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Abstract. In this paper we consider the problem of controlling a serial
or a parallel robot from the projection of 3D straight lines in the image
plane of central catadioptric systems. A generic central catadioptric in-
teraction matrix for the projection of 3D straight lines is derived using an
unifying imaging model valid for an entire class of cameras. This result is
exploited to design an image-based control law which allows us to control
the six degree of freedom of a robotic arm. Then the projected lines are
exploited to design a control scheme for a parallel robot by observing
the platform’s legs. These two applications of omnidirectional vision are
substantiated by experimental results with a six d.o.f eye-to-hand system
and a Gough-Steward platform.

1 Introduction

Many applications in vision-based robotics, such as mobile robot localisation [1]
and navigation [2], can benefit from a panoramic field of view provided by omni-
directional cameras. In the literature, there have been several methods proposed
for increasing the field of view of cameras systems [3]. One effective way is to
combine mirrors with conventional imaging system. The obtained sensors are
referred to as catadioptric imaging systems. The resulting imaging systems have
been termed central catadioptric when a single projection center describes the
world-image mapping. From a theoretical and practical point of view, a single
center of projection is a desirable property for an imaging system [4]. Baker and
Nayar [4] derive the entire class of catadioptric systems with a single viewpoint.

Vision-based control schemes are flexible and effective methods to control
robot motions from visual data [5]. Clearly, these applications can benefit from
such sensors since they naturally overcome the visibility constraint. As an ex-
ample, let us consider the problem of controlling the Gough-Stewart platform
shown in Figure 1 using a vision sensor. At this aim, [6, 7] propose respectively
image-based and position-based visual-servo schemes by directly observing the
platform legs with a classical perspective camera. Unfortunately, to position ad-
equately the camera to observe simultaneously all the platform legs is a complex
task. In [6, 7], the camera was positioned in front of the platform (see Fig 1.(a)).
In this case, the legs in the front of the platform are closer to the camera than
the ones in the back. As a consequence, the extraction of the image features

Workshop Proceedings of SIMPAR, 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS
Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8
pp- 182-193



Fig.1. A Gough-Stewart platform observed by a classical perspective camera: (a)
camera position with respect to the platform, (b) image of the legs. A Gough-Stewart
platform observed by an omnidirectional camera: (c) camera position with respect to
the platform, (d) image of the legs

lying on legs in the back will be less robust. Furthermore, large parts of the legs
in the back are occluded by the front legs (see Fig 1.(b)) and full occlusions can
happen. This is an important drawback since the vision based control assumes
that all legs can be observed during the servoing task. A first solution to address
this issue could be to employ a system made of multiple cameras. However, in
this case, data provided by each camera must be synchronized and the multi-
camera system calibrated. A second and simpler solution, whose first results were
presented in [8], consists in positioning a single omnidirectional camera at the
platform center (see Figure 1.(c)). In such a way, all the legs can be simultane-
ously observed in a panoramic view and potential occlusions can not occur (see
Figure 1.(d)). Clearly, visual servoing of the Gough-Stewart platform will thus
benefit from the enhanced field of view provided by an omnidirectional camera.
More generally, visual servoing schemes make assumptions on the link between
the initial, current and desired images since they require correspondences be-
tween the features extracted from the initial image with those obtained from
the desired one. These measures are then tracked during the camera (and/or the
object) motion. If one of these steps fails, then the task can not be achieved.
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Fig. 2. Projection of a cylindrical leg onto the image plane

Typical cases of failure arise when matching joint image features is impossible
(for example when 1o joint feature belongs to initial and desired images) or when
some parts of the visual features get out of the field of view during the servoing.
The use of omnidirectional vision should thus significantly reduce the case of
failure. However, omnidirectional images exhibit supplementary difficulties com-
pared to conventional perspective image (for example the projection of a line is
no more a line but a conic curve). This paper is mainly concerned with the use
of projected lines extracted from central catadioptric images as input to a visual
servoing control loop. Two applications are described. The first one concerns the
control of serial robots while the second one concerns the control of a parallel
robot (namely a Gough-Stewart platform).

