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Abstract. Controlling a biped robot with a high degree of freedom to achieve
stable movement patterns is still an open and complex problem, in particular
within the RoboCup community. Thus, the development of control mechanisms
for biped locomotion have become an important field of research. In this paper
we introduce a model-free approach of biped motion generation, which specifies
target angles for all driven joints and is based on a neural oscillator. It is poten-
tially capable to control any servo motor driven biped robot, in particular those
with a high degree of freedom, and requires only the identification of the robot’s
physical constants in order to provide an adequate simulation. The approach was
implemented and successfully tested within a physical simulation of our target
system - the 19-DoF Bioloid robot. The crucial task of identifying and optimiz-
ing appropriate parameter sets for this method was tackled using evolutionary
algorithms. We could show, that the presented approach is applicable in generat-
ing walking patterns for the simulated biped robot. The work demonstrates, how
the important parameters may be identified and optimized when applying evo-
lutionary algorithms. Several so evolved controllers were capable of generating
a robust biped walking behavior with relatively high walking speeds, even with-
out using sensory information. In addition we present first results of laboratory
experiments, where some of the evolved motions were tried to transfer to real
hardware.

1 Introduction

Making a biped robot walk is a complex task. Describing and calculating joint trajec-
tories is a common way to control servo motor driven humanoid robots. In the majority
of the cases, the trajectory describing coefficients are calculated based on a model of
the robot and a stability criteria. As an example, Takanishi’s research group in Waseda
University presented the humanoid robot WABIAN, where the trajectories of the arms,
legs and ZMP were described by Fourier series [1]. The coefficients were determined
in simulation in a way to ensure the Zero Moment Point (ZMP,[2]) conditions. As a
drawback of this approach, a detailed and valid model of the target system has to be
identified, and changes in the target system require a redesign of this model.
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Another well-established approach of gaining the reference trajectories, which is
emerged from studying vertebrate animals are the Central Pattern Generators (CPG,
[3,4,5]). Central pattern generators are circuits which are able to produce periodic sig-
nals in a self-contained way, i.e. without having any rhythmic input into themselves.
In order to build structures with similar properties to the neural oscillators found in
animals, several mathematical models have been proposed (e.g. [6,7,8]). Matsuoka pro-
posed a mathematical model of CPGs and demonstrated that the combination of simple
neural models can generate the neural activities for biped locomotion [9]. This model
has been applied across several biped simulations (e.g. [10]), as well as used for real
robots (e.g. [11]). One of the difficulties in the application of the CPG model to real
robots is to determine the weights of neural connections. This is the main reason why
genetic algorithms have often been used to solve this problem [12,13].
Within this paper we present a model-free approach of biped motion generation, based
on a neural oscillator. The neural architecture has a biological analogy which is particu-
larly interesting from a cognitive point of view. Furthermore it provides a very easy and
natural way to incorporate arbitrary sensory input. We demonstrate the use of physi-
cal simulation and evolutionary algorithms to identify appropriate parameter sets of the
presented motion generation model. This methodology is independent of a certain robot
instance and does not require the detailed physical analysis of the target system. The
application of simulation and artificial evolution permits an easy adaption of the motion
generation to any modifications in the target system itself or in the requirements of the
motion.

2 Simulation Environment

The target system of our study is a 19-DoF Bioloid robot with a shoulder height of
34cm and a weight of approx. 2.2kg. Due to the natural limits of real hardware exper-
iments a physical simulation of this robot was developed. The simulation is based on
the Open Dynamics Engine library (ODE, [14]) and simulates a simplified model of the
real robot, consisting of 59 body parts and 19 servo motor joints. The time-integrated
simulation is processed with a resolution of 100 simulation steps per second. Several
isolated motor characteristic experiments were accomplished, in order to adequately
simulate the servo motors torque and friction (see Fig. 1). Finally, as a weak validation
of the simulation behavior, several real robot motions were transferred to the simulated
one and could reproduce almost identical behavior. As an example, the handcrafted
stand-up motion of the real robot is simulated accordingly (see Fig. 2).
The modular structured simulation environment was designed for exploring appropriate
non-model based control structures which are potentially able to generate robust biped
motions of our target system. Within this paper, a robust motion denotes a motion that
is capable to compensate small environmental disturbances (e.g. small obstacles, im-
pacts, rough floors, etc.). Regarding the simulation, the simulated robot had to pass at
least 120s without falling or visible tumbling, while facing the ODE’s simulated envi-
ronmental noise.
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Fig. 1. Real and simulated world (left to right): Real Bioloid, Simulated Bioloid, Real servo mo-
tor torque and friction experiment setup, Simulated servo motor torque and friction experiment
setup.

