn yn zn rn gn bn dn · · ·


where xi, yi, zi represent the 3D point coordinates, ri, gi, bi a color associated with each point, and
di the distance from the sensor to the surface.

To use spatial decomposition techniques such as kd-trees or octrees, and partition the point
cloud data P into chunks, such that queries with respect to the location of the points in P can be
answered fast. Though different from an implementation point of view, most spatial decomposition
techniques can construct and give hints of a volumetric representation for a cloud P, by enclosing
all its points in boxes (also called “voxels”) with different widths.

Octree representations are also popular in the context of collision detection applications, where
we can perform raycasting to the voxels encompassing P to discover the portions of space which
are free or occluded. A big advantage of octree data structures is that they are easy to update
and support point insertion and deletion almost natively.

5.2 Object extraction
Storing and processing large point cloud datasets represents one of the main bottlenecks of

a 3D perception system. This section presents solutions that can be used for the processing of
larger 3D point cloud datasets, in the context of point clustering and segmentation [41][42]. The
concepts are somewhat similar and in some situations they can be used interchangeably. In the
context of the work presented here, their main purpose is to isolate the main structure from the
others, in order to obtain an accurate 3D model of our object and a lower the computational
resources needed by other subsequent algorithmic steps.
Now we explain the extraction algorithms.

5.2.1 The method
The main steps of our method are:

• Extracting a box of point cloud using corners previously detected.
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• Downsampling of point cloud to reduce the amount of data.

• Deleting of points farther than 4m from the sensor to avoide noisy data.

• Removing of ground plane.

• Cleaning objects from residual outliers.

• Selecting the biggest cluster remaining.

We now discuss the choices made for each step in more detail.

5.2.2 Filtering
Box extraction. Exploiting the 1:1 corrispondence between pixels and points, we can simply ex-
tract the point cloud included on the corners computed previously and pass these points contained
in the region to a new structure.

(a) (b)

Figure 5.3: (a) Original point cloud. (b) Extracted point cloud.

This easy step allow to use to reduce the data with an average factor of 5×, depending on the
object’s size (10× on Figure 5.3).

PassThrough filter. With this step, we can simply "cut-off" all the points over a threshold pre-
defined, in our case 4m, because over this distance there is a high probability that the points are
affected by noise and inaccurate values, then makes the final result not satisfactory. An example
is shown in Figure 5.4.

Downsampling. For this method, are considered the spatial frequency content of the point
cloud. Then using a voxel grid filter is created a 3D voxel grid (think about a voxel grid as a set
of tiny 3D boxes in space) over the input point cloud data. In each voxel (i.e., 3D box), all the
points present will be approximated (i.e., downsampled) with their centroid. This approach is a
bit slower than approximating them with the center of the voxel, but it represents the underlying
surface more accurately. Figure 5.5 show an example of adjustable grid size, 2cm.
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(a) (b)

Figure 5.4: (a) Original point cloud. (b) Filtered point cloud.

(a) (b)

Figure 5.5: (a) Original point cloud. (b) Downsampled point cloud.

Removing outliers. With helps of Figure 5.6 we can better understand how this method works.
The user specifies a number of neighbors which every index must have within a specified radius
to remain in the point cloud. For example if one neighbor is specified, only the yellow point
will be removed from the point cloud. If two neighbors are specified then both the yellow and
green points will be removed from the point cloud. With this method we can obtain with a good
approximation, the removal of almost all the outliers present on the scene.
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Figure 5.6: (a) Original point cloud. (b) Outlier removed point cloud.

5.2.3 Segmentation
Now that we have decrease the size of our point cloud, we can apply a segmentation step, to

delete the ground plane, then isolate the objects present on the scene. To generalize the problem,
first we estimate the surface normals, then with the result we will able to remove only the points
that are perpendicular to the z axis.

