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Abstract. We present a compact and light-weight panoramic lens devel-
oped to be mounted on standard off-the-shelf video cameras. Obstruction-
free imaging is achieved by enclosing a reflective surface in acrylic glass
whose surface is specifically designed to minimize internal reflections. Al-
though the approach is generic and can be applied to any camera system,
our special focus is on miniature cameras used on flying systems (UAVs).
We present the mathematical background for the sensor model of the re-
flective and refractive surfaces and present an analytical analysis of the
image formation in particular with respect to image blur. We show, how
the sensor can be used for monocular navigation on mobile systems.

1 Introduction

Navigation systems provide basic functionality required for flexible mission plan-
ning of any robotic system. The robot kinematics, e.g., wheeled odometry is
prone to measurement errors and only local maps are usually generated, which
can be fused by registration [1]. In other approaches the absolute position is
estimated from the generated environment models [2]. However, range images
are required in order to allow for registration. Furthermore, wheeled odometry
requires physical contact to the ground which is not available for flying systems.
Hence, inertial measurement units are commonly used to estimate the pose of
flying robots. However, to account for drift they require additional information,
often by using GPS, which is not suitable for indoor navigation.

In particular for autonomously flying systems, vision provides crucial infor-
mation that can be used, for example, to stabilize flight, detect objects and avoid
obstacles. Having omni-directional vision is advantageous for the estimation of
ego-motion [3] and on systems that can fly in all directions, e.g. a multi-rotor
system [4]. It can also be beneficial for the recognition of places since the whole
scene is visible independent of flight direction or camera orientation [5–7]. In
this paper we present a light-weight and compact panoramic vision system, es-
pecially suited for small UAVs. In addition to an in-depth analysis of the system’s
imaging properties, we show its application to robust visual navigation.
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Fig. 1. a) Picture of the vision system which weighs about 33 g. Total height is approx.
50 mm. The diameter of the perspex globe (weight ≈ 13 g) is approx. 30mm. The
small board camera is a standard PAL camera equipped with a 3.6 mm lens (weight
of camera including lens ≈ 14 g). The camera lens is hidden inside the bracket that
holds the perspex body (weight of bracket is approx. 6 g which can be easily reduced).
b) Drawing of the system and ray tracing (cross-section). The reflective surface is
highlighted in red. The thick green curve shows the caustic of viewpoints. The black
dot at the apex of the mirror surface depicts the position of the approximated “single
viewpoint” (see section 2.3).

2 Description of the Imaging System

The main features of the imaging device presented in this paper are (1) obstruction-
free panoramic vision with at least [−55◦, +45◦] of useable elevation range, and
(2) a rugged but light-weight and small design (total weight less than 33 g, di-
ameter ! 30mm) that minimizes internal reflections.

A picture of the optical system which is machined from solid perspex is shown
in Fig. 1 a. As depicted in Fig. 1 b, light rays enter the vision system through a
curved perspex surface before being reflected at a mirror surface. Rays are then
refracted into the lens of the video camera through a planar perspex surface.
Examples of camera images are shown in Fig. 4. In the following sections we
describe the design and the properties of the optical system.

2.1 Shape of Reflective Surface

The reflective surface of the optical system is a “constant angular gain mirror”
described in [8]. Such surfaces have a linear relation ship between the angle of
incidence on the reflective surface and the camera angle and thus give an almost
constant angular resolution along radial directions in the camera image. They
also can provide very large fields of view but do not have a single viewpoint
unlike the mirror shapes presented in [9]. As depicted in Fig. 2 b, the reflective
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surface is defined by

x(φ, η) := r(η)e(φ, η) , η ∈ (0, ηmax) , (1)

r(η) := r0
coskγ

cos(η/k + γ)k
, k :=

2

1 + α
, (2)

e(φ, η) := (cosφ sin η, sinφ sin η, cos η)" . (3)

where φ is the azimuth angle, η is the angle between the incoming rays and the
optical axis of the camera, r0 is the distance from nodal point of camera to the
apex of the reflective surface, γ is the tangent angle at the apex, ηmax is the
maximum angle covered by the reflective surface, and α is the vertical angular
gain.

The parameter values for the imaging device described in this paper are
r0 = 25 mm, γ = 0◦, ηmax = 17.5◦, and α = 8.25.

