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Abstract— The localization problem for an autonomous robot
moving in a known environment is a well studied problem
that have had many elegant solutions. Nevertheless, the robot
localization in a dynamic environment populated of several
moving obstacles is still a challenge for research. In this paper,
we used the omnidirectional camera mounted on a mobile robot
to perform a sort of scan matching. The omnidirectional vision
system finds the distances of the closest color transitions in the
environment, mimicking the way laser range finders detect the
closest obstacles. The similarity of our sensor with classical range
finders allows the use of almost the same Monte-Carlo algorithms,
with the additional advantage of being able to easily detect
occlusions caused by moving obstacles. The proposed system was
initially implemented in the RoboCup Middle-size domain, but
the experiments we present in this paper prove it to be valid in
a general indoor environment with natural color transitions. We
present localization experiments both in the RoboCup environ-
ment and in an unmodified office environment. In addition, we
proved the robustness of the sensor to occlusions caused by other
robots moving in the environment. The localization system runs
in real-time on a low-cost CPU.

I. I NTRODUCTION

Localization is the fundamental problem of estimating the
pose of the robot inside the environment. Some of the most
successful implementations of robust localization systems are
based on the Monte-Carlo localization (MCL) approach [3].

The MCL approach has been implemented on robots fitted
either with range finder sensors or with vision sensors. Lately,
vision sensors have been preferred over range finders, because
they are cheaper and provide a more reach information about
the environment. Moreover, they are passive sensors, so they
do not interfere with other sensors or do not pose safety
concerns in populated environments.

In this work, we consider the problem of Monte-Carlo
Localization using an omnidirectional camera. The vision
system has been designed to extract from the omnidirectional
images the distances of the closest color transitions of interest
existing in the environment. In some way, our system uses
an omnidirectional vision system to emulate and enhance the
behavior of range-finder sensors. This results in a scan of
the current location similar to the one obtained with a laser
range finder, enabling the use of Monte-Carlo algorithms only
slightly modified to account for this type of sensors.

The most significant advantages with respect to classical
range finders are: (i) a conventional range-finder device senses

the vertical obstacles in the environment, while our sensor
is sensitive to the chromatic transitions in the environment
gathering a more reach information, and (ii) our sensor can
reject some measurements if an occlusion by an obstacle is
detected.

Combining the omnidirectional vision scans with the
Monte-Carlo algorithms provides a localization system robust
to occlusions and to localization failures, and able to exploit
as localization clues the natural color transitions existing in
the environment.

Fig. 1. A snapshot of the algorithm seeking the image for chromatic
transitions. Green-white chromatic transitions are highlighted with red crosses,
green-yellow transitions with blue crosses, black pixels represent the receptor
pixels used for the scan that is performed in a discrete set of distances. Notice
the crosses in the outer part of the mirror: this part is used for low distance
measures. If a not expected color transition is detected (e.g. another robot is
occluding the sensor, like the three black robots in the image) the scan is
stopped and a typical value (FAKE RAY) is stored in the distances vector.

The Middle-Size RoboCup field is a perfect testbed for
studying the localization problem in a highly dynamic and
densely populated environment. In a dynamic multi-agent
world, a precise localization is necessary to effectively perform
high level coordination behaviors. At the same time the
presence of other robots makes localization harder to perform.
In fact, if the density of moving obstacles in the environment
is high, occlusion of the robot’s sensors is very frequent.
Moreover, if, like in RoboCup Middle-Size, collisions among
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robots are frequent, the localization system must be able to
recover from localization errors after collisions.

In this paper, we explicitly discuss the robustness of our
system with respect to the classical problems of global local-
ization, position tracking, and robot kidnapping, as introduced
in [13]. We provide a detailed discussion of the robustness
against sensor’s occlusion when the robot moves in a densely
populated environment, as introduced in [14]. In addition, we
present the experimental evidence the system we developed is
not limited to the RoboCup domain, but works in a generic
unmodified office-like environment (as shown by Fig. 15 and
Fig. 16). The only assumption that must be satisfied is that a
geometric map of the environment is available and the map
reproduces the transitions of colors in the environment.

The paper is organized as follows. Section Iintroduced
the main ideas presented in this paper. Section II discusses
previous researches related to this topic. Section III describes
how we process the omnidirectional image to obtain range
information. Section IV summarizes the well known Monte-
Carlo localization (MCL) algorithm and discusses the motion
model and sensor model used in the experiments and the
modifications to the classical MCL to adapt it to our sensor.
In Section V, we present the experiments performed with the
robot in the RoboCup Middle-Size field of play and in the
corridors of the building of our department. A detailed analysis
of the performances and the robustness of the localization
system is presented with a particular attention to to occlusion
caused by other robots. Eventually, in Section VI conclusions
are drawn.

II. RELATED WORK

The seminal works on Monte-Carlo localization for mobile
robots used range finders as main sensors. The range finders
were used to perform scans of the static obstacles around the
robot and the localization is calculates matching those scans
with a metric map of the environment [3], [19]. However,
several times in dynamic environments, the static features that
are detectable are not enough for a robust localization (as
illustrated in Fig. 2) or they may be occluded by moving
obstacles. One possibility is to design algorithms able to filter
out the moving obstacles in the range scans, leaving only
the static obstacles that can be used as landmarks. Example
are thedistance filters[7], but usually these algorithms are
computationally expensive. Another possibility is to use a
reacher sensor, like a color camera, able to detect the distances
of much more static features, enabling a more reliable”scan
matching”.