Estimating normals. Though many different normal estimation methods exist, the simplest
method is based on the first order 3D plane fitting as proposed by [43]. The problem of determining
the normal to a point on the surface is approximated by the problem of estimating the normal
of a plane tangent to the surface, which in turn becomes a least-square plane fitting estimation
problem in Pk. The plane is represented as a point x and a normal vector , and the distance from
a point pi ∈ Pk to the plane is defined as di = (pi − x) · ~n. The values of x and are computed in
a least-square sense so that di = 0. By taking:

x = p̄ = 1
k
·

k∑
i=1

pi

as the centroid of Pk, the solution for is given by analyzing the eigenvalues and eigenvectors
of the covariance matrix C ∈ R3×3 of Pk.

In general, because there is no mathematical way to solve for the sign of the normal, its
orientation computed via Principal Component Analysis (PCA) as shown above is ambiguous,
and not consistently oriented over an entire point cloud dataset. The figure below presents these
effects on two sections of a larger dataset representing a part of a kitchen environment. The right
part of the figure presents the Extended Gaussian Image (EGI), also known as the normal sphere,
which describes the orientation of all normals from the point cloud. Since the datasets are 2.5D
and have thus been acquired from a single viewpoint, normals should be present only on half of
the sphere in the EGI. However, due to the orientation inconsistency, they are spread across the
entire sphere.

The solution to this problem is trivial if the viewpoint vp is in fact known. To orient all normals
consistently towards the viewpoint, they need to satisfy the equation:

~ni · (vp − pi) > 0

Plane model segmentation. In the context of the applications presented in this method, we
are interested in segmenting out with a big emphasis on planar structures which represent a big
part of the points in P.

To speed up the search, the algorithm will make use of a Random Sample Consensus (RANSAC)
method to generate model hypotheses. Since the model to be found represents a plane, and since
three unique non-collinear points define a plane, the algorithm uses the following steps:

1. randomly select three non-collinear unique points pi, pj , pk from P;
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(a) (b)

Figure 5.7: (a) Original point cloud. (b) Normals point cloud.

2. compute the model coefficients from the three points (ax+ by + cz + d = 0);

3. compute the distances from all p ∈ P to the plane model (a, b, c, d);

4. count the number of points p∗P whose distance d to the plane model falls between 0 ≤ |d| ≤
|dt|, where dt represents a user specified threshold with the angle of the surface normals;.

The last step represents one of the many ways of “scoring” a specific model. Every set of points
p∗ is stored, and the above steps are repeated for k iterations. After the algorithm is terminated,
the set with the largest number of points (inliers) is selected as the support for the best planar
model found. From all p∗ ∈ P, the planar model coefficients are estimated in a least-squares
formulation.

The above presented computational steps have been simplified to illustrate the basic theoretical
process required to fit the geometric plane model. In reality, if we were to find the horizontal
support from P, we would need to impose additional constraints, such as the normal of the plane
having to be parallel to some global world ~z axis which gives the the “horizontal” orientation.

After the ground removal, we apply the radial outlier removal just presented previously, which
remove the residual noise on the point cloud, as we can observe in Figure 5.9.

5.2.4 Clusterization
A clustering method needs to divide an unorganized point cloud model P into smaller parts

so that the overall processing time for P is significantly reduced. Most of the simpler methods in
this category rely on spatial decomposition techniques that find subdivisions and boundaries to
allow the data to be grouped together based on a given measure of “proximity”. To better explain
its theoretical steps, let us assume the following application example. Given some input dataset P
representing an environment, and a geometric model representing the supporting plane that can
hold objects for pick and place manipulation tasks, find and segment the individual object point
clusters lying on the plane.

To achieve this goal, the system needs to understand what is an object point cluster first and
what differentiates it from another point cluster. In a more mathematical sense, a cluster is defined
as follows. Let Oi = {pi ∈ P} be a distinct point cluster from Oj = {pj ∈ P} if:



36

(a) (b)

Figure 5.8: (a) Original point cloud. (b) Point cloud after ground plane removal.

