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eAbstra
t. In this paper we 
onsider the problem of 
ontrolling a serialor a parallel robot from the proje
tion of 3D straight lines in the imageplane of 
entral 
atadioptri
 systems. A generi
 
entral 
atadioptri
 in-tera
tion matrix for the proje
tion of 3D straight lines is derived using anunifying imaging model valid for an entire 
lass of 
ameras. This result isexploited to design an image-based 
ontrol law whi
h allows us to 
ontrolthe six degree of freedom of a roboti
 arm. Then the proje
ted lines areexploited to design a 
ontrol s
heme for a parallel robot by observingthe platform's legs. These two appli
ations of omnidire
tional vision aresubstantiated by experimental results with a six d.o.f eye-to-hand systemand a Gough-Steward platform.1 Introdu
tionMany appli
ations in vision-based roboti
s, su
h as mobile robot lo
alisation [1℄and navigation [2℄, 
an bene�t from a panorami
 �eld of view provided by omni-dire
tional 
ameras. In the literature, there have been several methods proposedfor in
reasing the �eld of view of 
ameras systems [3℄. One e�e
tive way is to
ombine mirrors with 
onventional imaging system. The obtained sensors arereferred to as 
atadioptri
 imaging systems. The resulting imaging systems havebeen termed 
entral 
atadioptri
 when a single proje
tion 
enter des
ribes theworld-image mapping. From a theoreti
al and pra
ti
al point of view, a single
enter of proje
tion is a desirable property for an imaging system [4℄. Baker andNayar [4℄ derive the entire 
lass of 
atadioptri
 systems with a single viewpoint.Vision-based 
ontrol s
hemes are �exible and e�e
tive methods to 
ontrolrobot motions from visual data [5℄. Clearly, these appli
ations 
an bene�t fromsu
h sensors sin
e they naturally over
ome the visibility 
onstraint. As an ex-ample, let us 
onsider the problem of 
ontrolling the Gough-Stewart platformshown in Figure 1 using a vision sensor. At this aim, [6, 7℄ propose respe
tivelyimage-based and position-based visual-servo s
hemes by dire
tly observing theplatform legs with a 
lassi
al perspe
tive 
amera. Unfortunately, to position ad-equately the 
amera to observe simultaneously all the platform legs is a 
omplextask. In [6, 7℄, the 
amera was positioned in front of the platform (see Fig 1.(a)).In this 
ase, the legs in the front of the platform are 
loser to the 
amera thanthe ones in the ba
k. As a 
onsequen
e, the extra
tion of the image features
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(a) (b)
(
) (d)Fig. 1. A Gough-Stewart platform observed by a 
lassi
al perspe
tive 
amera: (a)
amera position with respe
t to the platform, (b) image of the legs. A Gough-Stewartplatform observed by an omnidire
tional 
amera: (
) 
amera position with respe
t tothe platform, (d) image of the legslying on legs in the ba
k will be less robust. Furthermore, large parts of the legsin the ba
k are o

luded by the front legs (see Fig 1.(b)) and full o

lusions 
anhappen. This is an important drawba
k sin
e the vision based 
ontrol assumesthat all legs 
an be observed during the servoing task. A �rst solution to addressthis issue 
ould be to employ a system made of multiple 
ameras. However, inthis 
ase, data provided by ea
h 
amera must be syn
hronized and the multi-
amera system 
alibrated. A se
ond and simpler solution, whose �rst results werepresented in [8℄, 
onsists in positioning a single omnidire
tional 
amera at theplatform 
enter (see Figure 1.(
)). In su
h a way, all the legs 
an be simultane-ously observed in a panorami
 view and potential o

lusions 
an not o

ur (seeFigure 1.(d)). Clearly, visual servoing of the Gough-Stewart platform will thusbene�t from the enhan
ed �eld of view provided by an omnidire
tional 
amera.More generally, visual servoing s
hemes make assumptions on the link betweenthe initial, 
urrent and desired images sin
e they require 
orresponden
es be-tween the features extra
ted from the initial image with those obtained fromthe desired one. These measures are then tra
ked during the 
amera (and/or theobje
t) motion. If one of these steps fails, then the task 
an not be a
hieved.
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Fig. 2. Proje
tion of a 
ylindri
al leg onto the image planeTypi
al 
ases of failure arise when mat
hing joint image features is impossible(for example when no joint feature belongs to initial and desired images) or whensome parts of the visual features get out of the �eld of view during the servoing.The use of omnidire
tional vision should thus signi�
antly redu
e the 
ase offailure. However, omnidire
tional images exhibit supplementary di�
ulties 
om-pared to 
onventional perspe
tive image (for example the proje
tion of a line isno more a line but a 
oni
 
