
Two appliations of omnidiretional vision:visual-servo of serial and parallel robotsYouef Mezouar1 and Hiham Hadj Abdelkader2 and Omar tahri1
1 LASMEA, Aubiere F-63177, Frane

2 INRIA, 06902 Sophia Antipolis, FraneAbstrat. In this paper we onsider the problem of ontrolling a serialor a parallel robot from the projetion of 3D straight lines in the imageplane of entral atadioptri systems. A generi entral atadioptri in-teration matrix for the projetion of 3D straight lines is derived using anunifying imaging model valid for an entire lass of ameras. This result isexploited to design an image-based ontrol law whih allows us to ontrolthe six degree of freedom of a roboti arm. Then the projeted lines areexploited to design a ontrol sheme for a parallel robot by observingthe platform's legs. These two appliations of omnidiretional vision aresubstantiated by experimental results with a six d.o.f eye-to-hand systemand a Gough-Steward platform.1 IntrodutionMany appliations in vision-based robotis, suh as mobile robot loalisation [1℄and navigation [2℄, an bene�t from a panorami �eld of view provided by omni-diretional ameras. In the literature, there have been several methods proposedfor inreasing the �eld of view of ameras systems [3℄. One e�etive way is toombine mirrors with onventional imaging system. The obtained sensors arereferred to as atadioptri imaging systems. The resulting imaging systems havebeen termed entral atadioptri when a single projetion enter desribes theworld-image mapping. From a theoretial and pratial point of view, a singleenter of projetion is a desirable property for an imaging system [4℄. Baker andNayar [4℄ derive the entire lass of atadioptri systems with a single viewpoint.Vision-based ontrol shemes are �exible and e�etive methods to ontrolrobot motions from visual data [5℄. Clearly, these appliations an bene�t fromsuh sensors sine they naturally overome the visibility onstraint. As an ex-ample, let us onsider the problem of ontrolling the Gough-Stewart platformshown in Figure 1 using a vision sensor. At this aim, [6, 7℄ propose respetivelyimage-based and position-based visual-servo shemes by diretly observing theplatform legs with a lassial perspetive amera. Unfortunately, to position ad-equately the amera to observe simultaneously all the platform legs is a omplextask. In [6, 7℄, the amera was positioned in front of the platform (see Fig 1.(a)).In this ase, the legs in the front of the platform are loser to the amera thanthe ones in the bak. As a onsequene, the extration of the image features
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(a) (b)
() (d)Fig. 1. A Gough-Stewart platform observed by a lassial perspetive amera: (a)amera position with respet to the platform, (b) image of the legs. A Gough-Stewartplatform observed by an omnidiretional amera: () amera position with respet tothe platform, (d) image of the legslying on legs in the bak will be less robust. Furthermore, large parts of the legsin the bak are oluded by the front legs (see Fig 1.(b)) and full olusions anhappen. This is an important drawbak sine the vision based ontrol assumesthat all legs an be observed during the servoing task. A �rst solution to addressthis issue ould be to employ a system made of multiple ameras. However, inthis ase, data provided by eah amera must be synhronized and the multi-amera system alibrated. A seond and simpler solution, whose �rst results werepresented in [8℄, onsists in positioning a single omnidiretional amera at theplatform enter (see Figure 1.()). In suh a way, all the legs an be simultane-ously observed in a panorami view and potential olusions an not our (seeFigure 1.(d)). Clearly, visual servoing of the Gough-Stewart platform will thusbene�t from the enhaned �eld of view provided by an omnidiretional amera.More generally, visual servoing shemes make assumptions on the link betweenthe initial, urrent and desired images sine they require orrespondenes be-tween the features extrated from the initial image with those obtained fromthe desired one. These measures are then traked during the amera (and/or theobjet) motion. If one of these steps fails, then the task an not be ahieved.
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Fig. 2. Projetion of a ylindrial leg onto the image planeTypial ases of failure arise when mathing joint image features is impossible(for example when no joint feature belongs to initial and desired images) or whensome parts of the visual features get out of the �eld of view during the servoing.The use of omnidiretional vision should thus signi�antly redue the ase offailure. However, omnidiretional images exhibit supplementary di�ulties om-pared to onventional perspetive image (for example the projetion of a line isno more a line but a oni urve). This paper is mainly onerned with the useof projeted lines extrated from entral atadioptri images as input to a visualservoing ontrol loop. Two appliations are desribed. The �rst one onerns theontrol of serial robots while the seond one onerns the ontrol of a parallelrobot (namely a Gough-Stewart platform).2 Modeling2.1 Camera modelCentral imaging systems an be modeled using two onseutive projetions:spherial projetion then perspetive one. This geometri formulation alled uni-�ed model has been proposed by Geyer and Daniilidis in [9℄ and has been inten-sively used by the vision and robotis ommunity (struture from motion, ali-bration, visual servoing, ...). Let us outline the essential of this model. Considera virtual unitary sphere entered in M as shown in Fig. 2 and the perspetiveamera entered in C. The frames attahed to the sphere and the perspetiveamera are related by a simple translation of −ξ along the Z axis. Let X be a 3Dpoint with oordinates X = [X Y Z]⊤ in Fm. The world point X is projeted in
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the image plane into the point of homogeneous oordinates p = Km, where Kis a 3 × 3 upper triangular matrix ontaining the onventional amera intrinsiparameters oupled with mirror intrinsi parameters and
m = [x y 1]⊤ =