(a) (b)

Figure 5.9: (a) Original point cloud. (b) Point cloud after outlier removal.

min‖pi − pj‖2 ≥ dth

where dth is a maximum imposed distance threshold. The above equation states that if the
minimum distance between a set of points pi ∈ P and another set pj ∈ P is larger than a given
distance value, then the points in pi are set to belong to a point cluster Oi and the ones in pj to
another distinct point cluster Oj . From an implementation point of view, it is therefore important
to have a notion on how this minimal distance between the two sets can be estimated. A solution
is to make use of approximate nearest neighbors queries via kd-tree representations. Therefore
the algorithmic steps that need to be taken could look as follows:
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1. create a kd-tree representation for the input point cloud dataset P;

2. set up an empty list of clusters C, and a queue of the points that need to be checked Q;

3. then for every point pi ∈ P, perform the following steps:

• add pi to the current queue Q;
• for every point pi ∈ Q do:

– search for the set Pk
i of point neighbors of pi in a sphere with radius r < dth;

– for every neighbor pi
k ∈ Pk

i , check if the point has already been processed, and if
not add it to Q;

• when the list of all points in Q has been processed, add Q to the list of clusters C, and
reset Q to an empty list;

4. the algorithm terminates when all points pi ∈ P have been processed and are now part of
the list of point clusters C.

Applied on the remaining point cloud dataset supported by the planar model, the proposed algo-
rithm constructs a set of separated Euclidean object clusters.

In our case we will obtain few clusters, because we supposed to extract a small area including
only the our interested object, or at least few other objects. For this reason we compare all the
clusters found to save only the biggest one and delete the others. This final step return as with a
good approssimation the point cloud of the object detected in previous step (Figure 5.10).

(a) (b)

Figure 5.10: (a) Original point cloud. (b) Point cloud clusterized.

5.3 Object information
Now that we have the our object, we need to know its size and its location on the world and

orientation with respect to the sensor (combination of position and orientation is referred to as
the pose of an object). To simplify this step we compute an approssimation of the object, finding
a bounding box that contains the point cloud previously found.
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top cut

middle cut

bottom cut

Figure 5.11: Cutted object.

Our approach for this method consists on "cut" our point cloud with three planes, near top,
middle and bottom of our object as in Figure 5.11. At this point we project all the remaining points
on the ground to obtain an imprint of the borders, then we search the minimum and maximum
points for x and z coordinates, y minimum and maximum are computed on the original point cloud.

5.3.1 Size
A problem give by RGB-D data is the partial view of the environment, which do not allow to

know the exact shape of the object, well to find the approximate bounding box, we use a simple
geometric computation to estimate it.

The three points of the surface are used to compute the hidden corner with a two variables
system, where the angles used are the complementary of the parallel faces.
In our case we choose the Cramer’s rule:{

ax+ bz = e
cx+ dz = f

[
a b
c d

] [
x
y

]
=
[
e
f

]
Assume ad-bc nonzero. Then, x and z can be found with Cramer’s rule as

x =
∣∣∣∣e b
f d

∣∣∣∣� ∣∣∣∣a b
c d

∣∣∣∣ = ed− bf
ad− bc

and

z =
∣∣∣∣a e
c f

∣∣∣∣� ∣∣∣∣a b
c d

∣∣∣∣ = af − ec
ad− bc

At the end of this computation we are in the situation of Figure 5.12, where the red corners are
given by point cloud and green ones are the computed corners.
Now to extract the size’s information we need only to estimate the length of the borders for each
dimension (Figure 5.13).

size1 =
√

(x′ − x)2 + (z′ − z)2

size2 =
√

(x′′ − x′)2 + (z′′ − z′)2

size3 = y′′′ − y′



Chapter 5. 3D Module 39

y

x

z

(x’, y’, z)

(x, y’, z’)

(x”
, y’,

z)

(x’
, y”, z) (x”, y”, z)

(x, y”, z’)
b

b

bb

b b

b

b

Figure 5.12: Hidden corners computated.
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Figure 5.13: Computed size.