Due to the refraction at the flat ending of the perspex, the reflective surface
has to be mounted a bit closer to the view point of the camera than r0. The
shift is approximately ∆h = (1 − np)h ≈ −0.5h, where h is the distance of the
nodal point of the camera to planar surface of the perspex and np ≈ 1.5 is the
refraction index of the perspex body. In our case, we have h ≈ 2mm and thus
∆h ≈ −1 mm. In addition, while the reflective surface covers up to ηmax = 17.5◦,
the corresponding camera angle is θmax ≈ npηmax = 26.25◦.

2.2 Shape of Outer Perspex Surface

The outer perspex surface is designed to ensure perpendicular incidence of prin-
cipal rays4. This preserves the constant gain property and minimizes internal
reflections [10, 11]. Its shape is given by

s(φ, η) := r(η)e(φ, η) + (rmax − r(η))eo(φ, η) , (4)

rmax := r(θmax) ≈ 37.3 mm , (5)

eo(φ, η) := (cosφ sin(αη + 2γ), sinφ sin(αη + 2γ),− cos(αη + 2γ))" . (6)

See [10] for the derivation of Eq. (4).

2.3 Viewpoints and Calibration

The caustic surface of viewpoints of a constant gain mirror was already derived in
[12] using the approach described in [13, 14] (see [15] for a geometric approach),

c(φ, η) := r(η) (cos φ fρ(η), sinφ fρ(η), fz(η))" , (7)

fρ(η) := sin η − 1/α sin(αη + 2γ) , (8)

fz(η) := cos η + 1/α cos(αη + 2γ) . (9)

4 principal rays are rays that enter the camera through the nodal point of its lens.
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Fig. 2. a) Parameters used in Eqs. (1), (2) to describe a reflective surface with constant
vertical angular gain α. Rays starting from the nodal point of the camera with angle
η have, after reflection at the reflective surface, the angle η′ = π − (αη + 2γ), i.e.
|∂η′/∂η| = α. The corresponding direction vectors are e and eo, defined in Eqs. (3)
and (6). b) Refraction of parallel rays at a curved surface: The central ray and another
ray (shifted by t) intersect, after refraction at the surface with curvature radius Rs, at
distance ds from the surface. Since t ≈ Rsδβ ≈ ds (δβ − δβ′), and npδβ′ ≈ δβ (law of
refraction), we obtain ds ≈ Rs(1 − 1/np)−1 which is exact as t approaches 0.

The green curve in Fig. 1 b shows a vertical transect of c(φ, η) for our imaging
system. Although it is strictly speaking not a single view-point system, this
will be noticeable only for very close objects, since the caustic of view-points is
confined to a small region, and using a fixed point at (0, 24mm) close to the
tip of the reflective surface (see Fig. 1 b), all rays have distances smaller than
2.5mm to this approximated view-point. Thus for calibration, we decided to
use the publicly available Matlab “OcamCalib” toolbox that is based on a single
viewpoint calibration model [16]. A calibration method with a non-central model
is described in [17].

2.4 Manufacturing

The perspex body was machined on a CNC lathe5 and then hand-polished on
a lathe. Next, an aluminum layer was vapor deposited6, and finally the perspex
body was attached to a small PAL-camera using a custom-made bracket7, see
Fig. 1 a.

3 Image Formation and Camera Focus

In this section, we analyze the image formation properties of the vision sensor
by considering a thin bundle of incoming parallel rays from a distant object

5 Thanks to DLR mechanics workshop.
6 At company Befort Wetzlar (www.befort-optic.com).
7 Thanks to mechanics workshop at Bielefeld University.
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that is transformed by the refractive and reflective surfaces. The analysis that
is based on local curvatures and Taylor expansion, provides – unlike numerical
or ray-tracing approaches, see e.g. [9] – analytical descriptions of the location of
(virtual) images, enabling us to discuss the imaging quality of the system.

3.1 Refraction at the Outer Perspex Surface

A bundle of parallel light rays will first hit the outer surface of the perspex
body. Since the central ray runs along the direction of the local normal vector,
see Figs. 1 b and 2 b, the location of the image created by this surface can
be estimated directly from the local curvatures. If the curvatures for different
transects are not the same, even near-central rays will not intersect in a single
point. This effect is maximized for rays shifted along the two principal curvature
directions of the perspex surface. These two groups of rays we will consider in
the following.