[
X

Z + ξ‖X‖

Y

Z + ξ‖X‖
1

]⊤ (1)The matrix K and the parameter ξ an be obtained after alibration using forexamples the methods proposed in [10℄. In the sequel, the entral imaging systemis onsidered alibrated. In this ase, the inverse projetion onto the unit sphere
Xm an be obtained as

Xm = λ

[
x y 1 −

ξ

λ

]⊤ (2)where λ =
ξ +

√
1 + (1 − ξ2)(x2 + y2)

x2 + y2 + 1
.2.2 Line and ylindrial leg observationTo ontrol a serial and a parallel robot, projeted lines extrated from entralatadioptri images will be exploited as input to a visual servoing ontrol loop.Let us �rst illustrate the projetion model of lines in the image of a entralimaging system using a leg of the Gough-Stewart Platform. A Gough-StewartPlatform has six ylindrial legs of varying length qj (j = 1 . . . 6) attahed tothe base by spherial joints loated at points Aj , and to the moving platformby spherial joints loated at points Bj (see Figure 1). The image of the jthleg is de�ned by the projetion onto the image plane of two lines (Lj

1 and Lj
2)as depited on Figure 2. Let us note ni

j = [ni
jx ni

jx ni
jx]⊤ (i = 1, 2) the unitaryvetor orthogonal to the interpretation plane πi

j de�ned by the line Li
j and theprinipal projetion enter. The points Xm lying on the intersetion between πi

jand the sphere are then de�ned by:
{

‖Xm‖ = 1
ni⊤

j Xm = 0
(3)Using the spherial oordinates given by eq. (2), it an be shown that 3-D pointslying on Li

j are mapped onto points m lying on a oni urve Γ i
j , whih an bewritten:

α0x
2 + α1y

2 + 2α2xy + 2α3x + 2α4y + α5 = 0 (4)with α0 = ni2
jx − ξ2(1 − ni2

jy), α1 = ni2
jy − ξ2(1 − ni2

jx), α2 = ni
jxni

jy(1 − ξ2),
α3 = ni

jxni
jz , α4 = ni

jyni
jz and α5 = ni2

jz . Let us note that (4) is de�ned up toa sale fator. If α5 6= 0, the number of parameters, an be redued and (4) anbe written as:
β0x

2 + β1y
2 + 2β2xy + 2β3x + 2β4y + 1 = 0 (5)
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with βk = αk