In the usual approaches to Monte-Carlo localization with
vision sensors, the cameras have been used either to recognize
characteristic landmarks subsequently matched within a map
[5], [17] or to find the reference image most similar to the
image currently grabbed by the robot [9], [15], [16], [21], [22].
However, when the robot has to match the current sensors’
reading with a previous sensors’ reading, moving obstacles
like people or other robots can impair the localization process.
Several solutions have been adopted. One possibility is to
look at features that cannot be occluded by moving obstacles,

like the ceiling of the museum hall in [2]. However these
features are not always available or they do not carry enough
information.

Our sensor is able to detect occlusions as non-expected color
transition, so it can use only a subset of reliable distances in the
scan, obtaining a more reliable localization. Color transitions
are usually available in the environment and usually they carry
reach information about the environment structure (e.g. change
of color of the carpet, doors with a color different from the
color of the walls, etc.).

In the RoboCup Middle-Size competitions, an approach
based only on laser range finders was used, very effectively,
by the CS Freiburgh Team [20]. They extracted the lines of
the walls from the laser scans and matched them against a
model of the field of play. However, when in 2002 the walls
surrounding the field were removed, the reliability of this
approach was impaired by the lack of static features detectable
by a range-finder sensor.

(a) (b)

Fig. 2. The metric maps used for the computation of the expected scans:
in (a) are represented the static obstacles (they are too sparse for an effective
localization), in (b) are represented all the chromatic transitions of interest of
the environment

In Fig. 2(a), are presented the static obstacles detectable by
a range finder, in the Middle-Size field with the 2003 layout.
The only detectable objects are the two goals and the four
corner-posts. With a sensor sensitive to color transitions, one
can detect not only the static objects in the field shown in
Fig. 2(a), but also all color transitions existing in Fig. 2(b).
Schulenburget al. in [18] combined a laser range finder
and an omnidirectional camera to extend the CS Freiburgh’s
approach by detecting lines both with the laser range finder
and with the omnidirectional vision system. However, the
integration of laser data with vision data do not improves
much the localization with respect to vision data alone (due
to the shortage of laser detectable features) and the image
processing algorithms needed to extract the field’s line are
computationally demanding. Even if the algorithm we used to
locate the color transitions in the image is very similar to the
one of Schulenburget al. , we do not need to post-process
these data to extract the field’s line. In fact also in [1] and
especially in [10], a similar approach to find color transitions
is adopted, but, again they used these data to find geometrical
models of the lines in the field and matched them against a
geometrical model of the world. We use the raw range scans
and we will show in the remaninder of the paper that a robust
localization is achievable performing a scan matching between
an enhanced color map of the environment and the scans of
the distances of the pre-eminent color transitions in the image.
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III. A N OMNIDIRECTIONAL CAMERA AS A RANGE FINDER

As we said, the main sensor of our robot is an omnidirec-
tional camera. This gives our “range finder” a 360 degrees
field of view, much larger than the usual field of view of
conventional range finders. The omnidirectional camera is
composed by a perspective camera pointed upward to a multi-
part mirror with a custom profile [12]. The custom profile of
the omnidirectional mirror was designed to have good accu-
racy both for short and long range measurements. In fact, conic
omnidirectional mirrors fail to obtain good accuracy for short
distance measurements (because the area close to the robot is
mapped in a very small image area), while hyperbolic mirrors
fail to obtain good accuracy for long distance measurements
(because of the low radial resolution far away from the sensor).
With our mirror, the area surrounding the robot is imaged in
the wide external ring of the mirror and the area far away
from the robot is imaged in the inner part of the mirror [12].
The inner part of the mirror is used to measure objects farther
than 1 m away from the robot, while the outer part is used to
measure objects closer than 1 m from the robot, see Fig.1.

As we said, we search the omnidirectional image for, what
we called,chromatic transitions of interest. In the RoboCup
domain, we are interested ingreen-white, green-blue and
green-yellowtransitions. These transitions are related to the
structure of the RoboCup fields, where the play-ground is
green, lines are white, and goals and corner posts are blue
or yellow. The image is scanned along radial line 6 degrees
apart and with a sampling step corresponding to 4 centimeters
in the world coordinate system, as shown in Fig.1. We first
scan for chromatic transitions of interest close to the robot’s
body, in the outer mirror part, and then we scan the inner part
of the image from the center of the image up to 4 meters away
from the robot’s body.

In RoboCup, usually, a color quantization is performed on
the image before any image processing. Our system looks for
the chromatic transitions of interest only along the receptors
of the 60 rays depicted in Fig.1. Therefore, we do not need to
color quantize the whole image, but only some of the pixels
lying along the 60 rays need to be classified into one of the 8
RoboCup colors1 plus a further class that include all colors
not included in the former classes (calledunknown color). At
the setup stage, the RGB color space is quantized into the
nine color classes. To achieve a real time color quantization, a
look-up table is stored in the main memory of the robot. The
look-up table associates every possible RGB triple to one of
the 9 color classes.