Fig. 2. A first weak validation of the simulation: The stand-up motion is based upon interpolated
keyframes and was developed on the real Bioloid. The (raw) transfer of the identical keyframe
structure to simulation shows almost identical behavior.

3 Motion Generation - Neural Oscillator Approach

The neural oscillator approach generates a core oscillation with the use of the discrete-
time dynamics of a two neuron network. Aspects of discrete-time dynamics with recur-
rent connectivity have been studied extensively, e.g. in [15,16]. The basic idea behind
this approach is formulated by Pasemann, Hild and Zahedi in [17], which is also a good
address for its mathematical background. The network update formula is as follows:

a(t + 1) := tanh
(
Ω a(t)

)
, Ω =

(
ω11 ω12
ω21 ω22

)
(1)

It is demonstrated, that certain configurations of the weight matrix Ω cause periodic
or quasi-periodic attractors in the phase space of the network [17,18]. These types of
networks are able to generate different types of oscillations which in turn can be used for
generating reference trajectories. An example of such a quasi-periodic orbit is displayed
in Fig. 4.
The oscillations of the presented two neuron networks are now used for generating the
joint’s reference trajectories. The reference trajectory of a single joint is represented by
the output of a dedicated (standard additive) neuron. The neuron derives its activation by
two synapses coming from the two neurons oscillator and a bias term which represents
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the offset of the trajectory’s amplitude. In this way, the reference trajectory of a single
joint is described by three parameters, ω j1, ω j2 and θ j, where ω ji denotes the synaptic
weight coming from neuron i = 1, 2 and θ j the bias of joint j. Figure 3 illustrates the
neural topology of the controller’s network.

Fig. 3. Topology of the neural net controller. Each joint’s reference trajectory is given by a
dedicated neuron, which derives its activation by the two oscillating neurons N1, N2 and a bias
term θ j.
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Fig. 4. Example dynamics of a two neuron network output: Phase trajectory in (a1, a2)-space
(left), and output signals of neuron 1 and 2 (right) for ω11 = 1.17, ω12 = 0.61, ω21 = −0.47,
ω22 = 0.83. Graphs show the initial phase up to reaching the quasi-periodic attractor within the
first 100 time steps. The initial activation was set to a1 = 0.01, a2 = 0.0.

In order to reduce this parameter space, we further made use of a sagittal symmetry
assumption, which states same movements between corresponding left and right sided
joints with a half-period phase shift. In doing so, all trajectories are described by 10
output neurons, and the parameter space has a dimension of 34 synaptic weights.
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4 Evolution of Walking Motions

Within this simulation environment, artificial evolutions were processed for identifying
applicable parameters sets of the neural net controller. The primary object was to iden-
tify motion patterns, that could pilot the robot a maximum possible distance within a
certain time. Each individual has to pass an episode, in which the corresponding dis-
tance is measured. An episode starts with the relocation of the robot to its initial po-
sition. Subsequently the robot is given time to adopt its starting pose, in order to pass
the episode run. The episode run is aborted if either the maximum episode duration is
exceeded, if the robot falls or if it loses the desired path. The fitness value of an indi-
vidual was set to its covered distance in stated walking direction. The actual ’position’
of the robot was defined as the center of both feet. In doing so, the fitness is defined as
follows:

f itness = min (∆yr f oot, ∆yl f oot ) (2)
∆yr f oot = yr f ootend − yr f ootstart (3)
∆yl f oot = yl f ootend − yl f ootstart (4)

where yx f ootstart denotes the y-coordinate of the right/left foot at the beginning of the
episode, and yx f ootend the y-coordinate of the right/left foot at the end of the episode.
We already processed several hundreds of evolutions experiments, and the present re-
sults are the outcome of about 210,000 (simulated) hours.
Figure 5 shows the fitness development of such an evolution experiment.
The genotypes of the first generations were initialized with a (weak) Gaussian dis-
tribution (σ = 0.01) around m = 0.0. Only the synaptic weights of the two neuron
network were chosen in a way, that the two neurons had already oscillating dynamics,
which could significantly speed up the evolution progress. The chosen parameters were:
ω11 = 1.1, ω12 = 0.7, ω21 = −0.7 and ω22 = 1.1, which corresponds to a oscillating
frequency of approx. 8 periods per 100 net-update steps. The net-update frequency was
set to 10Hz (10 updates per simulated second), hence the initial overall step frequency
was 0.8Hz.