α5

. From the parameters βk, it is possible to determine the perpen-diular vetor to the interpretation plane as follows:
ni

jz = (β2
3 + β2

4 + 1)−
1

2 = b; ni
jx = β3b; ni

jy = β4b (6)The ase where α5 = 0 orresponds to a degenerate on�guration where the opti-al axis lies on the interpretation plane. The orientation of the jth leg, expressedin the amera frame, an straightforwardly be omputed from the related normalvetors:
uj =

n1
j × n2

j

‖n1
j × n2

j‖
(7)In the sequel, we will see how to exploit line projetions to design vision-basedontrol sheme.3 ControlIn few words, let us �rst reall that the time variation ṡ of the visual features

s = [s1
⊤, s2

⊤, · · · sn
⊤]⊤ (where si are m-dimensional vetors ontaining the vi-sual observations at the urrent on�gurations of the roboti system) an beexpressed linearly with respet to the relative amera-objet kinematis srew τ(ontaining the instantaneous angular veloity ω and the instantaneous linearveloity v of the origin of Fm expressed in the mirror frame) by:

ṡ = Lτ (8)where L is the interation matrix related to s. In order to ontrol the movementsof a robot from visual features, one de�nes a task funtion to be regulated to 0as [11℄:
e = L̂+(s− s∗) (9)where L̂+ is the pseudo-inverse of a hosen model of the (n.m) × 6 interationmatrix L and s∗ the desired value of s. A very simple ontrol law an then bedesigned by trying to ensure a deoupled exponential deay of the task funtion[12, 5℄:

τ = −λe = −λL̂+(s− s∗). (10)In order to ompute the ontrol law (10), it is neessary to provide an approxi-mated interation matrix L̂. In the sequel, we will �rst derive its analitial formwhen the amera (in eye-in-hand or hand-in-eye on�guration) observe a targetomposed of a set of 3D lines and then we will onsider the ase of a ameraobserving the legs of a parralel robot.3.1 Visual servoing of a serial robotLet us �rst assume that the amera observe a set of lines Lk with Plüker oor-dinates [
nk, uk

]⊤ in the mirror frame and de�ne the observation vetor sk fora projeted line (oni) in the entral atadioptri image as:
sk =

[
βk3 βk4

]⊤ (11)
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and the observation vetor for n onis as s = [s⊤1 · · · s⊤n ]⊤. For onveniene, inthis setion, we onsider only one line and the subsript k will be omitted. Sineparameters βi only depend on n, we an write equation (8) as:
ṡ = JsnLnτ (12)where:� Ln is the interation matrix related to the normal vetor n = [nx, ny, nz]

⊤to the interpretation plane for line Li expressed in the mirror frame (suhthat ṅ = Lnτ ), and� Jsn = ∂s

∂n
.The interation matrix related to the observation vetor s is L = JsnLn. It anbe shown that ([13, 14℄):̇

n = Lnτ =
v⊤n

h
(u × n) − ω × nwhere h is the orthogonal distane from Lk to the origin of the mirror frame.Aording to the previous equation, the interation between the normal vetorand the sensor motion is thus:

Ln =
(

1

h
(u × n)n⊤ [n]×

)

=
(

1

h
[u]×nn⊤ [n]×

)

=
(
UhN. N×

)
(13)where N× = [n]× denotes the antisymmetri matrix assoiated to the vetor

n, N. = nnT , and Uh = 1

h
[u]×. Note that the matries N× and N. an beomputed using the visual features s (refer to Equation (6)):

N× = b




0 −1 β4

1 0 −β3

−β4 β3 0





N. = b2




β2

3 β3β4 β3

β3β4 β2
4 β4

β3 β4 1





. (14)The Jaobian Jsn is obtained by omputing the partial derivative of (11) withrespet to n and using (6):
Jsn =

1

b

(
1 0 −β3

0 1 −β4

)
. (15)By ombining the equations (13) and (15) and aording to relation (12), theinteration matrix L is :