2 DModeling

2.1 Camera model

Central imaging systems can be modeled using two consecutive projections:
spherical projection then perspective one. This geometric formulation called uni-
fied model has been proposed by Geyer and Daniilidis in [9] and has been inten-
sively used by the vision and robotics community (structure from motion, cali-
bration, visual servoing, ...). Let us outline the essential of this model. Consider
a virtual unitary sphere centered in M as shown in Fig. 2 and the perspective
camera centered in C. The frames attached to the sphere and the perspective
camera are related by a simple translation of —¢ along the Z axis. Let X’ be a 3D
point with coordinates X = [X Y Z]T in F,,. The world point & is projected in
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the image plane into the point of homogeneous coordinates p = Km, where K
is a 3 x 3 upper triangular matrix containing the conventional camera intrinsic
parameters coupled with mirror intrinsic parameters and

e [x y ]
m=lry 1] ‘{Z+5|X| Z x| @

The matrix K and the parameter £ can be obtained after calibration using for
examples the methods proposed in [10]. In the sequel, the central imaging system
is considered calibrated. In this case, the inverse projection onto the unit sphere
X.m can be obtained as

Sy .

E+V1+0 -2 +y?)
2+ y?+1

where \ =

2.2 Line and cylindrical leg observation

To control a serial and a parallel robot, projected lines extracted from central
catadioptric images will be exploited as input to a visual servoing control loop.
Let us first illustrate the projection model of lines in the image of a central
imaging system using a leg of the Gough-Stewart Platform. A Gough-Stewart
Platform has six cylindrical legs of varying length ¢; (j = 1...6) attached to
the base by spherical joints located at points A, and to the moving platform
by spherical joints located at points B; (see Figure 1). The image of the j*
leg is defined by the projection onto the image plane of two lines (£] and £3)
as depicted on Figure 2. Let us note n} = [n, ni nf |7 (i =1, 2) the unitary
vector orthogonal to the interpretation plane 7T§ defined by the line Eé and the
principal projection center. The points X,,, lying on the intersection between 7T§
and the sphere are then defined by:

1 Xom || =1
{n;lTxm —0 )

Using the spherical coordinates given by eq. (2), it can be shown that 3-D points
lying on £} are mapped onto points m lying on a conic curve I'j, which can be

written:

aor? + ay? + 2001y + 2031 + 2004y + a5 = 0 (4)
with ag = n%2 — 52(1 - n2), a; = nﬁ — &1 —n¥), ag = nl,n% (1 - &),
az = nh,nt_, ay =n', n’, and as = n'%. Let us note that (4) is defined up to

a scale factor. If a5 # 0, the number of parameters, can be reduced and (4) can
be written as:

Box? + Bry® + 202wy + 2837 + 284y + 1 =0 (5)
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with G, = 3—’; From the parameters (i, it is possible to determine the perpen-
dicular vector to the interpretation plane as follows:

, . , .

nk, = B3+ 67 +1)"2 =b; nk, = Bab; nj, = Bab (6)
The case where a5 = 0 corresponds to a degenerate configuration where the opti-
cal axis lies on the interpretation plane. The orientation of the jt* leg, expressed

in the camera frame, can straightforwardly be computed from the related normal

vectors:

n! xn?

= (7
1 2
”nj X njH
In the sequel, we will see how to exploit line projections to design vision-based

control scheme.

u;

3 Control

In few words, let us first recall that the time variation § of the visual features
s=1[s1',82",---sn' ]’ (where s; are m-dimensional vectors containing the vi-
sual observations at the current configurations of the robotic system) can be
expressed linearly with respect to the relative camera-object kinematics screw T
(containing the instantaneous angular velocity w and the instantaneous linear

velocity v of the origin of F,,, expressed in the mirror frame) by:
$=Lr (8)

where L is the interaction matrix related to s. In order to control the movements
of a robot from visual features, one defines a task function to be regulated to 0
as [11]:

e=Lt(s—s") 9)

where Lt is the pseudo-inverse of a chosen model of the (n.m) x 6 interaction
matrix L and s* the desired value of s. A very simple control law can then be
designed by trying to ensure a decoupled exponential decay of the task function
[12,5]:

T=-Xe=—-\Lt(s—s"). (10)
In order to compute the control law (10), it is necessary to provide an approxi-
mated interaction matrix L. In the sequel, we will first derive its analitical form
when the camera (in eye-in-hand or hand-in-eye configuration) observe a target
composed of a set of 3D lines and then we will consider the case of a camera
observing the legs of a parralel robot.