The distances to the nearestchromatic transitions of interest
are stored in three vectors2, one for each color transition
of interest. During the radial scan, we can distinguish three
situations:

1) a chromatic transition of interest is found, then the real
distance of that point is stored in the corresponding
vector;

1In RoboCup environment the ball is red, the lines are white, one goal is
blue and the other is yellow, the robots are black, the robots’ marker are cyan
and magenta

2The three vectors are called ”scans” in the reminder of the paper

2) no transition of interest is detected, then a characteristic
value calledINFINITY is stored in the vector (this means
no transition can be founded along this ray);

3) a non-expected transition is found, then aFAKE RAY
value is stored in the vector (this means something is
occluding the vision sensor).

Moreover, we use the information about the static obstacles
extracted from the map of Fig. 2(a) to improve the scanning
process (e.g. if we find a yellow pixel, this is a goal or a
corner-post, so it is not worth looking farther for a white line
and so we stop the scanning process along this ray).

Algorithm 1 Omni-vision as enhanced range finder.
Function QUANT(x,y) returns quantized color of pixel x,y.
Function REALDIST(x,y) returns distance in real world of
pixel x,y.
Pixel(0, 0) is located in the image center.

Ensure: dist white[N RAY ], dist blue[N RAY ],
dist yellow[N RAY ]
for i = 1 : N RAY S do

dist white[i] = dist blue[i] = dist yellow[i] =
INFINITY
search for white = true
x = y = ray = 0
lastColor = QUANT (x, y)
for ray = 1 : MAX RAY do

x = ray ∗ cos(αi), y = ray ∗ sin(αi)
color = QUANT (x, y)
if color isn’t unknown or greenthen

if color is blue andlastColor is greenthen
dist blue[i] = REAL DIST (x, y)
break

else if color is yellow andlastColor is greenthen
dist yellow[i] = REAL DIST (x, y)
break

else if color is white then
if search for white then

search for white = false
if lastColor is greenthen

dist white[i] = REAL DIST (x, y)
else

dist white[i] = FAKE RAY
end if

end if
else

dist blue[i] = dist yellow[i] = FAKE RAY
if search for white then

dist white[i] = FAKE RAY
end if
break

end if
end if
lastColor = color

end for
end for

The algorithm to find the nearest chromatic transitions
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of interest is presented in pseudo-code in Algorithm 1 (to
simplify the comprehension only the scan in the inner section
of the multi-mirror part omnidirectional mirror is presented).

The scan obtained from the image is compared with the
scans extracted from the chromatic map of the environment,
called expected scans. The map in Fig. 2(b) shows the chro-
matic characteristics of the environment. We use this map to
compute the expected scan by ray-tracing, as we will explain
in Section IV-B.

In summary, the advantages with respect to conventional
range finders are: we have three scans for every pose of the
robot (one for every chromatic transition of interest: green-
white, green-blue and green-yellow), we immediately know
which rays of the scan should be discarded because caused by
occluding objects when a non-expected transition is detected
(i.e. a chromatic transition that we are not looking for).

To manage the uncertainty in the scans’ measurements,
we slightly modified the classical Monte-Carlo Localization
algorithm.

IV. M ONTE-CARLO LOCALIZATION

Monte-Carlo localization (MCL) is a well-known proba-
bilistic method, in which the current location of the robot
is modelled as a posterior distribution conditioned on the
sensors’ data (Eq.1). The posterior probability distribution of
the robot pose is called also the robot’sbelief. The belief
about the robot’s position is represented with a set of discrete
points in the configuration space of the robot. These points are
called particles. To update the belief over time, the particles
are updated. Each particle is an hypothesis of the robot’s pose,
and it is weighted according to the posteriors. The belief about
the robot’s position is updated every time the robot makes a
new measurement (i.e. it grabs a new image or a new odometry
measure is available). It can be described by:

Bel(lt) = αp(ot|lt)
∫

p(lt|lt−1, at−1)Bel(lt−1)dlt−1 (1)

where lt = (xt, yt, θt) is the robot pose at timet and at

andot are respectively the sensor and the odometry readings
at the time t. To calculate Eq. 1, the knowledge of two
conditional densities, calledmotion modeland sensor model
is needed. The motion model expresses the probability the
robot moved to a certain position given the odometry measures
(kinematics), see Sec. IV-A. The sensor model describes the
probability of having a certain sensor measurement in a certain
pose, see Sec. IV-B. The motion model and the sensor model
depend respectively on the particular robot platform and on
the particular sensor. The localization algorithm is composed
by 3 steps:

1) All particles are moved according to the motion model
of the last kinematics measure;

2) The weights of the particles are determined according
to the sensor model for the current sensor reading;

3) A re-sampling step is performed: high probability par-
ticles are replicated, low probability ones are discarded.
The process repeats from the beginning.

The resampling step is performed with the Sampling Im-
portance Resampling (SIR) algorithm [8] with the resampling
technique of [11] The final estimation on the pose of the robot
is obtained simply averaging the poses of all particles. For
more details please refer to [3], [19].