urve). This paper is mainly 
on
erned with the useof proje
ted lines extra
ted from 
entral 
atadioptri
 images as input to a visualservoing 
ontrol loop. Two appli
ations are des
ribed. The �rst one 
on
erns the
ontrol of serial robots while the se
ond one 
on
erns the 
ontrol of a parallelrobot (namely a Gough-Stewart platform).2 Modeling2.1 Camera modelCentral imaging systems 
an be modeled using two 
onse
utive proje
tions:spheri
al proje
tion then perspe
tive one. This geometri
 formulation 
alled uni-�ed model has been proposed by Geyer and Daniilidis in [9℄ and has been inten-sively used by the vision and roboti
s 
ommunity (stru
ture from motion, 
ali-bration, visual servoing, ...). Let us outline the essential of this model. Considera virtual unitary sphere 
entered in M as shown in Fig. 2 and the perspe
tive
amera 
entered in C. The frames atta
hed to the sphere and the perspe
tive
amera are related by a simple translation of −ξ along the Z axis. Let X be a 3Dpoint with 
oordinates X = [X Y Z]⊤ in Fm. The world point X is proje
ted in
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the image plane into the point of homogeneous 
oordinates p = Km, where Kis a 3 × 3 upper triangular matrix 
ontaining the 
onventional 
amera intrinsi
parameters 
oupled with mirror intrinsi
 parameters and
m = [x y 1]⊤ =

[
X

Z + ξ‖X‖

Y

Z + ξ‖X‖
1

]⊤ (1)The matrix K and the parameter ξ 
an be obtained after 
alibration using forexamples the methods proposed in [10℄. In the sequel, the 
entral imaging systemis 
onsidered 
alibrated. In this 
ase, the inverse proje
tion onto the unit sphere
Xm 
an be obtained as

Xm = λ

[
x y 1 −

ξ

λ

]⊤ (2)where λ =
ξ +

√
1 + (1 − ξ2)(x2 + y2)

x2 + y2 + 1
.2.2 Line and 
ylindri
al leg observationTo 
ontrol a serial and a parallel robot, proje
ted lines extra
ted from 
entral
atadioptri
 images will be exploited as input to a visual servoing 
ontrol loop.Let us �rst illustrate the proje
tion model of lines in the image of a 
entralimaging system using a leg of the Gough-Stewart Platform. A Gough-StewartPlatform has six 
ylindri
al legs of varying length qj (j = 1 . . . 6) atta
hed tothe base by spheri
al joints lo
ated at points Aj , and to the moving platformby spheri
al joints lo
ated at points Bj (see Figure 1). The image of the jthleg is de�ned by the proje
tion onto the image plane of two lines (Lj

1 and Lj
2)as depi
ted on Figure 2. Let us note ni

j = [ni
jx ni

jx ni
jx]⊤ (i = 1, 2) the unitaryve
tor orthogonal to the interpretation plane πi

j de�ned by the line Li
j and theprin
ipal proje
tion 
enter. The points Xm lying on the interse
tion between πi

jand the sphere are then de�ned by:
{

‖Xm‖ = 1
ni⊤

j Xm = 0
(3)Using the spheri
al 
oordinates given by eq. (2), it 
an be shown that 3-D pointslying on Li

j are mapped onto points m lying on a 
oni
 
urve Γ i
j , whi
h 
an bewritten:

α0x
2 + α1y

2 + 2α2xy + 2α3x + 2α4y + α5 = 0 (4)with α0 = ni2
jx − ξ2(1 − ni2

jy), α1 = ni2
jy − ξ2(1 − ni2

jx), α2 = ni
jxni

jy(1 − ξ2),
α3 = ni

jxni
jz , α4 = ni

jyni
jz and α5 = ni2

jz . Let us note that (4) is de�ned up toa s
ale fa
tor. If α5 6= 0, the number of parameters, 
an be redu
ed and (4) 
anbe written as:
β0x

2 + β1y
2 + 2β2xy + 2β3x + 2β4y + 1 = 0 (5)
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with βk = αk

