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Abstract. In this paper, we develop a featureless visual navigation al-
gorithm for the autonomous robot mounting a spherical imaging system.
The spherical image is the normalised image for omnidirectional images.
Differences of the depth from the camera to the objects yield the dis-
parity on the image. Using the disparity of optical flow vectors on the
spherical image, we construct a method to compute the direction for
navigation. For the computation of the optical flow vectors, we develop
the Horn-Schunck method on the spherical images.

1 Introduction

In this paper, we develop a visual navigation method for the autonomous robot
using optical flow on the spherical image. The spherical image is the normalised
image for omnidirectional images. The spherical image expression of the omnidi-
rectional images provides the imaging-system-free expression of omnidirectional
images. The view from a compound eye of insects and birds yield a spherical
image. Animals which observe spherical images decide the navigation direction
from a sequence of spherical images. Especially, the compound-eye of insects
detects moving objects in the environment and egomotion from optical flow.
Therefore, we construct an algorithm to compute the free space and the navi-
gation direction from the sequence of optical flow fields of the spherical images.
The use of optical flow fields allows the robot to navigate without any features
and landmarks in the workspace [17–19].

In a real environment, the payload of a mobile robot, for example, power
supply, capacity of input devices and computing power, is restricted. Therefore,
mobile robots are required to have simple mechanisms and devices [11, 17]. The
vision sensors provide low-cost devices that is easily mounted on mobile robots.
As same as the pinhole camera system, geometrical features such as lines and
planes in the environment are fundamental cues to the configuration of obsta-
cles in the three-dimensional space. If we adopt these traditional strategies, the
robot is required to detect the free space as the dual of the space occupied by
obstacles. Furthermore, if the map of workspace is used for the navigation, the
robot is required to prepare geometrical transformation method to transform
the omnidirectional view to the map. These two methodologies require special
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memories to the robot for the visual navigation. However, the method which uses
optical flow computed from images captured by a robot-mounted imaging sys-
tem is suitable for the small payload robot, since the optical-flow-based method
provides a featureless algorithm for the visual navigation [17–19].

Omnidirectional vision system allows the robot to observe the back view in
which the robot has safely navigated without colliding to the obstacles, that is,
the back view in the omnidirectional image captures the region which was a free
space in the past on the path of the robot. This property of the omnidirectional
view captured by the camera mounted on the robot allows the robot to use back
views as features for the free space detection in the front view. Therefore, using
back view of the omnidirectional images, it is possible to reduce the memory
capacity for the visual navigation. Furthermore, using the norm of the optical
flow vectors on the sphere, we define the potential to control the navigation
direction. Our method proposed in this paper uses the back view captured by
an omnidirectional vision system [5, 20] as a temporal model for the featureless
visual navigation.

2 Related Works

The omnidirectional vision system is widely used in surveillance and robot navi-
gation [14, 8, 22]. Using the wide view of the omnidirectional imaging system, in
the surveillance and the robot navigation, the moving objects in the wide area
and the landmarks in the wide area are detected for inspection and robot lo-
calisation, respectively. For the robot navigation, omnidirectional or panoramic
views allow us to compute simply the position of the robot using the several land-
marks in the omnidirections detected simultaneously by a single camera. This
geometrical advantage is the most important property of the omnidirectional
imaging system mounted on the autonomous robot.

For the robot navigation in an environment without any landmarks, such as
a new environment without any configuration maps for the robot, the detection
of the free space and free directions, in which robot can move without any
collision to the obstacles, is a fundamental task. Ohnishi and Imiya [17], Sobey
[18], Santos-Victor [19] and Braillon et al [3] developed an algorithm for the
free space detection using the sequence optical flow fields computed from images
captured by a pinhole camera system mounted on the mobile robot, since the
autonomous robot with the vision system automatically detects a sequence of
images using the vision system mounted on the robot.

Navigation using the focus of expansion (FOE) and the focus of conversion
(FOC) [13, 15] is a simple method to decide the direction of the egomotion of
the robot, since the vector from the FOC to the FOE coincides the direction of
the egomotion [7, 15]. Therefore, the detection of these two focus points is an
essential task for the visual navigation using optical flow on the spherical images.