One can show that the principal radii of curvatures for the outer perspex
surface, defined in Eq. (4), are given by8

Rsη(η) = rmax − r(η)
(

1 − 1
α

)

,

Rsφ(η) = rmax − r(η)
(

1 − sin η
sin(αη+2γ)

)

.
(10)

Then, from the law of refraction (see Fig. 2 b), we find that near-central rays of
the two groups considered intersect at distances dsη and dsφ from the surface,

dsη(η) = Rsη(η)
1− 1

np

= np

np−1

(

rmax − r(η)
(

1 − 1
α

))

,

dsφ(η) = Rsφ(η)
1− 1

np

= np

np−1

(

rmax − r(η)
(

1 − sin η
sin(αη+2γ)

))

,
(11)

where np ≈ 1.5 is the refraction index of the perspex. Distances to the mirror
surface along eo can be calculated according to

dξ(η) = rmax − r(η) − dsξ(η) , ξ ∈ {η, φ} . (12)

For the described vision sensor, we have dη(η), dφ(η) < 0.

3.2 Reflection at the Mirror Surface

After refraction, the bundle of rays hits the curved reflective surface. Using
an extended version of the analysis describe in [12], which is derived in the
appendix, we can estimate the regions where (virtual) images are created by the
mirror surface.

Again we consider two groups of light rays shifted along the principal cur-
vature directions of the surface, but instead of parallel rays we assume that the

8 The corresponding principal curvature directions are given by the vectors
esη(φ, η) := 1

α
∂

∂η
eo(φ, η) = (cosφ cos(αη + 2γ), sin φ cos(αη + 2γ), sin(αη + 2γ))#

and esφ(φ, η) = 1
sin(αη+2γ)

∂
∂φ

eo(φ, η) = (− sin φ, cosφ, 0)#.
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rays start from an object point that has distance d to the surface9, measured
along eo, see Fig. 3 a. As derived in the appendix and depicted in Fig. 3 a, the
distance from the point where the central ray hits the reflective surface to the
point where the rays meet (measured along direction e(φ, η)) is given by

λ∗
η(η, d) = −

r(η)

„

1+
“

r′(η)
r(η)

”2
«

2

„

1+2
“

r′(η)
r(η)

”2
− r′′(η)

r(η) − r(η)
2d

„

1+
“

r′(η)
r(η)

”2
«« ,

λ∗
φ(η, d) = −

r(η)

„

1+
“

r′(η)
r(η)

”2
«

sin η

2

„

sin η−cos η
r′(η)
r(η) −sin η

r(η)
2d

„

1+
“

r′(η)
r(η)

”2
«« .

(13)

d is the distance of the object point from the surface.

For the constant angular gain mirror, Eq. (1), we find

λ∗
η(η, d) = r(η)

α−1+ r(η)
d

, λ∗
φ(η, d) = r(η) sin η

sin(αη+2γ)−sin η+ r(η)
d sin η

. (14)

Since, in general, λ∗
η and λ∗

φ are different, the reflective surface introduces a
certain amount of image blur even locally.

Substituting Eq. (12) into (14), i.e. by using d = dη(η) and d = dφ(η) for
λ∗

η and λ∗
φ respectively, we obtain the locations of virtual images for the parallel

light bundles considered before, including the refraction at the outer perspex
surface:

v̂ξ(φ, η) = x(φ, η) + λ∗
ξ(η, dξ(η))e(φ, η) + (0, 0, ∆h)" . (15)

where ξ ∈ {η, φ} indicates the two different groups of rays as before, and ∆h ≈
h(1 − np). The dashed curves in Fig. 3 b show vertical transects (φ = const.) of
v̂φ(φ, η) (shown in green) and v̂η(φ, η) (blue).

3.3 Refraction at the planar surface

Seen from the camera with camera angle θ ≈ npη, the virtual images appear
closer due to refraction at the planar camera-facing perspex surface,

vξ(φ, θ) ≈
(

(

r( θ
np

) + λ∗
ξ(

θ
np

, dξ(
θ

np
)) − h−∆h

cos( θ
np

)

)

cos2 θ
np cos2( θ

np
)
+ h

cos θ

)

e(φ, θ) . (16)

vφ(φ, θ) and vη(φ, θ) define the locations where the camera has to be focused at.
As can be seen in Fig. 3 b, they do not lie in a plane and thus for large camera

9 Of course, for d → ∞ rays become parallel.
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Fig. 3. a) Estimating the location of the virtual image of a point (with position vector
xp). See appendix for details. b) Virtual image locations of the panoramic imaging
system. The dashed curves show v̂φ(η) (green) and v̂η(η) (blue) while the solid curves
show vφ(θ) (green) and vη(θ) (blue), i.e. the virtual images as they appear when “seen”
from the camera.

apertures image blur will be visible.10 In future work we will investigate to what
extend this can be compensated by using additional optical elements [9].