α5

. From the parameters βk, it is possible to determine the perpen-di
ular ve
tor to the interpretation plane as follows:
ni

jz = (β2
3 + β2

4 + 1)−
1

2 = b; ni
jx = β3b; ni

jy = β4b (6)The 
ase where α5 = 0 
orresponds to a degenerate 
on�guration where the opti-
al axis lies on the interpretation plane. The orientation of the jth leg, expressedin the 
amera frame, 
an straightforwardly be 
omputed from the related normalve
tors:
uj =

n1
j × n2

j

‖n1
j × n2

j‖
(7)In the sequel, we will see how to exploit line proje
tions to design vision-based
ontrol s
heme.3 ControlIn few words, let us �rst re
all that the time variation ṡ of the visual features

s = [s1
⊤, s2

⊤, · · · sn
⊤]⊤ (where si are m-dimensional ve
tors 
ontaining the vi-sual observations at the 
urrent 
on�gurations of the roboti
 system) 
an beexpressed linearly with respe
t to the relative 
amera-obje
t kinemati
s s
rew τ(
ontaining the instantaneous angular velo
ity ω and the instantaneous linearvelo
ity v of the origin of Fm expressed in the mirror frame) by:

ṡ = Lτ (8)where L is the intera
tion matrix related to s. In order to 
ontrol the movementsof a robot from visual features, one de�nes a task fun
tion to be regulated to 0as [11℄:
e = L̂+(s− s∗) (9)where L̂+ is the pseudo-inverse of a 
hosen model of the (n.m) × 6 intera
tionmatrix L and s∗ the desired value of s. A very simple 
ontrol law 
an then bedesigned by trying to ensure a de
oupled exponential de
ay of the task fun
tion[12, 5℄:

τ = −λe = −λL̂+(s− s∗). (10)In order to 
ompute the 
ontrol law (10), it is ne
essary to provide an approxi-mated intera
tion matrix L̂. In the sequel, we will �rst derive its analiti
al formwhen the 
amera (in eye-in-hand or hand-in-eye 
on�guration) observe a target
omposed of a set of 3D lines and then we will 
onsider the 
ase of a 
ameraobserving the legs of a parralel robot.3.1 Visual servoing of a serial robotLet us �rst assume that the 
amera observe a set of lines Lk with Plü
ker 
oor-dinates [
nk, uk

]⊤ in the mirror frame and de�ne the observation ve
tor sk fora proje
ted line (
oni
) in the 
entral 
atadioptri
 image as:
sk =

[
βk3 βk4

]⊤ (11)
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and the observation ve
tor for n 
oni
s as s = [s⊤1 · · · s⊤n ]⊤. For 
onvenien
e, inthis se
tion, we 
onsider only one line and the subs
ript k will be omitted. Sin
eparameters βi only depend on n, we 
an write equation (8) as:
ṡ = JsnLnτ (12)where:� Ln is the intera
tion matrix related to the normal ve
tor n = [nx, ny, nz]

⊤to the interpretation plane for line Li expressed in the mirror frame (su
hthat ṅ = Lnτ ), and� Jsn = ∂s

∂n
.The intera
tion matrix related to the observation ve
tor s is L = JsnLn. It 
anbe shown that ([13, 14℄):̇

n = Lnτ =
v⊤n

h
(u × n) − ω × nwhere h is the orthogonal distan
e from Lk to the origin of the mirror frame.A

ording to the previous equation, the intera
tion between the normal ve
torand the sensor motion is thus:

Ln =
(

1

h
(u × n)n⊤ [n]×

)

=
(

1

h
[u]×nn⊤ [n]×

)

=
(
UhN. N×

)
(13)where N× = [n]× denotes the antisymmetri
 matrix asso
iated to the ve
tor

n, N. = nnT , and Uh = 1

h
[u]×. Note that the matri
es N× and N. 
an be
omputed using the visual features s (refer to Equation (6)):

N× = b




0 −1 β4

1 0 −β3

−β4 β3 0





N. = b2




β2

3 β3β4 β3

β3β4 β2
4 β4

β3 β4 1





. (14)The Ja
obian Jsn is obtained by 
omputing the partial derivative of (11) withrespe
t to n and using (6):
Jsn =

1

b

(
1 0 −β3

0 1 −β4

)
. (15)By 
ombining the equations (13) and (15) and a

ording to relation (12), theintera
tion matrix L is :

L =
(

1

h b
A B

) (16)
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where
A =

(
uyβ3 uyβ4 uy

−uxβ3 −uxβ4 −ux

) (17)and
B =

(
β3β4 −1 − β2

3 β4

1 + β2
4 −β3β4 −β3

) (18)3.2 Visual servoing of a parallel robot: the Gough-Steward platformLet us now 
onsider that the omnidire
tional 
amera observe the legs of theGough-Stewart platform. To servo the platform, two kinds of visual features (legdire
tions and leg edges) will be exploited.Visual servoing of leg dire
tions. To servo the leg dire
tions, we de�ne sas the geodesi
 error between the 
urrent leg orientation uj and the desired one
u∗

j :
suj = uj × u∗

j , j = 1..6 (19)This means that: su
∗

j = 03×1, j = 1..6. Following [7℄ the intera
tion matrixasso
iated with a leg orientation uj is given by:
u̇j = Mj τ (20)