Using a vision system inspired by insects, navigation algorithms for the au-
tonomous robot are proposed [6, 7, 10, 18, 21]. The insect-inspired vision for robot
control [21, 23] uses simple information observed by the vision system mounted
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Fig. 1. Insect-inspired range navigation. (a)-(c) Insect inspired range potential. An
insect understands the range data in the eye-centred coordinates using the optical flow
field observed while it is flying around the environment. This range data observed
by the moving camera (eye) yields the range-based potential field around the insect
for navigation to the local destination. (a) Motion and optical flow. (b) Range data
in the eye-centred coordinate. (c) The range-based potential for control to the local
destination. In these figures, ẋ, θ̇, and R are the velocity of the insect, the angular
velocity of objects, and the distance to the object, respectively. Then, the relationship
θ̇ = ẋ sin θ

R are satisfied.

on the robot. Optical flow is a feature computed from a sequence of temporal
images. A sequence of temporal images are automatically captured by a moving
camera, such as an imaging system mounted on the autonomous mobile robot.
This navigation method uses the vector from the FOC to the FOD as the visual
compass.

Autonomous vehicles use optical flow field as a fundamental cue for the navi-
gation. Sobey [18] introduced a control strategy for robot navigation using optical
flow and the potential field. Considering a camera moving along its optical axis
with a velocity ẋ, the angular velocity of objects across the image plane of a
moving camera can be expressed as θ̇ = ẋ sin θ

R , where θ is the angular position
of an object on the image plane with respect to the direction of motion, θ̇ is the
angular velocity of the object image, and R is the distance to the object. Sobey
used the relationship between optical flow and range, which is possibly used by
insects for the detection of obstacles in the space for motion control, as shown
in Figs. 1(a)-(c). This range in the space detected by the optical flow observed
by the camera is used for the generation of the potential, which is used for the
computation of the control force to avoid collision with obstacles. Furthermore,
Sobey used low-resolution images to overcome the inaccuracy of range detection
from optical flow. The view from the eyes of flying birds and the compound eyes
of the insects is a spherical image, which is a standard image for images captured
by the omnidirectional vision system.

To achieve programs in refs. [18] and [23] using an omnidirectional vision
system, we are required to compute optical flow from the sequence omnidirec-
tional images [5, 20]. Therefore, in this paper, we propose an accurate method to
compute optical flow for the spherical images captured by a catadioptric omni-
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Fig. 2. Geometry of the catadioptric camera system and optical flow on the spherical
camera. (a)The robot mounting a catadioptric omnidirectional system moves on the
ground floor. The optical axis of the camera system is perpendicular to the ground
floor. The robot moves as the combination of the rotation around the gravity axis of
the robot and the translation. (b)Setting that the camera centre to be at the centre of
the coordinate system, the spherical camera transforms the point X = (X, Y, Z)! ∈ R3

to the point x = X
|X | on the sphere.

directional imaging system. as the normalised images. In this paper, using depth
information from optical-flow of translation motion on the spherical image, we
develop an algorithm to compute the navigation direction. In ref. [17], three suc-
cessive images are used for the featureless visual navigation. In the algorithm a
temporal model is generated from the first pair of images from three images.

3 Optical Flow Computation on the Sphere

In this paper, we assume that the spherical images are generated from images
captured by the catadioptric camera systems. Setting that the camera centre to
be at the centre of the coordinate system, the spherical camera transforms the
point X = (X, Y, Z)! ∈ R3 to the point x = X

|X| on the sphere.
Figure 2 shows geometry of the catadioptric camera system mounted on

the mobile robot. The robot moves on the ground floor. The optical axis of
the camera system is perpendicular to the ground floor. The robot moves as
the combination of the rotation around the gravity axis of the robot and the
translation. Setting that the camera centre to be at the centre of the coordinate
system, the spherical camera transforms the point X = (X, Y, Z)! ∈ R3 to the
point x = X

|X| on the sphere. On the spherical camera, we use the spherical
coordinate (sin θ cos φ, sin θ sinφ, cos θ)!.

Setting x = (x, y, z)! to be a point on a space R3, for 0 ≤ θ ≤ π and
0 ≤ φ < 2π, a point on the unit sphere is parameterised as x = cos φ sin θ,
y = sinφ sin θ, and z = cos θ. Therefore, a function on the unit sphere S2 is
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parameterised as I(θ,φ). The vector expression of the spatial gradient on the

unit sphere is ∇S =
(

∂
∂θ , 1

sin θ
∂

∂φ

)!
.

