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Abstract. The problem of SLAM (simultaneous localization and map-
ping), is a fundamental problem in autonomous robotics. It arises when
a robot must create a map of the regions it has navigated while localiz-
ing itself on it, using results from one step to increase precision in the
other by eliminating errors inherent to the sensors. One common solu-
tion consists of establishing landmarks in the environment that are used
as reference points for absolute localization estimates and form a sparse
map that is iteratively refined as more information is obtained. This pa-
per introduces a method of landmark selection in omnidirectional images
for online SLAM, using the SIFT algorithm for initial feature extraction
and assuming no prior knowledge of the environment. Visual sensors are
an attractive way of collecting information from the environment, but
tend to create an excessive amount of landmarks that are individually
propense to false matches due to image noise and object similarities.
By clustering several features in single objects our approach eliminates
landmarks that do not consistently represent the environment, decreasing
computational cost and increasing the reliability of information incorpo-
rated. Tests conducted in real navigational situations show a significant
improvement in performance without loss of quality.

1 Introduction

A solution to the problem of SLAM would be of inestimable value in robotics as it
would lead to truly autonomous robots, capable of navigating safely at unknown
locations in unknown environments using nothing but embedded equipment.
Information from sensors cannot be used directly because they are inherently
inaccurate, due to phenomena that cannot be modeled as they are too complex
or unpredictable. Probabilistic approaches [1] have successfully dealt with both
problems individually, such as mapping given the robot’s exact position at each
instant [2] or localization given a precise map of the environment [3]. However, in
situations where neither one is known in advance the robot must estimate both
simultaneously, a problem that is largely discussed in the autonomous robotic
literature [4–7] but still lacks a closed, efficient and truly generic solution. The
classic approach to the problem of SLAM, first described in [9] and implemented
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(a) Exact Map (b) Localization esti-
mates using odometry

(c) Mapping using odo-
metric estimates

Fig. 1. Influence of sensor errors in localization and mapping estimates [8]

in [10], is based on detection and recognition of landmarks in the environment
that can be used as reference points to eliminate odometric errors accumulated
over time. A feature map of such landmarks is iteratively built by comparing
new landmarks with the ones already stored in search for matches. If a match
is found this information is used to increase precision in both localization and
mapping estimates, otherwise it is added to the map for future correspondence.
A substantial amount of research has been conducted to overcome some of the
limitations in this approach, such as computational complexity and scalability
[11, 6] and data association problems [12, 13].

A robot’s ability to detect and recognize landmarks is limited by its sensors
and how they interact with structures in the environment. Although a number
of approaches have been proposed to address the problem of SLAM using range
sensors [14], vision sensors are attractive equipments for an autonomous mobile
robot because they are information-rich and rarely have restrictions in range
and applications. Recent increases in computational power and algorithm effi-
ciency have led to numerous implementations of visual systems in many fields of
robotics [7, 15]. Among visual sensors, the omnidirectional vision [16] introduces
several properties that are very desirable in most navigational tasks [17], in-
cluding in the SLAM problem discussed above [18]. A larger field of view means
ability to detect a higher number of landmarks, increasing characterization of en-
vironment as a whole by avoiding blind spots and poor angles for triangulation.
Each landmark will also remain visible for a larger period of time, increasing
number of matches and providing more information for improving localization
and mapping estimates.

However, the high characterization of environments provided by visual sen-
sors can also be a drawback due to the large amount of information obtained from
a single image. This leads to a high computational costs necessary to process,
maintain and access all this data, and also causes data association problems
due to redundancy and image noise, generating estimates that do not corre-
spond to reality and increase uncertainty of results. We describe in this paper
a method for selective landmark extraction that is based on clustering features
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directly from omnidirectional images, without any prior knowledge of the en-
vironment and thus that can in theory be applied in any situation. We start
by briefly describing the problem of SLAM and the use of landmarks to ensure
localization precision. After that the proposed method of landmark selection is
described, along with modifications in the matching step and landmark manage-
ment. Finally, we show results obtained in a real SLAM situation that indicate a
significative gain in quality and efficiency over a common approach of landmark
selection.