5.3.2 Pose
Now that we have an approximation of the size, we need to find the orientation relative to

the sensor camera (then our wheelchair too). With the previous assumptions and point cloud,
becomes easy estimate the rotation of the object, and the position in the environment.
As represent in Figure 5.14, we assume that our current positione relative to the object, defines a
baseline, then with the segment AB and BC, we can compute the arctangent of these values, to
obtain the corrispondent angles which will represent the rotation of the object (we do not need of
y angle of rotation, because the object is positioned on the ground floor or in a plane).

Last part consist on find the location of the object, but this information is just contained on
point cloud data, then we only need of previous three corners and use it as reference coordinate.

5.4 Implementation details
To implement the extraction and information phase, we have created two different classes into

a main package called 3d_processing. The first, namely object_extraction, which receive the
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Figure 5.14: Rotation of the object.

corners computed from the RGB scene. The second class, the object_information, performs
the remaining operations, using the point cloud filtered on the previous node to estimate different
informations. Both parts are connected and implemented under ROS.

5.4.1 Object extraction
To extract the objects we used the corners computed one the previous step, then a method

called boxExtraction has the task of return a point cloud of only that region while it receives as
input the original point cloud (associate of the RGB image) and the vector of coordinates. Then
two steps of filtering are applied with methods downsample which downsample the point cloud
with VoxelGrid method with leaf of 1cm size, and passthrough which cut the farther points of
4m using PassThrough.

The segmentation is the most sensitive part, where several steps are implemented on the
method segmentation. First are computed the normals with NormaEstimation, then a RANSAC
estimation method fitting the plane using the normals, is used to detect planes perpendicular to
y axis.

The point cloud obtained is again refined with the removal method which deletes points with
less than 50 neighbours around a minimum radius of 50cm using RadiusOutlierRemoval.

Final step is method cluster which store in a kd-tree point cloud filtered in past steps and
using EuclideanClusterExtraction start to clusterize all the points with a minimum of 100 and
a maximum of 25000 points respectively. Iteratively for each indices which contained a cluster is
measured the number of points, then the biggest one is saved. This one must be the object detect
on 2D process with a good approximation.

5.4.2 Object information
Using the point cloud obtained in the previous step, we first estimate min and max points

for each dimension with getMinMax3D. Point cloud is sliced with three planes of 3cm height near
bottom, middle and top, and points obtained project in the same plane. Min and max are
computed again to find the minimum and maximum values of x and z axes, while cramerRule [44]
method estimate the hidden corners to reconstruct an approssimation of bounding box’s object.

Then height is easly computed using the min and max values of y axis, where lenght and width
are computed with the Euclidean distance. For the rotation angle is used the arctangent of the
slope of the biggest face shows to the sensor.

Last part of distance from the camera, we just need to read the coordinate information
(xi, yi, zi) contained on the point cloud’s corner found on the previous steps.
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System evaluation

In this chapter we show the performance for each block, and the global system in static and
dynamic environment. We performed tests both while keeping our platform as static and while
moving it on a predefined path.

The chapter is subdivided as following. Section 6.1 describes the testing environment used.
Section 6.2 demonstrates the results of the classifier to distinguish among different classes’ object.
Section 6.3 analyze the performance of the detector for a single view and show how choose the
best value for multiview detection, then results under these new conditions. Section 6.4 show the
accuracy of the data estimated in 3D module. Section 6.5 analyzes the time necessary to perform
the different operations and the frame rate reached. In the end, Section 6.6 demonstrates a real
world application of the system.

6.1 Testing environment
6.1.1 Framework

The entire system is implemented in C++ within ROS, making use of highly optimized libraries
for 2D computer vision, 3D point cloud processing (OpenCV and PCL) and tools (OpenNI) to
create robot applications, with state of arts algorithms. Moreover is useful to developing open
source and reusable software for other purposes and robots, though it becomes sometime inflexible
and not parameterizable.