For temporal image f(θ, φ, t) on the unit sphere S2, the total derivative [5]
is

d

dt
f =

∂

∂θ
f +

1
sin θ

∂

∂φ
f +

∂

∂t
f. (1)

The solution u = (θ̇, φ̇)! = (p(θ,φ), q(θ,φ))! = (p, q)! of the equation

∇Sf!u + ∂tf = 0, (2)

for ∂tf = ∂f
∂t , is optical flow of image I on the unit surface S2. The computation

of optical flow from eq. (2) is an ill-posed problem. The Horn-Schunck criterion
for the computation of optical flow [12] on the unit sphere is expressed as the
minimisation of the functional

J(p, q) =
∫

S2

{
|∇Sf!u + ∂tf |2 + α(||∇Sp||22 + ||∇Sq||22)

}
sin θdθdφ, (3)

where L2 norm on the unit sphere is defined by

||f(θ,φ)||22 =
∫

S2
|f(θ, φ)|2 sin θdθdφ. (4)

The Euler-Lagrange equation of this minimisation problem is

∇!S∇Su =
1
α

(∇sf
!u + ∂tf)∇Sf (5)

and the associated diffusion equation is

∂

∂t
u = ∇!S∇Su− 1

α
(∇Sf!u + ∂tf)∇Sf. (6)

For numerical computation of the equation, we use semi-explicit discritization

ul+1
mn − ul

mn

∆τ
= ∇!S∇Sun

mn −
1
α

((∇Sf)!mnul+1
mn + (∂tfmn)(∇Sf)mn (7)

for sampled optical flow field uij = (pij , qij)!, pmn = p(hm, hn) such that
0 < pij < π, and qmn = v(hm, hn), where h is the unit sample interval, and ∆τ
is a small positive value.

Equation (7) derives the iteration equation

(I +
∆τ

α
Smn)u(l+1)

mn = u(l)
mn + lSu(l)

m−i n−j +
1
κ

cmn, l ≥ 0, (8)

where
Smn = (∇Sf)mn(∇sf)!mn, cmn = (∂tf)mn(∇sf)mn. (9)
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Fig. 3. Disparity of Optical Flow Vectors (a) The translation of the robot causes the
translation optical-flow. The translation optical flow vectors are the tangent vectors to
the bundle of great circles which are the projection of the bundle of parallel lines in
the space. (b) The difference of depths of infinitesimal coplanar parallel vectors affects
to the length of optical-flow vectors.

for
(∇Sf)ij =

1
2

(
1 0
0 sin θi

)(
fi+1 j − fi−1 j

fi j+1 − fi j−1

)
(10)

and the discrete operation lS = ∇!s ∇s on the sphere

lSuij =
( 1

2 (pi+1 j + pi−1 j) + 1
2 sin2 θi

(pi j+1 + pi j+1)− (1 + 1
sin2 θi

)pij
1
2 (qi+1 j + qi−1 j) + 1

2 sin2 θi
(qi j+1 + qi j+1)− (1 + 1

sin2 θi
)qij

)
. (11)

4 Disparity of Optical Flow

In this paper, we assume that a robot with a system of catadioptric omnidi-
rectional imaging system moves on a flat ground floor with some obstacles. The
optical flow vectors on the unit sphere are projections of the infinitesimal vectors
on a collection of parallel lines to the sphere as shown in Fig. 4(a). Using this
geometrical property of the optical flow vectors, we derive geometric structure of
the optical flow on the sphere. For the computation of the geometrical structure
of the optical flow, we adopt the cylindrical coordinate system to express the
location of the point in the space as X = (R cos φ, R sin φ, Z)!. The point P in
the space is transformed to the point

x = (
R√

R2 + Z2
cos φ,

R√
R2 + Z2

sin φ,
Z√

R2 + Z2
)! (12)

on the spherical image. We assume that the motion of the robot is piecewise
line.