A. Motion model

The motion modelp(lt|lt−1, at−1) is a probabilistic repre-
sentation of the robot kinematics, which describes a posterior
density over possible successive robot poses. We implemented
the MCL system on an holonomic robot, called Barney. The
peculiarity of this robot is that it can move in any direction
without the need of a previous rotation. A movement between
two poseslt−1 = (xt−1, yt−1, θt−1) and lt = (xt, yt, θt) can
thus be described with(αu, T, θf ), whereαu is the difference
of heading between the two poses,T is the translation andθf

is the motion direction. Updating the robot position according
only to the kinematics does not take into account errors
given by odometry inaccuracy and possible collisions of the
robot with other obstacles. Therefore, a random noise term is
added to the values given by the last odometry reading. Noise
is modelled with Gaussian zero centered random variables
(∆α,∆T,∆rr,∆rT). They depend on both the amount of
translation and of rotation. So, the motion model can be written
as:

α′
u = αu + ∆α(αu) ;

T ′ = T + ∆T(T ) ;
θ′ = θ + ∆rr(θ) + ∆rT(T ) .

For our holonomic platform, we found that good values for
the standard deviations of the added noise contributions are
σα = 30◦/360◦, σT = 200mm/m, σrr = 30◦/360◦, σrT =
30◦/m. We experimentally verified these values overestimate
the actual errors and so provide good performances.

B. Sensor model

The sensor modelp(ot|lt) describes the likelihood to obtain
a certain sensor reading given a robot pose. The sensor model
is used to compute the weights of the particles. For each
particle j, located in the poseljt , the associated weight is
proportional top(ot|ljt ) (i.e. to the likelihood of obtaining the
sensor readingot when the robot has poseljt ). To calculate
p(ot|ljt ), we need to know the ”expected scan” o(lt). The
expected scan is the scan an ideal noise-free sensor would
measure in that pose, if in the environment there were no
obstacles, Fig. 3(a). Givenl the robot pose, the expected
scano(l) for one of the three chromatic transitions of interest
is composed by a set of expected distances, one for each
αi, the rays of the scan (the black radial line in Fig. 1):
o(l) = {g(l, i)|0 ≤ i < N RAY S}. We can compute the
expected distancesg(l, i) for an ideal noise-free sensor in a
empty environment, using a ray tracing technique. The basic
idea is: (i) to reproduce the pose of the robot in the metric
maps of Fig. 2; (ii) to trace the rays exiting from the robot
until they encounter the first chromatic transition of interest;
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(iii) to store the length of these rays in the expected scan. The
likelihood p(ot|lt) can be calculated asp(ot|lt) = p(ot|o(lt)).
In other words, the probabilityp(ot|o(lt)) models the noise in
the scan by the expected scan [3], [19].

(a) Expected scan

(b) Real image

(c) Measured scan

Fig. 3. An example of expected and measured scans for the green-yellow
transition. Given a pose, in (a) is represented the expected scan for an ideal
noise-free sensor in a free environment. In (b) is shown the frame grabbed by
the robot in that pose, in (c) is represented the corresponding measured scan.
Only the rays with a right measurement are shown. Rays withINFINITY
values or withFAKE RAY values are not displayed.

Fig. 3 compares the expected scan (top) and the real sensor
scan (bottom). In the middle is the image grabbed by the robot.
The scan is looking for thegreen-yellowchromatic transition
of interest. So, the only rays with a right value in the distance

vector are the rays painted in red in Fig. 3(a), i.e. the rays
intercepting the yellow goal and the corner posts. Due to the
noise in the image, it might happen that a color transition is not
detected (like the rays striking the lower part of the yellow goal
and the ray striking the lower corner post in Fig. 3(c)), or is
detected at the wrong distance (like the fourth ray starting from
the top in Fig. 3(c)), or it is falsely detected (like the second
ray in Fig. 3(c)). It may happen also that a color transition is
not detected because of occlusion (like in Fig. 3(b) were the
goalkeeper is occluding part of the yellow goal), but we will
discuss this in detail in Section V-B. So, we need to create a
model of the sensor’s noise.

1) Sensor noise:The probabilityp(o|o(l)) models the noise
in the measured scan conditioned on the expected scan. For
every frame grabbed by the sensor we obtain three scans
(one for each chromatic transitions of interest), so we have
to calculate three probability values. Since every scan is
composed by a set of distances, one for each ray, we first
model the probability that a single ray correctly detects the
chromatic transition and then we combine the measurements of
all rays. Eventually, we need to combine the three probability
values given by the three chromatic transitions of interest. Let
us describe these steps in more details.