6.1.2 Data acquisition
The system is developed to use a RGB-D camera, then for our purpose we use the Kinect

camera as mentioned before, with OpenNI to interface with it and compute/manipulate the RGB
and depth informations through OpenCV and PCL.

6.1.3 Dataset
The dataset used in the test contains 256 classes of objects, with a large amount of differences,

variations, occlusions and clutter backgrounds. This dataset is called Caltech-256 and it promised
a high accuracy for the truth level performance of the system [45], thanks to the previous attributes
mentioned and a different resolution’s size of the images.

6.1.4 Hardware
All of the tests for which we report the results have been made using a desktop with an Intel

Pentium Dual Core E5400 @ 2.7GHz con 4GB RAM DDR2 Bus 1066MHz, Ubuntu 11.10 32bit
OS and ROS Fuerte release.
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6.2 Classification performance
We present results from two experiments. In the first we explore the impact of the number

of clusters on classifier accuracy and evaluate the performance of the SVM classifier. We used
ten classes of very different subjects: bread maker, t-shirt, wine bottle, sneakers, watermelon, car,
biliard, laptop, motorcycle, leopard. As explained it is a challenging dataset, not only because of
the large number of classes, but also because it contains images with highly variable poses and
significant amounts of background clutter, sometimes presence of objects from multiple classes
although a large proportion of each image’s area is occupied by the target category. The images
have resolutions between 0.3 and 2.1 megapixels and were acquired with a diverse set of cameras.
The images are color but only the luminance component is used in our method.

We used two performance measures to evaluate our multi-class classifiers.

• The confusion matrix:
Mij = |{Ik ∈ Cj : h(Ik) = i}|

Cj

where i, j ∈ {1, ..., Nc}, Cj is the set of test images from category j and h(Ik) is the category
which obtained the highest classifier output for image Ik.

• The overall error rate:

R = 1−
∑Nc

j=1 |Cj |Mjj∑Nc

j=1 |Cj |

In Figure 6.1 we present the overall error rates using SVM as a function of the number of
clusters k. The standard-error on the maximum is in the range [1, 3]%. The error rate only
improves slightly as we move from k = 1500 to k = 3000. We therefore assert that k = 2000
present a good trade-off between accuracy and speed.
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Figure 6.1: The lowest overall error rate (percentage) found for different choices of k.

Table 6.2 shows the performance as a function of category obtained with this k.
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True classes
↓

bread
maker t-shirt wine

bottle sneakers watermelon car biliard laptop motorcycle leopard

bread maker 72 3 3 10 5 0 5 2 0 0
t-shirt 7 70 8 7 3 0 2 2 2 0
wine bottle 2 10 67 2 8 2 5 2 3 0
sneakers 0 2 2 82 8 0 3 2 2 0
watermelon 2 0 0 3 78 3 3 3 2 5
car 0 0 0 0 3 92 5 0 0 0
biliard 0 8 18 3 18 2 45 5 0 0
laptop 5 7 17 7 7 3 17 37 2 0
motorcycle 2 0 5 2 7 0 7 0 78 0
leopard 0 0 2 3 5 2 0 0 2 87

Table 6.1: Confusion matrix for the best vocabulary (k = 2000).