Points on the line X = De1+te2+Ze3, −∞ ≤ t ≤ ∞, where e1 = (1, 0, 0)!,
e2 = (0, 1, 0)! and e3 = (0, 0, 1)!, are expressed as

P = (D| tanφ| cos φ, D| tanφ| sin φ, Z)!, (13)
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using the cylinder coordinate. The image of the point P is

p =
1√

D2 tan2 φ + Z2
P . (14)

Setting the points P and P ′ = P +∆, where ∆ is an infinitesimal vector, to be
a pair of points in the space, the optical-flow vector on the spherical camera is

∆p

∆t
=

P ′

|P ′| −
P

|P | = p′ − p, (15)

where p and p′ are the images of P and P ′, respectively. Therefore, on the unit
sphere, the optical flow vector of the translation is expressed in the cylinder
coordinate as

v(r,φ, z) =

√
D tan2 φ

D2 tanφ + Z2

(
m

Z cot φ

)
, m =

{
n⊥, if |φ| ≤ 1

2π,
−n⊥, otherwise. (16)

where n = (cos φ, sin φ)! and n⊥ = (− sin φ, cos φ)!.
Vectors

P = (D| tanφ| cos φ, D| tanφ| sin φ, Z)!, P ′ = P + ∆ (17)

and

Q =
(

Z − s

Z
D| tanφ| cos φ,

Z − s

Z
D| tanφ| sin φ, (Z − s)

)!
, Q′ = Q + ∆,

(18)
for |D| > s > 0 and ∆ = ∆e2 where e2 = (0, 1, 0)!, satisfy the relation
|Q′−Q| = |P ′−P | and vectors (Q′−Q) and (P ′−P ) are coplanar. Therefore,
setting p′, p, q′, and q to be the images of P ′, P , Q, and Q′ on the unit sphere,
respectively, we have the relation

∣∣∣∣
p′ − p

∆t

∣∣∣∣ =
∣∣∣∣
∆p

∆t

∣∣∣∣ <

∣∣∣∣
∆q

∆t

∣∣∣∣ =
∣∣∣∣
q′ − q

∆t

∣∣∣∣ . (19)

Equation (19) shows that the depth affects to the length of optical-flow vectors.
This relation implies that we can discriminate optical-flow vectors on obstacle-
region and the ground floor using the difference of the optical flow, if we have
the optical-flow vectors on the ground floor as shown in Fig. 4(b). We call the
relation of eq. (19) the spherical flow disparity.

5 Computation of the Navigation Direction using Visual
Compass

Equation (16) implies the relation

v(r,φ + π, z) = v(r,φ, z), (20)
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since tan2(φ + π) = tan2 φ. Furthermore, equation (20) implies that the transla-
tion optical-flow vectors on the sphere satisfy the relation

|u(θ, φ)| = |u(θ, φ + π)| = |u(θ,−φ)| = |u(θ,−φ + π)|, (21)

if there exist no obstacles on the ground floor. Therefore, the norm of the optical
flow |u(θ, φ)| acts the potential to describe the obstacle area. Using the spherical
disparity of optical flow, we define functions

dF (φ, a) = |u(θ0 + a,φ)|−| u(θ0 + a,π − φ)|, (22)
dB(φ, a) = |u(θ0 + a,φ)|−| u(θ0 + a, 2π − φ)|, (23)

for π
2 ≤ θ < π and 0 ≤ φ ≤ π, where the constant θ0 > 0 is the torrent measure

to avoid colliding to the obstacle and 0 ≤ a ≤ ε( ρ0.
The function dF detects the disparity of the lengths of optical flow vectors

in the left and right of the front view. Furthermore, the function dB detects the
disparity of the lengths of optical flow vectors in the front view and back view.
Therefore, these functions act as the gradients of the potential, from a side to
the other side, and from the from to the back, respectively.

Form the potential and the gradients derived from the spherical optical flow
fields, we have the following assertions for functions dF (φ, a) and dB(φ, a) .

– If there is no obstacles on the ground floor, eq. (21) is satisfied and dF (φ, a) =
0.

– If dF (φ, a) = 0 and dB(φ, a) = 0, there exit no obstacles in front of the robot.
– If dF (φ, 0) = 0 and dB(φ, a) )= 0, there exists the dead lock area in front of

the robot.
– If dF (θ, a) )= 0 and φ∗ = arg max0≤θπ dF (φ, 0), there exists an obstacle area

in the direction d = (cos φ∗, sin φ∗, 0)!.

From these assertions, we have the next control rules for the navigation direction.