Mj = −
1

qj

h

I3 − uju
⊤

j

i

ˆ

I3 −[Aj + qjuj ]×
˜ (21)By 
ombining (20) and (19), the time derivative of suj 
an be written:

ṡuj
= Luj

τ (22)
Luj

= −[u∗

j ]×Mj (23)Now, the standard method applies: we sta
k ea
h individual errors suj
in asingle over-
onstrained ve
tor su as well as ea
h asso
iated individual intera
tionmatrix Luj

into a 
ompound one Lu and impose a �rst-order 
onvergen
e to su.This yields the following pseudo-
ontrol ve
tor τ

τ = −λL̂+
u su (24)Visual servoing of the interpretation planes. Another possible set of visualfeatures to 
ontrol the Gough-Steward platform is 
omposed of the two edges ofea
h 
ylinder leg. Contrary to the perspe
tive 
ase where the leg edge proje
-tion is a line (and 
an be represented by a simple 
hange of 
oordinates of theinterpretation plane), the general 
ase requires to re
onstru
t the interpretationplanes in the frame related to the sphere (i.e. the sphere de�ned in the 
amerauni�ed model) from the image data, knowing the intrinsi
 parameters. More de-tails about the interpretation planes re
onstru
tion in the general 
ase is givenin [8℄. Formally the features related to the interpretation planes are de�ned by:

s
ni
j
= ni

j × ni∗
j , j = 1 ... 6, i = 1, 2 (25)
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Fig. 3. Experimental setup : eye-to-hand 
on�gurationThe derivative of a leg edge, expressed in the 
amera frame 
an be obtained asdes
ribed in [6℄:
ṅi

j = nJuMiτ (26)
nJu =

[
(uj × ni

j)A
⊤

j

Aj(uj × ni
j)

⊤
− I

]
ujn

i⊤
j (27)Consequently, by 
ombining (27) and (25), the time derivative of sni

j

an bewritten:

ṡni
j
= Lni

j
τ (28)

L
ni
j
= −[ni∗

j ]×
nJuMi (29)This yields the following pseudo-
ontrol ve
tor τ

τ = −λL̂n

+

sn (30)where sn = [sn1
1

⊤ sn2
1

⊤ . . . sn2
6

⊤]⊤.4 Experimental resultsIn this se
tion, we present experimental results of 
entral 
atadioptri
 visualservoing from lines for a 6 d.o.f robot manipulator and the parallel Gough-Stewart platform.4.1 Visual servoing of a 6 dof serial robotThe proposed 
ontrol law has been validated on a six d.o.f eye-to-hand system(refer to Figure 3). In this 
on�guration, the intera
tion matrix has to take into
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(a) (b)Fig. 4. 2D Visual servoing from lines: (a) initial image and (b) desired image andtraje
tories of 
oni
s (for readability's sake, only traje
tories of two 
oni
s are drawn).
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(a) (b) (
)Fig. 5. Velo
ity and error ve
tors: (a) translational velo
ities [m/s℄, (b) rotationalvelo
ities [rad/s℄ and (
) image error s − s
∗ versus iteration number.a

ount the mapping from the 
amera frame onto the robot 
ontrol frame [15℄.If we denote this mapping by [Re, te], the eye-to-hand intera
tion matrix Le isrelated to the eye-in-hand one L by :