2 The Problem of SLAM

The problem of localization and mapping in robotics can be described as a
probabilistic Markov Chain, where the hidden variables are both the robot’s
localization and the map components. At a given time t we will denote the
robot’s position (assuming one-plane navigation) as st = (x, y, θ), composed by
its coordinates in the x − y plane and its orientation θ relatively to the x axis.
This position evolves in time according to a probabilistic distribution known as
the motion model :

p(st|ut, st−1) (1)

Where ut is the control vector used for navigation. The robot’s environment is
composed by a set of K static landmarks with locations denoted as θk. With its
sensors the robot is capable of detecting these landmarks and measuring their
positions relatively to itself (i.e. through range and bearing information). Each
measurement is given by the observation vector zt (we assume without loss of
generality that the robot observers only one landmark at each instant) governed
by a probabilistic distribution known as the measurement model :

p(zt|st, θ, nt) (2)

Where θ = (θ1, ..., θN ) is the entire set of landmarks and nt is the correspon-
dence value that indicates which landmark θn is observed by zt. Most theoretical
work on SLAM assumes that all correspondences nt = (n1, ..., nt) are known
correspondence is known, and thus the problem of SLAM becomes one of deter-
mining the location of all landmarks θ and robot poses st from measurements
zt = (z1, ..., zt) and controls ut = (u1, ..., ut). In other words:

p(st, θ|zt, ut, nt) (3)

In practical applications this is however not the case, as landmarks will never
be truly unique in the environment, due to imprecision in the measurement
or natural ambiguities. In this case we have to consider another probabilistic
distribution, which indicates the probability of each measurement corresponding
to each landmark. Most approaches use maximum likelihood algorithms, with
thresholds that determine if measurement should be matched with a landmark
already stored or considered as a new landmark.

p(nt|zt, ut) (4)
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3 Feature Extraction

A feature represents a piece of relevant information that can be obtained from the
data collected. In computer vision, an image can provide both global features,
where information contained in all image is used for feature extraction, and
local features, where only a region of the image is used. Due to the necessity
of detecting and recognizing particular objects in the image, local features are
more commonly used in autonomous robotics to represent the environment. An
extensive survey on local features is conducted in [19], and methods for a better
landmark selection in specific environments are shown in [20] and [21].

Although the method proposed in this paper can be used as a complement for
any feature extraction method, we propose here the use of the SIFT algorithm
as described by Lowe [22] to obtain the initial feature set. The SIFT algorithm
has become very popular in several robotics applications, as it can be seen in
[18, 23, 24], and introduces several properties of invariance that are especially
useful when extracting features directly from omnidirectional images, as it is the
case in this paper. Rotational invariance is important because objects detected
can appear in any orientation depending on the angle between them and the
robot, and so is scale invariance since resolution rapidly decreases in the outer
ring of the image, changing the apparent size of observed objects. The high
dimensionality of the SIFT descriptor provides some robustness regarding the
deformation caused by the omnidirectional geometry, partially eliminating the
need for rectification [25].

The first stage of SIFT is composed by a search for local extrema over dif-
ferent scale spaces (ensuring scale invariance), constructed using a Difference
of Gaussian (DoG) function D(x, y,σ). This function (Eq. 5) is computed from
the difference of two nearby scaled images L(x, y,σ), obtained convoluting the
original image I(x, y) with Gaussian kernels G(x, y,σ) separated by a factor k:

D(x, y,σ) = (G(x, y, kσ)−G(x, y,σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y,σ) (5)

Pixels in any scale are considered extrema if they represent a local maximum
or minimum considering its neighbors in the same scale and in the ones directly
above or below. These extrema are filtered according to two other criteria (con-
trast and ratio of main curvatures) for more stable matches and localized to
subscale and sub pixel precision, as shown in [26]. A main orientation (Eq. 6)
and magnitude (Eq. 7) are assigned to each remaining feature candidate using
an orientation histogram obtained from pixel differences in the closest smoothed
image L(x, y,σ). Each pixel orientation is added to the histogram weighted by
its magnitude and by a circular Gaussian to decrease the influence of distant
portions of the image.

m(x, y) =
√

(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (6)

θ(x, y) = tan−1

(
L(x, y + 1)− L(x, y − 1)
(L(x + 1, y)− L(x− 1, y)

)
(7)
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This gradient information is then divided into sub-windows, each one with its
own orientation histogram, that is obtained relatively to the main orientation
to ensure rotational invariance. The magnitude value of each orientation in each
histogram is added to the final descriptor, and to obtain a partial invariance to
luminosity this descriptor is normalized, so global changes in intensity will not
affect the result.