Observing the single data, we can notice which bread maker gives problem on the classification
of images with clutter backgrounds, this is probably due to a poor training step of this object con-
tained in the dataset. In the t-shirt case, problems occur when the object absumed big distorsion
or partial occlusion (sleeved folded or complete hidden), however it shows a good robustness both
for rotation and clutter backgrounds. The wine bottle has particularly suffered the lack of "part-
ing" between object and background, we can see that errors of classification were mainly occurred
when the background was really dark, similar to the colour of the bottle. In this case apparently
is not possible extract enough features to return the right classification of the image. There are
no relevant notes regaring sneakers which have obtained good results, as the same as watermelon,
where there are few wrong classification caused by excessive brightness and occlusions. Like for
two previous classes there are not particular problems for the categorization of cars, which have
shown the best overall rate. On the contrary biliards and laptops have obtained the worst results,
in the first class the images which were classified with greater difficulty have been the ones with
a strict frontal view of the biliards or when was present only a small part of it. Both cases have
given poor features which cannot describes enough well the objects. Anyway these classes show as
the classification problem is caused by the lack of complex shapes or well defined patterns, which
lead to an insufficient number of features to describe the object. This consideration is confirmed
by next two classes, where we obtained again results over average with well define structures like
the motorcycle or texture for the leopard, which has shown very good performance despite really
cluttered background.

6.3 Detection performance
Now we show the results from two experiments regarding the detector performance. In the

first we explore the impact of the variation of several environmental conditions and angles. This
is the most sensitive part of our project, because will help us to understand how the system will
detect the object in different condition of luminosity, blurring and moreover angles of view, which
is the main task for a mobile robot. We used one image where we applied all these transormation,
then we detect the best value for the angle rotation to use in function of the samples of the object.

We used two performance measures to evaluate our multi-view detector.

• Precision:
precision = correctmatchesfound

totalmatchesfound

• Recall:
recall = correctmatchesfound

correctmatchesfound

then we evaluate the robustness of SURF descriptor under changes of the following conditions:

• viewpoint. This is measured by the roll, pitch, and yaw angles made by the normal vector of
the card with the optical axis of the camera. As the SURF descriptor is known to be invariant
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under in-plane rotation, evaluation against a changes of the roll angle is not implemented.
The 3D scene in our experiments merely consists of planar texture patterns. This simplifies
the transformation required for generating the test images. In our implementation, the
transformation governed by a specified pitch (or yaw) angle is equivalent to a 3×3 plane-to-
plane homography.

X Z

Y

Roll Pitch

Yaw

Figure 6.2: Representation of the possible rotations, in this experiment we have used pitch and
yaw, because SURF has been created to be invariant under roll rotations.

• illumination. OpenCV provides some functions for brightening and darkening an image. We
can see as a function with a parameter β, which governs the nonlinear transformation applied
to the colour map of the image. Positive β values brighten and negative β values darken
the image. Both of these operations result in a reduction of contrast within the image. The
former operation gives an under-exposure effect while the latter gives an overexposure effect.

• blurring. The blurring operation involves convolution of the image by a Gaussian filter. The
amount of blurring is determined by the standard deviation of the Gaussian filter.

To simplify the experiments, the above operations are applied independently and separately
to our database of images. In real scenarios, blurring, under-exposure, and viewpoint changes
can all happen together, making it much more challenging for the detector to successfully extract
and match the keypoints. We have to consider the setting of our experiments to provide the best
performance possible for the descriptor.
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Figure 6.3: Average precision and recall of the descriptor versus change of pitch angle for 10 test
images. The vertical bars denote one standard deviation about the mean.
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Figure 6.4: Average precision and recall of the descriptor versus change of yaw angle for 10 test
images.
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Figure 6.5: Average precision and recall of the descriptor versus change of illumination for 10
test images. The positive β values on the abscissa denote brightening.
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Figure 6.6: Average precision and recall of the descriptor versus change of illumination for 10
test images. The negative β values on the abscissa denote darkening.
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Figure 6.7: Average precision and recall of the descriptor versus different levels of blurring for
10 test images. The parameter σ is the standard deviation of the Gaussian filter.

These results help us to extract some interesting and useful informations. First we can notice
that SURF is really robuts to changing variations of environment’s luminosity, which is really im-
portant, as it on autonomous robot and mobile robot specifically, moving in different environments
cause changing of lumonosity frequently. Moreover there are also good performance with blurring
conditions, which is another important parameter for mobile robots, due to cheap sensors or quick
changing of views.