3.1 Visual servoing of a serial robot

Let us first assume that the camera observe a set of lines £ with Pliicker coor-
. T. . .

dinates [ny, u;| in the mirror frame and define the observation vector sy, for

a projected line (conic) in the central catadioptric image as:

sk = [ Bra Bra

1" (11)
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and the observation vector for n conics as s = [s{ ---s}]". For convenience, in

this section, we consider only one line and the subscript £ will be omitted. Since
parameters (3; only depend on n, we can write equation (8) as:

S =JsnLinT (]‘2)

where:

— L, is the interaction matrix related to the normal vector n = [ng, n,, nz]—r

to the interpretation plane for line £, expressed in the mirror frame (such
that n = L,7), and
— Ju = Js

sn = 9n-

The interaction matrix related to the observation vector s is L = JgnLy. It can
be shown that ([13, 14]):

VTII

h:LnT:T(uxn)—wxn
where h is the orthogonal distance from Lj to the origin of the mirror frame.
According to the previous equation, the interaction between the normal vector
and the sensor motion is thus:

Lo =(3(uxn)n’ [n],)

= (+[u]xnn’ [n],) (13)
— (UWN.N,,)
where N, = [n]« denotes the antisymmetric matrix associated to the vector
n, N, = nn”, and U, = %[u]x. Note that the matrices Ny and N. can be
computed using the visual features s (refer to Equation (6)):
0 —1 B
Ny=b| 1 0 —pfs
—Ba P 0
(14)
33 B3P B3
N =0%| a6 Bi Da
Bz Ba 1
The Jacobian Jg, is obtained by computing the partial derivative of (11) with
respect to n and using (6):
1/10-p;
Jsn = — . 15
b <0 1 —ﬁ4> (15)

By combining the equations (13) and (15) and according to relation (12), the
interaction matrix L is :
L= (4%AB) (16)
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where 8 8
U U u
A= v TuEl Ty 17
(—’U,xﬂg _u154 _Uz) ( )

and

o B3Bs —1—33 P
B_(1+ﬁi—&ﬁ1—@) (18)

3.2 Visual servoing of a parallel robot: the Gough-Steward platform

Let us now consider that the omnidirectional camera observe the legs of the
Gough-Stewart platform. To servo the platform, two kinds of visual features (leg
directions and leg edges) will be exploited.

Visual servoing of leg directions. To servo the leg directions, we define s

as the geodesic error between the current leg orientation u; and the desired one
ul:
J

Suj = u; xuj, j=1.6 (19)
This means that: suj = 03x1,j = 1..6. Following [7] the interaction matrix
associated with a leg orientation u; is given by:

ﬁj = MjT (20)
1 T

M, = [Ig—ﬂjUj] (I —[Aj + qjuy]«] (21)
j

By combining (20) and (19), the time derivative of s,; can be written:

Su; = Ly, 7 (22)
Loy = —[M, 23)

Now, the standard method applies: we stack each individual errors s, in a
single over-constrained vector s, as well as each associated individual interaction
matrix Ly; into a compound one L, and impose a first-order convergence to sy.
This yields the following pseudo-control vector T

T = —/\fjsu (24)

Visual servoing of the interpretation planes. Another possible set of visual
features to control the Gough-Steward platform is composed of the two edges of
each cylinder leg. Contrary to the perspective case where the leg edge projec-
tion is a line (and can be represented by a simple change of coordinates of the
interpretation plane), the general case requires to reconstruct the interpretation
planes in the frame related to the sphere (i.e. the sphere defined in the camera
unified model) from the image data, knowing the intrinsic parameters. More de-
tails about the interpretation planes reconstruction in the general case is given
in [8]. Formally the features related to the interpretation planes are defined by:

St = 1) X0}, j=1..6,i=12 (25)

J
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Fig. 3. Experimental setup : eye-to-hand configuration

The derivative of a leg edge, expressed in the camera frame can be obtained as
described in [6]:

0’ ="J M, (26)
e miYA T
"y = l% - I] ujné-T (27)
Consequently, by combining (27) and (25), the time derivative of Sni can be
written:
énJi_ = Ln; T (28)
Ly = —[n% ] " JuM; (29)

This yields the following pseudo-control vector 7

r=-AL, sn (30)

where sn:[sniT s 1T"' .

4 Experimental results

In this section, we present experimental results of central catadioptric visual
servoing from lines for a 6 d.o.f robot manipulator and the parallel Gough-
Stewart platform.

4.1 Visual servoing of a 6 dof serial robot

The proposed control law has been validated on a six d.o.f eye-to-hand system
(refer to Figure 3). In this configuration, the interaction matrix has to take into
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Fig.4. 2D Visual servoing from lines: (a) initial image and (b) desired image and
trajectories of comics (for readability’s sake, only trajectories of two conics are drawn).
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Fig. 5. Velocity and error vectors: (a) translational velocities [m/s|, (b) rotational
velocities [rad/s] and (c) image error s — s™ versus iteration number.

account the mapping from the camera frame onto the robot control frame [15].
If we denote this mapping by [R., t.], the eye-to-hand interaction matrix L, is
related to the eye-in-hand one L by :