4 Selecting Landmarks in Omnidirectional Images

The main drawback of SIFT features compared to other image descriptor is their
high computational cost. A way of reducing computational cost in SIFT by re-
moving its rotational invariance is presented in [24], but it assumes a conventional
camera mounted parallel with the ground in a flat environment in order to create
a stable point of view, which is unviable in omnidirectional images. The scale
and translation invariances are removed for topological localization with omnidi-
rectional images in [15] because features should only be observed in the vicinity
of the region where the image was obtained, but this compromises the robot’s
ability to recognize landmarks in different points of view. Lower descriptor di-
mensionalities [23] compromise object recognition in different distances from the
robot due to image deformation. In resume, SIFT’s invariance properties are
important for generic feature extraction and landmark selection in different en-
vironments, especially in omnidirectional images, and therefore should not be
eliminated.

Another limitation in SIFT features that increase computational cost is the
volume of information generated, most of it redundant and non-representative
of the environment, characterizing background structures and noise that is not
matched between images that share a common view. Additionally, the local
aspect of individual SIFT features generates data association problems in sit-
uations where there is object similarity. One possible solution to this problem
is the use of feature database representing the objects that should be used as
landmarks [14], taking advantage of natural organization in certain kinds of en-
vironments. But this approach both limits the applicability of the solution in
different environments, as it can only be used where these predetermined struc-
tures exist, and discards potentially useful information from other objects and
structures not considered in the database.

We propose here the grouping of features from a single omnidirectional image
into clusters based solely on image properties, and therefore can be determined
equally in any kind of environment. Clusters without a minimum number of fea-
tures are discarded and their features are not used, while others are promoted to
landmarks and used by the robot to increase its knowledge of the environment.
Position estimates of each landmark are updated individually according to the
SLAM algorithm used, but they share the same object index, which is used in
the correspondence step for more reliable matches, since the probability of one
false match is higher than the probability of several false matches. This object
index is also used to eliminate features that are consistently not matched in the
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Fig. 2. Landmark selection in sequential frames (5 seconds apart) using the proposed
method. Black dots indicate SIFT features, and circled black dots indicate landmarks
that were clustered into single objects (rectangles). Darker circles are landmarks that
were matched from previous frames and lighter circles are landmarks just added to the
map.

environment, liberating space for new features. The result is less landmarks per
image (lower computational costs), but these landmarks will be more represen-
tative of the environment and will be more distinguished (less data association
problems).

4.1 Feature Clustering

The two image properties restraints used in this paper were distance and inten-
sity difference between pixels. We assume that features from the same object
in the environment will have similar color contrast in the image and be at a
reasonable distance between each other. Each restraint has its own independent
standard deviation σd and σc, and the probability of two features fm and fn be
part of the same object is given by p(fm, fn) = pd(fm, fn).pc(fm, fn), where:

pd(fm, fn) = η
(√

(fm
x − fn

x )2 + (fm
y − fn

y )2, σd

)
(8)

pc(fm, fn) = η (fm
c − fn

c , σc) (9)

And η(µ, σ) is a Gaussian distribution function. Each restraint is treated in-
dependently to decrease computational costs by applying each one separately.
First, every two features of the image are compared according to pixel distance,
and the ones with low probability are already discarded. The ones within rea-
sonable probability move to the second restraint, and if the final probability is
high enough they are clustered as part of the same object. After all features in
the image are compared, the ones that don’t have a minimum of peers are dis-
carded, while the other ones are promoted to landmarks and used by the robot
as representative of the environment. Each landmark is treated independently
but shares the same object index that is used in the matching stage and also
allows landmark elimination.
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4.2 Varying σd