The scan performed by the sensor is composed by a set
of distances, one for eachαi: o = {oi|0 ≤ i < N RAY S}.
To computep(oi|l) (i.e. the probability to obtain for a sin-
gle ray a distanceoi given the posel), we can consider
directly the single expected distanceg(l, i), so we can write
p(oi|l) = p(oi|g(l, i)). To create a statistical model of the
distance measurement along the single ray of the scan, we
collected a large number of omnidirectional images (about
2.000) in different known poses in the field of play. For every
image we calculated the estimated distance of the chromatic
transition of interest. The resulting measures are distributed
along a different probability density one for each chromatic
transition of interest. As an example, in Fig. 4(a) is plotted the
probability density of the measured distancep(oi|l) for the
green-white color transition. We described this density with
the mixture of three probability density of Eq. 2. The three
terms in Eq. 2 are respectively: an Erlang probability density,
a Gaussian probability density and a discrete density. The
numerical values of the parameters in Eq. 2 are calculated with
a modified EM algorithm iteratively run on the 2000 images
[4]. The resulting mixture, for the green-white transition,
is plotted in Fig. 4(b). The Erlang variable models wrong
readings in the scan caused by image noise and non-perfect
color segmentation. The indexn depends on the profile of the
omnidirectional mirror used in the sensor. Our mirror (Sec. III)
maps the area around the robot in the outer image ring where
we have good accuracy and almost no noise, while in the inner
part a certain amount of noise is present. We set the value of
n, the Erlang variable, equal to the index of the first pixel
scanned in the inner part of the image. So, the Erlang density
will have a peak at the distance corresponding to the transition
between the two mirror parts. The Gaussian density models the
density around the maximum likelihood region (i.e. the region
around the true value of the expected distance). The discrete
density represents the probability to miss the detection of the



7

chromatic transition, obtaining anINFINITY value in the scan
vector, as described in Sec. III.

p(oi|l) = ζe(
βnon−1

i e−βoi1(oi)
(n− 1)!

)+

ζg
1√
2πσ

e
−(oi−g(l,αi))

2

2σ2 + ζdδ(oi −∞)
(2)

ζe, ζg, ζd are the mixture coefficients, normalisation implies
ζe + ζg + ζd = 1. A different density mixture was computed
for each one of the three chromatic transitions.

(a)

(b)

Fig. 4. In (a) the experimental distribution of measured distances for an
expected known distance. The peak is at the expected distance. The measures
before the expected one are due to the image noise. The last peak on the right
of the plot means that due to image noise several time the chromatic transition
has not been detected. In (b) the densityp(o|l) that represent our sensor model
computed using EM-algorithm. The curve is the result of three contributions:
(i) an Erlang variable with indexn which depending on the geometry of
the mirror, (ii)a Gaussian distribution centered at the expected distance and
(iii) a discrete distribution representing the measurements resulting in the
INFINITY value.

Once thep(oi|l) is computed, it’s possible to compute the
probability of the whole scan given a posel multiplying all
the p(oi|l), Eq. 3.

p(o|l) =
∏

i

p(oi|l) =
∏

i

p(oi|g(l, i)) (3)

2) Sensor occlusion:To cope with unexpected measures
due to occlusion of the sensor by the moving objects in the
environment (i.e. the other robots in the field or the ball), we
filtered out all rays which distanceoi equal theFAKE RAY

value, see Sec. III (theFAKE RAY value is represented byφ
in Eq. 4). We called this processray discrimination . The de-
tection of occluding obstacles along the rays of a scan is very
frequent in a densely crowded environment like the Middle-
Size RoboCup field. In conventional range finders there is no
ray discrimination system, so all measured distances contribute
to the computation ofp(o|l). If a large number of distances
are affected by the presence of other agents around the robot,
the localization process might fail. Our ray discrimination
technique enables to compute the sensor model only with
a subset of reliable distances, obtaining a faster and more
reliable localization.

p(o|l) =
∏

{i|oi 6=φ}

p(oi|l) =
∏

{i|oi 6=φ}

p(oi|g(l, i)) (4)

From this equation follows that if the occlusion of the sensor
increases, more and more rays will be discriminated and less
information will be available for localization. Nevertheless, in
our system all reliable information is exploited. We will see in
Section V the ray discrimination technique enables to correctly
localize the robot even in situations of severe occlusion.

C. Weights Calculation

Returning to Monte-Carlo Localization, we can now com-
pute, the weightw(j) associated to each particlesj. We first
calculate the quantitȳw(j) = p(o|lj) using Eq. 3), then all
w̄(j) are normalized such that

∑
j w̃(j) = 1

w̃ =
w̄(j)∑
j w̄(j)

(5)

Since our system scans the acquired image for the three
chromatic transitions of interest, this provides three scans for
every frame, so three weight values are associated to every
particles. To obtain a single weight value, we compute the
product of the three weights (Eq. 6), and re-normalize all
weights with Eq. 5 again.

w(j) =
N∏

k=1

w̃
(j)
k (6)

In Fig. 5, we give a pictorial visualization of the weights
calculated by the three different scans of the three chromatic
transitions of interest. The real pose of the robot is marked
by the arrow. Higher weight values are depicted as darker
points, lower weight values are depicted as lighter points. In
Fig. 5 (a), are represented the weight contributions calculated
by the scan looking for the green-white transition. One can
notice that, due to the symmetry of the white lines in the field,
two symmetric positions resulted to have high likelihood. In
Fig. 5 (b), are depicted the weight contributions calculated
by the scan looking for the green-blue transition. One can
notice that all positions far away from the blue goal have a
high likelihood, because no green-blue transition was found
in the image scan. In Fig. 5 (c), are represented the weight
contributions calculated by the scan looking for the green-
yellow transition. One can notice there is an approximate
symmetry around the yellow goal. All these contributions are
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(a) green-white (b) green-blue

(c) green-yellow (d) overall

Fig. 5. Probability distributionsp(ot|lt) for all possible posesl = (x, y, θ)
of the robot in the field given the scans of a single image. Darker points
corresponds to high likelihood. The arrow represents the actual robot pose. In
(a) is represented the probability given the scan for the green-white transition
, in (b) for green-blue transition, in (c) for green-yellow transition, in (d) the
three are combined.

combined with Eq. 6 to calculate the overall weights and
depicted in Fig. 5 (d). Here, the weights with higher values
are clustered only around the actual position of the robot.