Analyzing the results more interesting for us and this project, or rather the rotations of objects
around z and y axes (Figure 6.2), we can observe how feature responds to extreme variations of
angles of view. Results show how the performance decrease linearly and in some cases the trend
is exponential.
This allow us to define a threshold within which take the model view of the object for a single image,
smallest will be the variation, bigger will be the number of samples necessary for a good model,
which will make heavy the building of the strucute, and search inside it. A good tradeoff seems
to be near 15◦, where both rotations return a precision and a recall of 0.87 and 0.67 respectively.
In Figures 6.8 and 6.9 are reported the results of the test with this parameter.
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Figure 6.8: Average precision and recall of the descriptor versus change of yaw angle for a model
with variations of 15◦.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

precision

means

recall

means

Figure 6.9: Average precision and recall of the descriptor versus different levels of blurring for
10 test images. The parameter σ is the standard deviation of the Gaussian filter.
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6.4 Extractor and Information performance
Now we show some results about the precision of the data evaluate from the last two modules

of the system. Then we will present values returned from the system into the real world.
All the steps have to face with the problem of accuracy of Kinect depth data, which was deeply

analyzed on [1] and the results are shortly reported on Figure 6.10. This is confirmed in our tests,
where the errors increase quadratically from a few millimeters at 0.5m distance to about 4cm
at the maximum range of 5m. Same problems are reported for the distance estimation, however
this error is still acceptable, as it since the wheelchair works with quite big sized objects, and the
final estimation takes account of this error introduced by the Kinect camera with some tradeoff
parameters based on the class of the object.
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Figure 6.10: Standard deviation of plane fitting residuals at different distances of the plane to
the sensor.

Geometrical error e[mm]
µ(e) 2.39
σ(e) 1.67
max(e) 8.64

Table 6.2: Error e corresponds to the Euclidean distance between the sensors and the real one.

In Figure 6.11 is reported an examples with the results returned of the object recognized by
the system.

6.5 Time performances
Since one of our objectives was to operate with the highest frame-rate reachable, we performed

some tests to evince the time performance of each step and the average frame rate.
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CLASS
cartoon box
–––––––––––
SIZE
height: 32.3cm
width: 27.3cm
depth: 18.4cm
–––––––––––
rotation: 41.4◦

–––––––––––
distance: 133.7cm

Figure 6.11: The results of the information evaluated on the selected clusters.

6.5.1 2D Module
Figure 6.12 shows the performance for the first step of our project, when the system have

to categorize the object on the scene (the training step is not included), and as we can see it
performs quite fast with an average VGA size of the images. In Figure 6.13 are reported the
performances of the detector, which is the most expensive time cost of our system, especially the
step of keypoints extraction and descriptors computation that together take almost half of time
needed. The matcher shows good results for querying and matching, where the homography also
results to be expensive on the total time load. An improvement could be given by employing the
GPU version of the keypoints and descriptors which theorically provide performance at least 12×
faster than the normal version [46].

6.5.2 3D Module
For the 3D processing, we can analyzed in Figure 6.14, where the first phase of point cloud

extraction from a region of interest, obtained thanks to the 2D step, reduced drastically the com-
putational time for all nexts phases, which can be compute in a less than 35ms. The phase that
takes more time, is the segmentation, this is partially due to a sub phase, where the program has
to compute the normals of the point cloud. However all this phases are highly dependent by the
size of the object to extract. Then last step reported in Figure 6.15 which is composed of only
simple estimations, takes only a small part of the total computational time.