The previous section assumes that the standard deviation σd is constant through-
out the image, but in omnidirectional images this is not the case, as resolution
varies in the radial axis (we assume here an omnidirectional vision system com-
posed of an hyperbolic mirror and a conventional camera as shown in [25]). This
change of resolution affects the space represented by each pixel, and in a differ-
ent way for radial and angular distances, dividing σd into two distinct standard
deviations, σr and σθ. The probability pd(fm, fn) of features fm and fn sharing
the same object becomes:

pd(fm, fn) = pr(fm, fn).pθ(fm, fn) (10)

pr(f
m, fn) = η

(√
(fm

x − xc)2 + (fm
y − yc)2 −

√
(fn

x − xc)2 + (fn
y − yc)2, σr

)
(11)

pθ(fm, fn) = η

(
tan−1

(
fm

y − yc

fm
x − xc

)
− tan−1

(
fn

y − yc

fn
x − xc

)
, σθ

)
(12)

Where xc and yc are the center coordinates of the omnidirectional image. Fur-
thermore, the values of σr and σθ change differently according to the radial
distance of the feature to the center of the image, as shown below:

– Inner Ring: σr decreases and σθ increases
– Outer Ring: σr increases and σθ decreases

In the inner portions of the image there are lesser pixels to represent angular
intervals, so each pixel covers a larger angular distance (increasing σθ). At the
same time, since the mirror curvature is still small, radial intervals are repre-
sented by a higher number of pixels, decreasing σr. In the outer portions of the
image there are more pixels to represent each angular interval, which decreases
σθ, and each pixel has to cover a larger radial portion of the environment because
of the higher mirror curvature, increasing σr.

So, σr and σθ become functions gr(r) and gθ(r) of the distance r between
the features and the center of the omnidirectional image, determined by the sys-
tem’s parameters and geometry. Since two features will most likely have different
distances, one straightforward way of determining an effective r is to find the
arithmetic mean between each individual r. So:

σr = gr(r) , σθ = gθ(r) (13)

r =
(√

(fm
x − xc)2 + (fm

y − yc)2 +
√

(fn
x − xc)2 + (fn

y − yc)2
)

/2 (14)

4.3 Matching

During the matching step each landmark stored on the robot’s map is first com-
pared directly to the features obtained from the omnidirectional image (without
previous object clustering) using regular matching process, such as Best Bin Fit
for SIFT. After this process the number of successful matches in each object is
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calculated, using the index number of each landmark. If a minimum percent-
age of landmarks in each object are not matched all its matches are discarded,
otherwise they are assumed correct and their information is used to refine the
robot’s localization and mapping estimates.

Every landmark has a counter nftr that indicates the amount of times it
has been matched, and likewise every object has a counter nobj to indicate
the amount of time it has been successfully matched. If the ratio nobj/nftr

becomes too large it indicates that the object is being consistently matched
without the need for that specific feature. This landmark can then be eliminated
from the robot’s map, decreasing the number of features representing that object.
If this number is below a certain threshold new features can be incorporated as
landmarks to the object using the clustering process presented earlier, and if no
new features are available the whole object can be eliminated.

5 Experimental Results

The landmark selection algorithm presented in this paper was tested in a real
SLAM situation, using a Pioneer 3AT (Fig. 3a) equipped with an odometry sys-
tem for incremental localization estimates, a laser scanner used solely to build a
metric map of the environment, and an omnidirectional vision system composed
of a hyperbolic mirror and a vertically placed camera (Fig. 3b) positioned on the
rotation axis of the robot. The omnidirectional images (Fig 3c) collected were
640x480 grayscale and processed using a Pentium Core 2 Duo 2.0 GHz.

(a) Pioneer 3AT (b) Vision System (c) Omnidirectional Image

Fig. 3. Equipment used in the experimental tests.

The SLAM algorithm used to incorporate the information obtained from the
omnidirectional vision system was FastSLAM [6], chosen due to its efficiency
in dealing with large amounts of landmarks and data association problems. A
particle filter [27] is used to model the robot’s localization uncertainty, and each
particle also keeps an independent mapping hypothesis, which is updated using
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an Extended Kalman Filter [28]. Each landmark is updated individually accord-
ing to the independency notion stated in [29] and held true if the robot’s position
is assumed known, which is possible within each particle’s hypothesis. Landmark
position estimates were obtained through triangulation using matching informa-
tion from two different instants.

We aim for an online solution to the problem of SLAM (with an update rate
of 10 Hz), and the SIFT algorithm has a processing time far greater than this. So,
we parallelized FastSLAM and SIFT, allowing the robot to navigate blindly while
processing an omnidirectional image collected. During this stage its localization
uncertainty increases, and when the processing is done the landmark information
is incorporated to the estimates and the uncertainty decreases.