V. EXPERIMENTS

The robot we used in the experiments is the holonomic
custom-built platform, equipped with the omnidirectional sen-
sor described in Sec. III. This paragraph is divided in three
sections. In the first one, we evaluate the performance of
the localization system depending on the number of particles
used. In the second section, the robustness of the system to
sensor occlusion is evaluated. In the third section, we present
experiments in the corridors of our department to show the
proposed system can be applied in any environment in which
stable color transitions can be identified.

In order to improve the time performances of the system,
the distances (see Sec. III) in the environment are divided in
a grid of 5x5 cm cells, in a way similar to [7]. The expected
distances for all poses and the probabilitiesp(oi|g(l, i)) for all
g(l, i) can be pre-computed and stored in six look-up tables
(two for each chromatic transition). Each look-up table takes
about 13Mb. In this way the probabilityp(oi|l) can be quickly
computed with two look-up operations, this enables our system
to work in real-time at 10 Hz on a PC-104 Pentium III 700
MHz fitted with 128 Mb of RAM using 1000 particles.

A. Localization in the RoboCup field of play

We tested the system on five different paths (an example
path is shown Fig. 7). For each path we collected a sequence of
omnidirectional images with the ground truth positions where
those images were grabbed and with the odometry readings be-
tween two consecutive positions. In order to take into account
the odometry errors, robot movements were performed by
remote robot control. We tested our algorithms using different

(a)

(b)

(c)

Fig. 6. An example of expected and measured scans for the green-white color
transition. The robot’s position is represented by the black circle. (a) represents
the expected scan for an ideal noise-free sensor in a empty environment.
(b) shows the frame grabbed by the robot in that pose. (c) represents the
corresponding measured scan. In (c), the black line represents the measured
distances while the dotted red line represents the rays in which a not expected
transitions is detected (FAKE RAYS). This can be caused by image noise
or other robots (represented with grey circles). Look for example in the
omnidirectional image (b) at the yellow goal: inside there is a robot (the
goalkeeper) and three rays of the scan detect it (c) (along these rays is detected
the black color that we are not searching for). For all these rays aFAKE RAYS
value is stored instead of the proper distance.

amounts of particles calculating the mean localization error
for the three fundamental localization problems: (1) the global
localization problem (the robot must be localized without any
a priori knowledge on the actual position of the robot), (2) the
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(a)

(b)

(c)

(d)

Fig. 7. A sequence of global localization and position tracking. The grey
circle represents the actual robot pose, the red line represents the ground-truth
path, the black line represents the estimated path of the robot, the black dots
represent the particles (1000 particles are used).

position tracking problem (a well localized robot must main-
tain the localization) and (3) the kidnapped robot problem.
In the kidnapped robot a well-localized robot is moved to a
different pose without any odometry information: this problem

can frequently occur in an high populated environment like
RoboCup, where often robots push each other attempting
to win the ball. To solve the kidnapped robot problem, we
adopted the classical technique to reserve a certain percentage
of the particles to this scope and to randomly scatter them in
the environment to act as seeds for a re-localization process
in case of localization failure [6].

One of the five test path is shown in Fig. 7. In Fig. 7(a), the
particles are uniformly distributed (no knowledge is available
on robot position). In Fig. 7(b), after moving 2 meters away
and grabbing 4 images and getting 4 odometry readings,
the particles are condensed around three possible poses. In
Fig. 7(c), after 4 meters, 6 images and 6 odometry readings,
uncertainty is solved and particles are condensed around the
actual pose of the robot. In Fig. 7 (d) after 14 steps, one can
see the position of the robot is well tracked along the test path
(position tracking). The particles that are still dispersed in the
environment are the particles scattered to solve the kidnapped
robot problem.

(a)

Fig. 8. The average error in the global localization problem for a specific
path with different amounts of particles.

The reactivity and the accuracy of the localization system
increase with the number of particles, on the other hand also
the computational load is increased. We tested the perfor-
mances of the system with different numbers of particles.
In Fig. 8 is shown the average localization error for global
localization using respectively 100, 500, 1000, 10000 particles
when the same path is repeated 100 times. A number of
1000 particles is compatible with real-time requirements and
assures a robust and accurate localization. Also for the position
tracking problem, 1000 is a good value for the number of
particle. In Fig. 9 is shown the average and the maximum
localization error in the position tracking phase for all test
paths using different amount of particles. Already, with 1000
particles is possible to achieve good accuracy, acceptable
average error (about 10 cm) and acceptable maximum error
(about 30 cm) without burdening the CPU of the robot.