Le = L

[
Re [te]×Re

03 Re

] (31)where [te]× is the skew symmetri
 matrix asso
iated with translation ve
tor
te. The intera
tion matrix Le is used in the 
ontrol law (10). Sin
e we were notinterested in image pro
essing in this paper, the target is 
omposed of whitemarks (see Figure 3) from whi
h straight lines 
an be de�ned (see Figure 4(a)).The 
oordinates of these points (the 
enter of gravity of ea
h mark) are extra
tedand tra
ked using the VISP library [16℄. The omnidire
tional 
amera used isa paraboli
 mirror 
ombined with an orthographi
 lens (ξ = 1). The image
orresponding to the desired and initial 
on�gurations are given in Figures 4(a)and 4(b) respe
tively. The 
orresponding obje
t displa
ement is 
omposed of atranslation t = [−10 − 80 60]⊤ 
m and a rotation (expressed as a rotationalve
tor) θu = [0 0 100]⊤ dg. The error between the visual features (desired and
urrent) are plotted on Fig. 5(
) while the 
amera velo
ities are plotted on Fig.5(a)-(b). These results 
on�rm that the positioning task is 
orre
tly a
hieved.
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(a) (b)
(
) (d)Fig. 6. Experimental results: (a) initial 
on�guration, (b) desired 
on�guration, (
)initial image, (d) desired imageThe traje
tory of the 
oni
s in the image are plotted on 4(b) (for readability'ssake, only traje
tories of two 
oni
s are drawn).4.2 Visual servoing of the Gough-Steward platformIn the following experiments, we give an example of an omnidire
tional visual-servo of the Gough-Stewart platform (
ommer
ial DeltaLab Table de Stewartshown in Figure 6). The experimental robot has an analog joint position 
on-troller interfa
ed with Linux-RTAI. Joint velo
ity 
ontrol is emulated throughthis position 
ontroller with an approximate 20ms sampling period. The omni-dire
tional 
amera used is a paraboli
 mirror 
ombined with an orthographi
lens. It is approximately pla
ed at the base 
enter. The proje
tion of the legsin the image are almost radial. This property is used to dete
t the legs in theimage. A set of 
ir
les 
entered on the prin
ipal point with diameters rangingfrom a minimal value dmin to a maximal value dmax are �rst de�ned. Next, theimage is s
anned along ea
h 
ir
le providing a mono-dimensional signal whi
his then thresholded to obtain a binary signal. The peaks of the signal deriva-tive (obtained using a gradient �lter) provide then the image of the leg's edges.In theory, two 
ir
les are enough to determine ea
h leg's edges in the image. Inpra
ti
e, more than two image points of ea
h edge are required to obtain a robustestimation. For our experiments a set of 17 
ir
les (whi
h is a good 
ompromisebetween robustness and time) with dmin = 184 pixel and dmax = 370 pixel arede�ned. Finally, note that the proposed method is fully automati
 (no initial-
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ization by the user is required) and that less than 0.3ms are ne
essary to dete
tthe leg edges with a 
onventional labtop.For our experiments, the initial and desired 
on�gurations of the platformhave been taken as shown on Figures 6.(a) and 6.(b). The 
orresponding imagesare given respe
tively on 6.(
) and 6.(d). In a �rst experiment, the leg dire
tionswere used to 
ontrol the end-e�e
tor pose. Figure 7.(a) gives the behaviors of thefeature error squares s⊤
i

si. From this �gure, we note that these errors de
reaseto 0. In a se
ond experiment and for the same initial and desired robot 
on�gu-rations, the leg edges were used to 
ontrol the end-e�e
tor pose. The same s
alargain λ was used for the �rst and se
ond experiments. Figure 7.(b) shows thatthe system 
onverges. However, plot of the feature errors are 
learly smootherand less noisy than in Figure 7.(a). Furthermore, Figure 7(
) gives the plot ofthe variations of the leg orientation using leg orientation or leg edges as featuresin the 
ontrol law. From this �gure, it 
an be noti
ed that the variation of theorientation using leg edges (dashed plot) in the 
ontrol is smoother and less noisythan using leg orientations (
ontinuous plot).
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Fig. 7. (a) Experimental results using leg orientations (suj
): errors suj

s
⊤
uj

(unitless)with respe
t to time (expressed as iteration number),(b) Errors snj
s
⊤
nj

(unitless) usingthe leg edges (snj
) as visual features with respe
t to time, (
) Evolution of leg orien-tations during the 
ontrol (sum of norms of the errors Pj=6

j=1
‖suj

s
⊤
uj
‖) with respe
t totime: results using leg orientation (
ontrol law (24), dashed plot) , results using legedges (
ontrol law (30), 
ontinuous plot)5 Con
lusionWe have proposed two roboti
 appli
ations of omnidire
tional vision. More pre-
i
ely, we have addressed the problem of 
ontrolling a roboti
 system (paralleland serial) by in
orporating observations from a 
entral 
atadioptri
 
amera.We have validated the approa
h with a 6 d.o.f holonomi
 robot and a parallelGough-Steward platform. The proposed approa
hes 
an be used with all 
entral
ameras (in
luding 
onventional ones). More generally, the results presented inthis paper extend the results obtained in the 
lassi
al perspe
tive 
ase to thegeneral 
ase of the 
amera uni�ed model. In future work, the analyti
al robust-
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