(a) Exact Map (b) Results without SLAM

(c) SLAM with Individual Landmarks (d) SLAM with Proposed Method

Fig. 4. Results obtained in the experimental tests.

An environment of corridors and obstacles (the robot could see above the
walls, detecting landmarks outside its limits) was constructed (Fig. 4a) and the
robot navigated through it in trajectories of roughly 70m, with a maximum speed
of 0.2 m/s. Initially the robot navigated without error correction, directly using
odometry measurements to localize itself while building the metric mapping.
Fig. 4b shows the results of localization and metric mapping in this situation,
where the errors accumulated during navigation can be clearly perceived through
repetition and misalignment of structures and the inability of the robot to close
the final loop and return to its starting position.
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The same path was then repeated using FastSLAM, and we tested the land-
mark selection method proposed by comparing it to the directly approach of
using all features detected as landmarks. Figs. 4c and 4d show the results of
localization and metric mapping along with landmarks detected during naviga-
tion (gray circles plotted in the plane of navigation) using the direct and the
proposed method, respectively. The structures in the environment were in no
way modified prior to the navigation, and although there was no change in the
environment during navigation people could walk freely outside the established
corridors. This behavior creates spurious landmarks that will not be matched in
posterior images, providing a way of testing our method’s landmark elimination
process.

It is possible to see a substantially larger amount of landmarks in the direct
approach compared to the landmark selection method proposed. These land-
marks were also much more spread throughout the environment, while in the
proposed method landmarks have a tendency of clustering in regions of high
characterization according to SIFT. It is also possible to notice that in the di-
rect approach there is a higher number of landmarks positioned over the robot’s
trajectory, indicating poor estimates.

Also, the visual results of metric mapping show a better alignment and defi-
nition of corridors in the case where the proposed method was used, while some
residual errors were maintained while using the direct approach. We attribute
these residual errors to spurious landmarks and false matches caused by the
large amount of data incorporated at each iteration. A larger amount of data
also implies in a larger computational cost, which is reflected in the amount of
time between image acquisition and information incorporation, when the robot
navigates blindly in the environment and accumulates localization errors. Table
1 compares values regarding the use of each approach for landmark selection.

Table 1. Comparative results using the direct approach and the proposed method.

Individual Proposed
Landmarks Method %

Features per frame 299.31 297.32 99.3
Frames processed 104.81 251.34 239.8

Processing time (s) 4.91 1.95 39.7
Total of landmarks per frame 299.31 78.69 26.3
Landmarks matched per frame 58.24 42.15 72.4

In fact, we see that the proposed method can process an omnidirectional
image, obtaining the final landmark set, in approximately 40% of the time nec-
essary when using the features directly as landmarks. During navigation the pro-
posed methods was capable of analyzing 251 images, while the direct approach
could process only 104, indicating a much higher period of blind navigation and a
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longer distance of navigation between matches, compromising landmark recogni-
tion and increasing error accumulation between each update stage of FastSLAM.

Each image provided a smaller number of landmarks in the proposed method,
due to the features discarded as not part of any object. Logically, the amount
of matches was also smaller, but proportionally it was able to match a higher
amount of landmarks (53.56% against 19.46% on the direct approach). This
indicates a higher percentage of information used over information obtained,
characterizing higher efficiency in landmark selection. There are no statistics
for number of landmarks correctly matched since the features were obtained
automatically, but the metric mapping results shown earlier indicate a better
matching in the proposed method due to elimination of residual errors.

6 Conclusion

We presented here a method of landmark selection for online SLAM in omnidi-
rectional images that does not require any prior knowledge of the environment,
and thus can be in theory used equally in any situation. We use image proper-
ties such as pixel distance and contrast to create restraints that cluster features
that are used by the SLAM algorithm as landmarks. This approach decreases
computational cost by eliminating non-relevant landmarks and increases relia-
bility of matches by corresponding groups of landmarks instead of individually.
Results show improvement both in landmark selection efficiency as in quality of
localization and mapping estimates when compared to a common approach of
using all features and landmarks. The restraints used to cluster features may be
changed as to increase performance in different environments and with different
camera geometries.
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