4 Visual Navigation

In this section we describe the application of our imaging system to the robust
estimation of egomotion.

4.1 Tracked Point Features in Image Sequences

We are able to track point features in grayscale images using a modified KLT
tracker running in real-time on our laptop system. Fig. 4 depicts results of our
real-time tracking system. The images originate from a test sequence taken with
the system mounted on a high-precision KUKA robot that provides ground truth

10 Similar to the derivation in [12], it can be shown that the blur region in the camera
image — assuming a perfect camera lens, i.e. by neglecting blur caused by the camera
lens — can be estimated by

A(z, θ) ≈
D2f2

zφ(θ)zη(θ)
|z − zφ(θ)||z − zη(θ)|

z2
, (17)

zφ(θ) := rφ(θ) cos θ , zη(θ) := rη(θ) cos θ , (18)

where z is the distance the camera is focused at, D the size of the aperture, and f
the focal length of the camera lens.
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Fig. 4. Tracked sequence from the original video stream. The point features for tracking
are obtained from a modified “GoodFeaturesToTrack()” routine of Intel’s OpenCV
image processing package. Image size is 480 × 352 pixels.

motion. The selected features are filtered with a mask representing the mirror
and robot geometries that should not be used for motion estimation.

Since features move out of view of the sensor, we select new features to fill the
camera image uniformly. This ensures a good condition number of the resulting
localization. A sensitivity analysis is out of the scope of this paper and the reader
can refer to [18] for details.

4.2 Abstraction of the Sensor Model

We use the “cam2world” function from the “OcamCalib” toolbox [16] to calcu-
late the mapping functions φ(uf

i , vf
i ) (azimuth) and ε(uf

i , vf
i ) (elevation) from

the pixel values (uf
i , vf

i ) in the camera image. Fig. 5 shows the almost linear
relationship between the distance from the image center ρ =

√
u2 + v2 and the

elevation angle ε.11

11 The average mean reprojection error of checkerboard corners (averaged over 12 pic-
tures) was 0.4636 pixel (min: 0.3428 pixel, max: 0.5405 pixel). The parameters of the
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Fig. 5. Calibration of the imaging system with the “OcamCalib” toolbox confirms the
almost linear mapping between the distance from the image center and the elevation
angle (shown for azimuth angle φ = 0, the curves for different azimuth angles are
virtually identical). The dashed line shows ε = 0.8208◦/pixel × ρ.

The abstraction of our mirror system to a single view-point camera allows
to use our already presented navigation algorithms that apply directly to raw
camera images after a correction for the imaging properties.

4.3 Navigation Alternatives

Z∞ Navigation. We presented already in [19] an alternative for direct calculation
of the motion parameters from two images with given point correspondences
between them. For large viewing areas in image sequences a separation of features
in distant and close ones is possible. This seperation allows direct calculation of
the resulting rotation matrix. A compensation of the rotation can be applied
to all correspondences resulting in a direct estimation of the translation up to
an unknown scale. This method also allows to estimate the accuracy of the
computed motion values [19].

VGPS Navigation Method. For indoor navigation with just close features sur-
rounding the sensor, we apply our VGPS method [20] to estimate the motion of
the camera between frames.

We plan to add an extended experimental validation of the already acquired
navigation data with ground-truth from a high precision manipulator in an ex-
tended version of this paper.

polynomial f(ρ) = a0 + a1ρ + a2ρ
2 + a3ρ

3 + a4ρ
4 used in the calibration model were

estimated to be a0 = −63.2, a1 = 0, a2 = 0.003, a3 = 5.3 × 10−7, a4 = 1.95 × 10−7.
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Appendix

We will present the major steps in the derivation of (13) by considering two light
rays that start from a single point p, see Fig. 3 a. The first ray, the “principal
ray”, hits the mirror surface at x(φ, η) and runs, after reflection, along the vector
−e(φ, η) through the origin of the coordinate system. For a reflective surface
defined by x(φ, η) = r(η)e(φ, η) as in Eqs. (1), (2), the position of p can thus be
described by

xp = x(φ, η) + d eo(φ, η) , (19)

where eo := e − 2(ne)n is a direction vector12, obtained from reflecting e at
the mirror surface; n is the local normal vector in point x.13 The second ray
considered runs along −es = −(ẽ − 2(ñẽ)ñ) and hits the surface at point x̃ =
x(φ + ∆φ, η + ∆η), shifted in a direction defined by ψ, i.e. ∆φ = ∆µ sinψ and
∆η = ∆µ cosψ.