An overview of the total computation time of the four main steps are reported in Figure 6.16.
They indicate the average rates reached by the Kinect data publication and conversion from point
cloud to RGB image, the recognition and detection phase, the extraction and estimation phase,
which composed the our complete system (2D and 3D processing). The average time needed for
the whole system is 350ms, then reached a frame rate of 3fps as maximum (depends also on the
complexity of the scene). This results allow to perform well for a mobile robot in a real-time
indoor environments, which does not required to work with high speed, as could be for instance,
a car on the street.
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Figure 6.12: Average time in ms for the main
phases of the recognition process.
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Figure 6.16: Average in ms time for the main phases of the system.
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6.6 Real-world application
This tests have been performed by AR Labs PhD student Wei Zhi Xuan and presented on the

ICIRA 2012 [47], and aimed to show how this software (on the test was used a previous version of
the recognition system) improve the trajectory of the wheelchair and choose the right behaviour
based on the object recognized.

In Figures 6.17 we can observe three different tasks we want the smart wheelchair performs.

(a) (b) (c)

Figure 6.17: Different tasks for the wheelchair. (a) Docking into the desk. (b) Accosting the bed.
(c) Pass through the door.

In Figure 6.18 is the whole architecture based on the previous shared control (below the dash).
Object recognition contain the target information of the environment. At the same time, user
intention is estimated to determine whether the user would like to reach the target. If not, the
shared control will work as usual; if yes, the system will plan the motion to drive the wheelchair
to the target, and the output of motion control will replace the output of joystick, meanwhile the
system will adjust the internal parameters of the shared control to adapt to the different situations.
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Figure 6.18: System architecture.

The experiment is implemented in the laboratory environment as shown in Figure 6.19,where
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the blue line is the trajectory recorded by the odometry of wheelchair. The tasks of the experiments
are driving the wheelchair starting from the passageway, then passing through a doorway to get
into the laboratory, and finally docking into the desk.

Detect Door 

Target No.1 
Door 

Obstacle 
Avoidance 

Detect Table 

Target No.2 
Table 

End 

Start 

Figure 6.19: Experimental environment and task.

With Object Recognizer 
Without Object Recognizer 

Fail to dock in 

Too close to wall 

Figure 6.20: Comparative experiment.

Figure 6.20 shows the comparison of trajectories with and without the Recognition system
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activated. As shown, when passing through the doorway, the wheelchair took an arc to align the
center of the door and passed through the doorway vertically. The wheelchair controlled without
the system, instead, passed very close to one side, which is very dangerous. When docking into the
desk, the wheelchair with the Recognition activated docked autonomously and precisely (Figure
6.21), on the opposite, the wheelchair could not approach to the table and failed to dock (Figure
6.22).

Figure 6.21: Trajectory with the system of recognition.

Figure 6.22: Trajectory without the system of recognition.





Chapter 7

Conclusions

In this work, we present a hybrid approach for recognition and detection of objects for a mobile
robot, in particular for an autonomous wheelchair equipped with a RGB-D camera in an indoor
environment. We have proposed a 2D recognition and detection to identify the class of object and
its position on the scene, to estimate the pose and size with the 3D data. The results reported
in Chapter 6 report that this architecture is able to keep the system computational load low and
gives good results in terms of classification and accuracy, though lack of extras checking in extreme
situations of occlusion and on the geometric structure of the object stored.

With these considerations, ways of future researches could leads to:

2D Features. Use of new robust and faster features and descriptors, as GPU versions of SURF
or the new but not yet tested FREAK, which could increase the matching performance and
at the same time reduce the computational load of the system.

Geometric Informations. Study of the geometry correlation of the object, to obtain a more
robust and light structure of features for the detection phase.

3D Features. Use of features which work with point cloud, to have a second check on the object
after the 2D processing, and compensate weak points of these methods, for instance darken-
ing environment. As first approach we tried almost all the state of arts methods, with poor
results both performance and computational time, that lead us to use an hybrid method.

Segmentation. Use of new segmentation methods to build a semantic map of the environment,
then correlate these informations with the data obtained from the other phases.

Simulation. Create a 3D model of the autonomous wheelchair by using URDF and Xacro, then
test new projects first in a simulation environment like Gazebo, just integrate in ROS.
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