L =
(

1

h b
A B

) (16)
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where
A =

(
uyβ3 uyβ4 uy

−uxβ3 −uxβ4 −ux

) (17)and
B =

(
β3β4 −1 − β2

3 β4

1 + β2
4 −β3β4 −β3

) (18)3.2 Visual servoing of a parallel robot: the Gough-Steward platformLet us now onsider that the omnidiretional amera observe the legs of theGough-Stewart platform. To servo the platform, two kinds of visual features (legdiretions and leg edges) will be exploited.Visual servoing of leg diretions. To servo the leg diretions, we de�ne sas the geodesi error between the urrent leg orientation uj and the desired one
u∗

j :
suj = uj × u∗

j , j = 1..6 (19)This means that: su
∗

j = 03×1, j = 1..6. Following [7℄ the interation matrixassoiated with a leg orientation uj is given by:
u̇j = Mj τ (20)

Mj = −
1

qj

h

I3 − uju
⊤

j

i

ˆ

I3 −[Aj + qjuj ]×
˜ (21)By ombining (20) and (19), the time derivative of suj an be written:

ṡuj
= Luj

τ (22)
Luj

= −[u∗

j ]×Mj (23)Now, the standard method applies: we stak eah individual errors suj
in asingle over-onstrained vetor su as well as eah assoiated individual interationmatrix Luj

into a ompound one Lu and impose a �rst-order onvergene to su.This yields the following pseudo-ontrol vetor τ

τ = −λL̂+
u su (24)Visual servoing of the interpretation planes. Another possible set of visualfeatures to ontrol the Gough-Steward platform is omposed of the two edges ofeah ylinder leg. Contrary to the perspetive ase where the leg edge proje-tion is a line (and an be represented by a simple hange of oordinates of theinterpretation plane), the general ase requires to reonstrut the interpretationplanes in the frame related to the sphere (i.e. the sphere de�ned in the amerauni�ed model) from the image data, knowing the intrinsi parameters. More de-tails about the interpretation planes reonstrution in the general ase is givenin [8℄. Formally the features related to the interpretation planes are de�ned by:

s
ni
j
= ni

j × ni∗
j , j = 1 ... 6, i = 1, 2 (25)
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Fig. 3. Experimental setup : eye-to-hand on�gurationThe derivative of a leg edge, expressed in the amera frame an be obtained asdesribed in [6℄:
ṅi

j = nJuMiτ (26)
nJu =

[
(uj × ni

j)A
⊤

j

Aj(uj × ni
j)

⊤
− I

]
ujn

i⊤
j (27)Consequently, by ombining (27) and (25), the time derivative of sni

j
an bewritten:

ṡni
j
= Lni

j
τ (28)

L
ni
j
= −[ni∗

j ]×
nJuMi (29)This yields the following pseudo-ontrol vetor τ

τ = −λL̂n

+

sn (30)where sn = [sn1
1

⊤ sn2
1

⊤ . . . sn2
6

⊤]⊤.4 Experimental resultsIn this setion, we present experimental results of entral atadioptri visualservoing from lines for a 6 d.o.f robot manipulator and the parallel Gough-Stewart platform.4.1 Visual servoing of a 6 dof serial robotThe proposed ontrol law has been validated on a six d.o.f eye-to-hand system(refer to Figure 3). In this on�guration, the interation matrix has to take into
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(a) (b)Fig. 4. 2D Visual servoing from lines: (a) initial image and (b) desired image andtrajetories of onis (for readability's sake, only trajetories of two onis are drawn).
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(a) (b) ()Fig. 5. Veloity and error vetors: (a) translational veloities [m/s℄, (b) rotationalveloities [rad/s℄ and () image error s − s
∗ versus iteration number.aount the mapping from the amera frame onto the robot ontrol frame [15℄.If we denote this mapping by [Re, te], the eye-to-hand interation matrix Le isrelated to the eye-in-hand one L by :