We will use Taylor expansion up to second order to determine the virtual
image of p,

x′
p = x(φ, η) + λ∗e(φ, η) = (r(η) + λ∗)e(φ, η) . (20)

λ∗ gives the distance from x along e where the two rays after reflection at the
mirror have their smallest distance from each other. It can be easily shown that

λ∗ = (x̃−x)((eẽ)ẽ−e)
(eẽ)2−1 . (21)

Next, we estimate ẽ given by

ẽ = es − 2(ñes)ñ . (22)

From Fig. 3 a, we see that

es = Es

|Es|
= deo−(x̃−x)

d

q

e2
o−2 (x̃−x)eo

d + (x̃−x)2

d2

≈ eo + ∆es + ∆2es ,

∆es := (eo∆x)eo−∆x

d
,

∆2es := (eo∆
2
x)eo−∆

2
x

d
+ 3(eo∆x)2eo−2(eo∆x)∆x−(∆x)2eo

2d2 .

(23)

Here and in the following, we use for z ∈ {x, n} the approximation

z̃ ≈ z + ∆z + ∆2z , (24)

with the abbreviations

∆z := ∂z

∂φ∆φ + ∂z

∂η ∆η , ∆2z := 1
2

∂2
z

∂φ2 ∆φ2 + ∂2
z

∂φ∂η ∆η∆φ + 1
2

∂2
z

∂η2 ∆η2 .

12 All direction vectors (e, ẽ, n, . . . ) are assumed to have unit length.
13

n is given by
∂x

∂φ
× ∂x

∂η
‚

‚

‚

∂x

∂φ
× ∂x

∂η

‚

‚

‚

.
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Substituting (23) into Eq. (22), we obtain

ẽ = es − 2(ñes)ñ ≈ e + ∆e + ∆2e ,

∆e := ∆es − 2
(

(n∆es)n + (∆neo)n + (neo)∆n

)

,

∆2e := ∆2es − 2
(

(n∆2es)n + (∆n∆es)n + (n∆es)∆n

+(∆2neo)n + (∆neo)∆n + (neo)∆2n

)

.

This leads to the second order approximation of Eq. (21),

λ∗ ≈ ∆x∆e

2e∆
2
e

, (25)

and, after some lengthy algebraic manipulations, we finally have

λ∗ ≈ − 1
2r(η)

(

1 + ( r′

r
)2

)

∆η2g(η)+∆φ2h(η) sin η
∆η2g(η)2+∆φ2h(η)2 ,

g(η) := 1 + 2( r′

r
)2 − r′′

r
− r

2d

(

1 + ( r′

r
)2

)

,

h(η) :=
(

sin η − cos η r′

r

)

− sin η r
2d

(

1 + ( r′

r )2
)

.

(26)

Substituting ∆η = ∆µ cos ψ and ∆φ = ∆µ sinψ, where ψ defines the direction
of the shift between the two points x and x̃ on the mirror, we obtain

λ∗ ≈ 1
2r(η)

(

1 + ( r′

r )2
)

cos2ψg(η)+sin2ψh(η) sin η
cos2ψg(η)2+sin2ψh(η)2 . (27)

The extremal values of λ∗ with respect to χ := cos2 ψ = 1− sin2 ψ are for χ = 0
and χ = 1,14

λ∗
η := − 1

2r(η)
(

1 + ( r′

r )2
)

1
g(η) , λ∗

φ := − 1
2r(η)

(

1 + ( r′

r )2
)

sin η
h(η) , (28)

already defined in (13).
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6. Goedemé, T., Nuttin, M., Tuytelaars, T., Gool, L.V.: Omnidirectional vision based

topological navigation. International Journal of Computer Vision 74 (2007) 219–
236
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