In Fig. 10 is shown the error for a kidnapped robot episode
using 1000 particles and different rate of particles uniformly
distributed in the environment. With a higher rate of particles
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Fig. 9. The average error end maximum error in the position tracking problem
over the five reference paths, calculated with different amount of particles,
respectively 50, 100, 500, 1000, 5000, and 10000)

(b)

Fig. 10. The average error in the re-localization phase after a kidnap of the
robot, varying the rate of uniformly distributed particles.

scattered in the environment the re-localization is faster (there
is a higher likelihood that a particle is close to the actual
position of the robot), but the average error is higher due
to the lower number of particles clustered around the correct
robot’s pose. Notice that with 20% the re-localization is faster,
but the average position tracking error is higher, because the
number of the randomly distributed particles is so high that
their contribution in the calculation of the center of gravity of
the particles spoils the correct estimation of the robot pose.
Therefore, we uniformly distributed in the environment only
10% of the 1000 particles. This ensures low contribution in
the calculation of the center of gravity and acceptably fast
recovery from the kidnap situation.

B. Robustness to sensor occlusion

In order to show the robustness of our approach in densely
crowded environments, we tested the system on six different
paths (like the one shown in Fig. 11). To understand how the
occlusion of the omnidirectional camera affects the localiza-
tion process consider the images on the left of Fig. 12. The
plots on the right of Fig. 12 show the probability distributions
of the robot’s pose given by the image scans for increasing

amounts of sensor occlusion, respectively 0%, 25%, and 50%.
With increasing amount of occlusion the particles are more
and more dispersed around the true position of the robot.
Uncertainty increases, but most of the probability is still
condensed around the right position. This is the result of the
ray discrimination technique presented in Section IV-B.2. In
Fig. 12, to obtain a measurable amount of occlusion, occlusion
is obtained covering the sensor with black strips. Every strip
cover 12.5% of the sensor and well simulate the presence of
one robot close to the sensor. In real situations, like the one
depicted in Fig. 3, is extremely hard to have more than two
robot close to the sensor, while other robots are usually quite
far and occlude a small fraction of the sensor.

(a) (b)

(c) (d)

Fig. 11. A sequence of global localization in presence of 12.5% of sensor
occlusion. Note that with respect to Fig. 7 the particles are more scattered
around the true position of the robot.

For each path we collected five sequences of omnidirec-
tional images respectively with 0%, 12.5%, 25%, 37.5%, and
50% occlusion. For every image we recorded the ground
truth pose of the robot and the odometric readings between
two consecutive positions. In order to take into account the
odometric errors, robot movements were performed by remote
control. We tested our algorithms for the three fundamental
localization problems: global localization, in Fig. 11 (a) and
(b); position tracking, in Fig. 11 (c) and (d); and kidnapped
robot (not shown).

In Fig. 13 is shown the average error for a global localiza-
tion experiment along the same reference path for three differ-
ent amounts of sensor occlusion. Obviously without occlusion,
localization is fast and accurate, but also in a densely crowded
environment (sensor always covered for a rate of 50%) the
robot is able to localize itself and to maintain localization
with good accuracy. We obtained very good results also in
the kidnapped robot problem. Recovery from a localization
failure is obtained thanks to a small amount of particles (10%
of the total number of particles) uniformly distributed in the
environment. A few steps after a kidnapped robot episode
most of the particles are again concentrated around the correct
position and the situation is the same of global localization
(due to lack of space we did not reported these experiment in
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. (On the left) The occlusion of the sensor is obtained with black
stripes simulating the presence of other robots close to the sensor,. This was
done in order to have a measurable amount of sensor’s occlusion ((a) 0%
of occlusion, (c) for 25% and (e) for 50%). (On the right) The probability
distributions calculated for the corresponding amount of sensor’s occlusion.
Notice that in the situations of higher occlusion (d) (f), the particles are more
scattered than in (b), but most of the probability is still condensed around the
correct position.
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Fig. 13. The plots compares the global localization errors for a specific path
with different amount of sensor’s occlusion.

this paper).
Finally, we performed a statistical evaluation of our ap-

proach in the conventional situation of position tracking re-
peating 100 times all reference paths with different amount
of occlusions. In Fig. 14 are reported the average error and
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Fig. 14. Statistical evaluation of our system in the position tracking problem
for all our reference paths. Accuracy (average error end maximum error)
is represented for different amount of sensor’s occlusion (0%, 12.5%, 25%,
37.5%, 50%).

the maximum error over all reference paths. Notice that
both remain small also in a densely and constantly crowded
environment.

C. Localization in office environment

Even if our system was developed for the RoboCup domain,
from the beginning it was designed thinking to applications in
a every-day environment. As a result, the localization system
is not dependent from the peculiar chromatic transitions. In
other words, it doesn’t matter if the chromatic transitions of
interest are three or a different number. It doesn’t matter if they
are green-white, green-blue, and green-yellow or transitions
between different colors. As we said the only requirements are
(i) some stable chromatic transitions can be identified in the
environment and (ii) these chromatic transitions are reported
in a metric map available to the system.

Fig. 15. The office-like environment in which our localization system was
tested to prove its portability to real-world environments.