Le = L

[
Re [te]×Re

03 Re

] (31)where [te]× is the skew symmetri matrix assoiated with translation vetor
te. The interation matrix Le is used in the ontrol law (10). Sine we were notinterested in image proessing in this paper, the target is omposed of whitemarks (see Figure 3) from whih straight lines an be de�ned (see Figure 4(a)).The oordinates of these points (the enter of gravity of eah mark) are extratedand traked using the VISP library [16℄. The omnidiretional amera used isa paraboli mirror ombined with an orthographi lens (ξ = 1). The imageorresponding to the desired and initial on�gurations are given in Figures 4(a)and 4(b) respetively. The orresponding objet displaement is omposed of atranslation t = [−10 − 80 60]⊤ m and a rotation (expressed as a rotationalvetor) θu = [0 0 100]⊤ dg. The error between the visual features (desired andurrent) are plotted on Fig. 5() while the amera veloities are plotted on Fig.5(a)-(b). These results on�rm that the positioning task is orretly ahieved.
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(a) (b)
() (d)Fig. 6. Experimental results: (a) initial on�guration, (b) desired on�guration, ()initial image, (d) desired imageThe trajetory of the onis in the image are plotted on 4(b) (for readability'ssake, only trajetories of two onis are drawn).4.2 Visual servoing of the Gough-Steward platformIn the following experiments, we give an example of an omnidiretional visual-servo of the Gough-Stewart platform (ommerial DeltaLab Table de Stewartshown in Figure 6). The experimental robot has an analog joint position on-troller interfaed with Linux-RTAI. Joint veloity ontrol is emulated throughthis position ontroller with an approximate 20ms sampling period. The omni-diretional amera used is a paraboli mirror ombined with an orthographilens. It is approximately plaed at the base enter. The projetion of the legsin the image are almost radial. This property is used to detet the legs in theimage. A set of irles entered on the prinipal point with diameters rangingfrom a minimal value dmin to a maximal value dmax are �rst de�ned. Next, theimage is sanned along eah irle providing a mono-dimensional signal whihis then thresholded to obtain a binary signal. The peaks of the signal deriva-tive (obtained using a gradient �lter) provide then the image of the leg's edges.In theory, two irles are enough to determine eah leg's edges in the image. Inpratie, more than two image points of eah edge are required to obtain a robustestimation. For our experiments a set of 17 irles (whih is a good ompromisebetween robustness and time) with dmin = 184 pixel and dmax = 370 pixel arede�ned. Finally, note that the proposed method is fully automati (no initial-
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ization by the user is required) and that less than 0.3ms are neessary to detetthe leg edges with a onventional labtop.For our experiments, the initial and desired on�gurations of the platformhave been taken as shown on Figures 6.(a) and 6.(b). The orresponding imagesare given respetively on 6.() and 6.(d). In a �rst experiment, the leg diretionswere used to ontrol the end-e�etor pose. Figure 7.(a) gives the behaviors of thefeature error squares s⊤
i

si. From this �gure, we note that these errors dereaseto 0. In a seond experiment and for the same initial and desired robot on�gu-rations, the leg edges were used to ontrol the end-e�etor pose. The same salargain λ was used for the �rst and seond experiments. Figure 7.(b) shows thatthe system onverges. However, plot of the feature errors are learly smootherand less noisy than in Figure 7.(a). Furthermore, Figure 7() gives the plot ofthe variations of the leg orientation using leg orientation or leg edges as featuresin the ontrol law. From this �gure, it an be notied that the variation of theorientation using leg edges (dashed plot) in the ontrol is smoother and less noisythan using leg orientations (ontinuous plot).
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s
⊤
uj

(unitless)with respet to time (expressed as iteration number),(b) Errors snj
s
⊤
nj

(unitless) usingthe leg edges (snj
) as visual features with respet to time, () Evolution of leg orien-tations during the ontrol (sum of norms of the errors Pj=6

j=1
‖suj

s
⊤
uj
‖) with respet totime: results using leg orientation (ontrol law (24), dashed plot) , results using legedges (ontrol law (30), ontinuous plot)5 ConlusionWe have proposed two roboti appliations of omnidiretional vision. More pre-iely, we have addressed the problem of ontrolling a roboti system (paralleland serial) by inorporating observations from a entral atadioptri amera.We have validated the approah with a 6 d.o.f holonomi robot and a parallelGough-Steward platform. The proposed approahes an be used with all entralameras (inluding onventional ones). More generally, the results presented inthis paper extend the results obtained in the lassial perspetive ase to thegeneral ase of the amera uni�ed model. In future work, the analytial robust-
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