(31)

_ Re[te]XRe
Le—L[OS 1 }

where [t.]x is the skew symmetric matrix associated with translation vector
t.. The interaction matrix L, is used in the control law (10). Since we were not
interested in image processing in this paper, the target is composed of white
marks (see Figure 3) from which straight lines can be defined (see Figure 4(a)).
The coordinates of these points (the center of gravity of each mark) are extracted
and tracked using the VISP library [16]. The omnidirectional camera used is
a parabolic mirror combined with an orthographic lens (¢ = 1). The image
corresponding to the desired and initial configurations are given in Figures 4(a)
and 4(b) respectively. The corresponding object displacement is composed of a
translation t = [~10 — 80 60]T c¢m and a rotation (expressed as a rotational
vector) fu = [0 0 100] " dg. The error between the visual features (desired and
current) are plotted on Fig. 5(c) while the camera velocities are plotted on Fig.
5(a)-(b). These results confirm that the positioning task is correctly achieved.
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Fig. 6. Experimental results: (a) initial configuration, (b) desired configuration, (c)
initial image, (d) desired image

The trajectory of the conics in the image are plotted on 4(b) (for readability’s
sake, only trajectories of two conics are drawn).

4.2 Visual servoing of the Gough-Steward platform

In the following experiments, we give an example of an omnidirectional visual-
servo of the Gough-Stewart platform (commercial DeltaLab Tuble de Stewart
shown in Figure 6). The experimental robot has an analog joint position con-
troller interfaced with Linux-RTAIL Joint velocity control is emulated through
this position controller with an approximate 20ms sampling period. The omni-
directional camera used is a parabolic mirror combined with an orthographic
lens. It is approximately placed at the base center. The projection of the legs
in the image are almost radial. This property is used to detect the legs in the
image. A set of circles centered on the principal point with diameters ranging
from a minimal value d,,;, to a maximal value d,,,, are first defined. Next, the
image is scanned along each circle providing a mono-dimensional signal which
is then thresholded to obtain a binary signal. The peaks of the signal deriva-
tive (obtained using a gradient filter) provide then the image of the leg’s edges.
In theory, two circles are enough to determine each leg’s edges in the image. In
practice, more than two image points of each edge are required to obtain a robust
estimation. For our experiments a set of 17 circles (which is a good compromise
between robustness and time) with d,,;, = 184 pizel and dya = 370 pizel are
defined. Finally, note that the proposed method is fully automatic (no initial-
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ization by the user is required) and that less than 0.3ms are necessary to detect
the leg edges with a conventional labtop.

For our experiments, the initial and desired configurations of the platform
have been taken as shown on Figures 6.(a) and 6.(b). The corresponding images
are given respectively on 6.(c) and 6.(d). In a first experiment, the leg directions
were used to control the end-effector pose. Figure 7.(a) gives the behaviors of the
feature error squares si—r si. From this figure, we note that these errors decrease
to 0. In a second experiment and for the same initial and desired robot configu-
rations, the leg edges were used to control the end-effector pose. The same scalar
gain A was used for the first and second experiments. Figure 7.(b) shows that
the system converges. However, plot of the feature errors are clearly smoother
and less noisy than in Figure 7.(a). Furthermore, Figure 7(c) gives the plot of
the variations of the leg orientation using leg orientation or leg edges as features
in the control law. From this figure, it can be noticed that the variation of the
orientation using leg edges (dashed plot) in the control is smoother and less noisy
than using leg orientations (continuous plot).

BN

20 40 60 80 100 120 140 160 180 200

Fig. 7. (a) Experimental results using leg orientations (su,): errors sujst (unitless)

with respect to time (expressed as iteration number),(b) Errors sn, SIJ. (unitless) using
the leg edges (sn;) as visual features with respect to time, (c) Evolution of leg orien-
tations during the control (sum of norms of the errors Ziz? lIsu; SIj ||) with respect to
time: results using leg orientation (control law (24), dashed plot) , results using leg
edges (control law (30), continuous plot)

5 Conclusion

We have proposed two robotic applications of omnidirectional vision. More pre-
cicely, we have addressed the problem of controlling a robotic system (parallel
and serial) by incorporating observations from a central catadioptric camera.
We have validated the approach with a 6 d.o.f holonomic robot and a parallel
Gough-Steward platform. The proposed approaches can be used with all central
cameras (including conventional ones). More generally, the results presented in
this paper extend the results obtained in the classical perspective case to the
general case of the camera unified model. In future work, the analytical robust-
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ness and stability analysis with respect to the 3D parameters and calibration
errors will be studied.
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