The environment in which we tested the generality of our
system are the corridors of our department shown in Fig. 15.
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Fig. 16. The scanning algorithm at work on an image grabbed in a corridor of
an office-like environment. The colored crosses highlight the color transitions
of interest of the environment detected along the dotted radial lines in the
omnidirectional image.

The floor of the corridor is of composed of red tiles, the
walls are painted white, doors and furniture are painted grey.
The corridor is 26 meters long and its width ranges from
a minimum of 2 meters to a maximum of 4 meters. The
trapezoidal room is about4 × 5 meters. Along the corridors
there are two grey lockers 2 meters wide.

This environment is much more challenging than the
RoboCup environment due to uneven illumination and to the
low contrast between existing colors. Nevertheless, even if
sometimes the transition detection software misses or mis-
takes the type of chromatic transition, the system is abe to
successfully locate the robot in the environment, as we will
see.

A typical input image for the robot is the image shown in
Fig. 16. The chromatic transition of interest we selected in
this environment arered-white and red-grey. The red-white
transitions in Fig. 16 are marked with a red cross and the
red-grey transitions are marked with a yellow cross.

In Fig. 17 is shown a comparison between the expected and
the real scan in the office-like environment for the red-white
transition. In the color-metric maps, the red floor is represented
in green, the grey objects are drawn in blue, and the rays of
the scan are painted in red.

To test the robustness of the system in a general indoor
environment without any lighting control, we performed the
test in a dim day. Due to low ambient brightness, the noise
in the image is high and the contrast between the white and
the grey is low. In this situation, some chromatic transitions
of interest are not detected or are erroneously detected. For
instance, several transition are not detected in Fig. 17(c),
especially in the top-right of the scan and the long ray at south-
est of the scan. An example of wrong transition detection is
the north-west ray in the scan in Fig. 17(c), that is erroneously
detecting a red-white transition where there is a red-grey
transition caused by the grey door. The probability distribution
calculated from the red-white transition from the image of

(a)

(b)

(c)

Fig. 17. (Top) A close-up view of the color-metric map of the environment
with the expected scan for the red-white transition. (Middle) The actual image
grabbed by the robot. (Bottom) The real scan extracted from the image. Note
that this contains several wrong detection due to the noise in the image.

Fig. 17 is depicted in Fig. 18. In the picture, the darker regions
have high likelihood to contain the robot, lighter regions have
lower likelihood. One can see the probability distribution is
quite sparse. Nevertheless combining also the information
from the second chromatic transition of interest and combining
the information coming from different measurements thanks
to the MCL algorithm a robust localization can be achieved,
as shown in Fig. 19 (the reliability of the system could be
further improved if a more robust color transition detection
algorithm is used (like the ones proposed in [10], [17]), but
this is out of the scope of the present work). Starting without
any knowledge on the robot position (Fig. 19(a)) after four-five
steps most of the particle condense around the actual robot
position (Fig. 19(d)). Again, we spread a 10% of particles
randomly in the environment to solve the kidnapped robot
problem.
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Fig. 18. The probability distribution calculated from the red-white transition.

(a)

(b)

(c)

(d)

Fig. 19. An example of global localization in the office-like environment
in our department. 10% of the particles are randomly distributed in the
environment to recover in case of wrong localization (kidnapped robot).

VI. CONCLUSIONS

In this paper we propose a vision-based Monte-Carlo lo-
calization system particularly suitable for densely crowded
environments thanks to the discussed ray discrimination tech-
nique. The omnidirectional vision sensor is used to emulate
the behavior of range-finder devices and, thanks to the ability
to distinguish different color transitions it can detect and reject
wrong measurements caused by occlusions the sensor. We
developed our system in the Middle-Size RoboCup domain,
but we proved it can be used to localize the robot in any
environments in which meaningful chromatic transition exists.
The only requirement is that a map with the metric and
chromatic characteristic of the environment is available. This
means a map that depicts the static obstacles and the chromatic
transitions of interest in the environment. This map can be
as simple as a drawing stored in a image file, representing
the plan of the environment augmented with the informa-
tion on the color transitions. From these maps, the system
will automatically recalculate all look-up tables used in the
localization process. We presented successful experiments of
global localization, position tracking and kidnapped robot both
in the RoboCup environment and in a the corridors of our
department. We experimentally showed the robustness of the
localization system to sensor’s occlusion and to chromatic
transitions poorly contrasted.
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M. Plagge, M. Ritter, S. Sablatnög, and A. Zell. Vision-based localiza-
tion for mobile robots.Robotics and Autonomous Systems, 36:103–119,
2001.

[2] Frank Dellaert, Wolfram Burgard, Dieter Fox, and Sebastian Thrun.
Using the condensation algorithm for robust, vision-based mobile robot
localization. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition ( CVPR’99 ), June 1999.

[3] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
Monte Carlo Localization for mobile robots. InIEEE International
Conference on Robotics and Automation (ICRA99), May 1999.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm.Journal of the Royal
Statistical Society, 39(1):1–38, 1977.

[5] S. Enderle, M. Ritter, D. Fox, S. Sablatnög, G. Kraetzschmar, and
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