5 Motion Transfer to Real Robot

Subsequently to the simulated evolutions, we transfered and tested several of the
evolved motions patterns on the real robot. In general, the real robot was capable to
reproduce all motions with a similar visual motion phenotype - as long as the robot
acts free and does not touch the floor. Actually, none of the transfered motions could
reproduce a robust walking motion. All walking motions need manual stabilization to
avoid a fall down of the robot (see Fig. 7).
We identified two major issues that raise serious gaps between simulation and real world
behavior. One refers to the considerable gears tolerances. Due to these (currently not
simulated) tolerances, the actual trajectory of a joint crucially diverges from the con-
trolled reference trajectory. As a result, whole-body motions are not reproduced with
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Fig. 5. Fitness development of an exemplary evolution experiment using the neural oscillator
approach.

Fig. 6. Evolution of Walking Pattern: Example of an evolved walking pattern applying the neural
oscillator approach. Pictures illustrate the start of walking and first steps. The displayed motion
reaches a walking speed of about 0.45m/s, which corresponds to a human walking speed of
approx. 7km/h.

the required accuracy. To exemplify the problem: The present bodywork of the Bioloid
robot does not even allow for standing on one foot due to the joint tolerances.
The other issue refers to the complicated motion characteristics of the servo motors.
The simplified motion model of a servo motor does not sufficiently match the real servo
motor behavior. This again results in significant differences between the actual whole-
body movement and the desired one.

6 Conclusion and Outlook

Physical simulation is an effective and practical method, to study and explore motion
generation techniques of complex biped robots. We presented a neural net controller,
that could generate several robust biped walking motions for the simulated robot. The
parameters of the neural net structure were identified by processing artificial evolutions
within the simulation environment. Finally the simulated robot could walk with rela-
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Fig. 7. Transfer of motion pattern to hardware: The ’grounded’ real robot shows similar behav-
ior compared to its simulated counterpart, but still needs manual support for walking.

tively high walking speeds of up to 0.51m/s, which corresponds to a human walking
speed of about 8km/h. Interestingly while identifying the motor coupling weights, the
evolution slightly modified the frequency of the neural oscillator from initially 0.8Hz
to 0.75Hz.
In laboratory experiments, several evolved motions were then transfered to the real
robot. However, due to discrepancies between simulated and real world behavior, none
of these transfered motions could actually generate a robust biped walking pattern on
the real robot. Nevertheless, this paper outlines how simulation may enhance real robot
motions. Generally, the presented approach may be applied to any biped robot with
trajectory driven joints. In particular it can be applied to the new simulator of the 3D-
Soccer-Simulation-League, that employs a physical model of the Fujistu HOAP-2 hu-
manoid robot.
The presented work comprises of just the first step, involved in using simulation to
explore and optimize different controller models of biped robots. Several points could
further expand on the completed work: For the first instance, we are currently engaged
in enhancing the simulation in order to reduce the gap between real and simulated be-
havior. Primarily, this includes developing an enhanced servo motor joint model which
describes all relevant characteristics of the applied AX-12 servos.
For the second instance we are studying the use of sensor feedback. At present, the
implemented walking controller does not incorporate any sensory information. In gen-
erating a robust biped motion, the system has to be sensitive to external environmental
influences, such as obstacles or various impacts, and must be able to react appropriately.
This issue includes the exploration of the appropriate sensors (e.g. touch or accelera-
tion sensors) as well as how sensor information is incorporated into the generation of
motion. The synaptic architecture of the presented controller allows for several sensor
coupling techniques. In conjunction with evolutionary algorithms the physical simula-
tion enables exploring appropriate coupling structures as well as alternative neural net
architectures. Regarding this point, first successful sensor coupling experiments were
accomplished which we will present in a forthcoming paper.
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