If dF (φ, a) = 0, then move forward.
If dF (φ, 0) = 0 and dB(φ, a) )= 0, turn to the backward.
If dF (θ, a) )= 0 and φ∗ = arg max0≤θπ dF (φ, 0), then turn to the direction

d⊥ =
{

(cos(φ∗ + π
2 ), sin(φ∗ + π

2 ), 0)! if 0 < φ∗ < π
2 ,

(cos(φ∗ − π
2 ), sin(φ∗ − π

2 ), 0)! if π
2 < φ∗ < π.

The third rule turns the robot so that the obstacles lies in the side of the robot.

6 Numerical Results

In Fig. 6, the left, middle, and right show the results without obstacles, with
obstacles, with a wall in from of the robot, respectively. From top to down, the
spatial configuration, the panoramic optical flow, the norm of flow vectors on
the equator of the spherical camera are shown, the gradient of the norm-based
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potential, and the navigation direction are shown. These results shows that our
algorithm detects the disparities of the optical flow on the spherical retina.

Figure 6 shows a sequence of panoramic views in a real man-made environ-
ment and their optical flow fields. These views are panoramic views yielded from
a sequence of images captured by a catdioptric imaging system mounted on a
mobile robot. The optical flow fields are computed as the optical flow field on
the spherical retina and transformed to the panoramic expression. The optical
flow fields show the FOE and FOC. Furthermore, in the left-hand-side of the
FOE, the optical flow vectors on the obstacles are detected. Furthermore, the
lengths of flow vectors on the ground floor are short. This geometrical property
means that it is possible separate the free space for the navigation and obstacle
regions from the flow field on the spherical retina, and it is possible to decide
the navigation directions using the free space and obstacle region distribution
on the spherical retina.

7 Conclusions

In this paper, we developed a visual navigation method for the robot mounting
a spherical imaging system. The optical flow field on the spherical image yields
monocular disparity as the difference of the optical flow vectors on the antipodal
point on the equator assuming that the wheel-driven robot moves on a flat
ground floor. This pair of antipodal vectors is used to compute the navigation
direction.

Optical flow establishes the correspondences of points for the short-base
stereo image pairs. This property derives the same geometric relations with
binocular disparity. This monocular disparity on the spherical retina detects
the geometrical configuration of the obstacles in the workspace. Therefore, this
monocular disparity on the spherical retina enables the robot to navigate without
any landmarks in the space.

In refs. [19, 17], optical-flow-based featureless and uncalibarated robot nav-
igation strategies methods are proposed. In the former, a model-based method
which uses the model optical flow field for the separation of obstacles on the
ground floor is proposed. In the latter, as an extension of the first method, a
featureless method is proposed. The later method used the optical flow of the
one frame past pair images as the temporal model. Since the ominidirectional
imaging systems capture both front and back views. This back view acts as the
temporal model for the navigation for the panoramic-view-based visual naviga-
tion of the robot. Therefore, our spherical-image version requires no temporal
images which are required in the method of ref.[17].

References

1. Baker, S. Nayer, S., A theory of single-viewpoint catadioptric image formation,
International Journal of Computer Vision, 35, 175-196, 1999.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 307-318



2. Barreto, J., Daniilidis, K., Unifying image plane liftings for central catadioptric
and dioptric cameras, Proceedings of Omnivis04, 151-162, 2004.
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Fig. 4. Spherical optical flow. Left, middle, and right show the results without obsta-
cles, with obstacles, and with a wall in front, respectively. From the top to the bottom:
The configurations of the work spaces. The panoramic views of the optical flow fields
computed on the spherical retina detect the obstacles as disparities of optical flow
vectors. The length of the norm of flow vectors for θ = 90, 120, 135, 150 degrees are
plotted. The gradient of the potential induced by the norm of the optical flow vectors
on θ = 120 degree.The navigation direction computed using disparities of the optical
flow vectors.
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Fig. 5. Experiment for a real image sequence captured in a man-made environment
From the top to the bottom: The panoramic views of a pair of successive images from
a sequence of panoramic views. The static obstacles (Boxes) and a dynamic obstacle
(A man) exist in the views. The panoramic views of the optical flow fields computed
on the spherical retina detect the obstacles as disparities of optical flow vectors. The
gradient of the potential induced by the norm of the optical flow vectors on θ = 120
degree. The navigation direction computed using disparities of the optical flow vectors.

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 307-318


