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Abstract. In this paper, we present results of a complete framework
for non-holonomic robot navigation in indoor and outdoor environments
using a single wide field-of-view camera. The proposed navigation frame-
work for wheeled robots is based on a visual memory containing key im-
ages to reach. During a human-guided learning step, the robot performs
paths which are sampled and stored as a set of ordered key images, ac-
quired by an embedded camera. The set of these obtained visual paths
is topologically organized and provides a visual memory of the envi-
ronment. Given an image of one of the visual paths as a target, the
robot navigation mission is defined as a visual route. When running au-
tonomously, the control guides the robot along the reference visual route
without explicitly planning any trajectory. The control consists in a con-
trol law adapted to the nonholonomic constraint and directly computed
from visual points. The proposed framework has been designed for a
generic class of cameras. In this paper, experiments have been carried
on with catadioptric and fisheye cameras, in indoor environment with
a AT3 Pioneer robot and in outdoor environment with an autonomous
urban vehicle.

1 Introduction

Often used among more "traditional" embedded sensors - proprioceptive sensors
like odometers as exteroceptive ones like sonars - vision sensor provides accurate
localization methods. The authors of [1] accounts of twenty years of works at
the meeting point of mobile robotics and computer vision communities. In many
works, a map of the environment and the robot localization in this absolute
frame are simultaneously updated. Both motion planning and robot control can
then be designed in this space. The results obtained by the authors of [2] leave
to be forcasted that such a framework will be reachable using a single camera.
However, although an accurate global localization is unquestionably useful, our
aim is to build a complete vision-based framework without recovering the po-
sition of the mobile robot with respect to a reference frame. In [1] this type of
framework is ranked among qualitative approaches.

The principle of this approach is to represent the robot environment with a
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Fig. 1. Three applications: navigation of a Pioneer AT3 equipped with a catadioptric
camera (a) and with a fisheye camera (b) and navigation of an urban vehicle (c).

bounded quantity of images gathered in a set called visual memory. In the con-
text of mobile robotics, [3] proposes to use a sequence of images, recorded during
a human teleoperated motion, and called View-Sequenced Route Reference. This
concept underlines the close link between a human-guided learning and the per-
formed paths during an autonomous run. However, the automatic control of the
robot in [3] is not formulated as a visual servoing task. In [4], homing strategy is
used to control a wheelchair from a memory of omnidirectional images but the
control of this holonomic robot is not part of the presented framework.

In the proposed framework, the control design directly takes into account the
non-holonomic model of the robot and is computed from the feature matching.
Panoramic views acquired by large field-of-view cameras are well adapted to this
approach since they provide a large amount of visual features which can be ex-
ploited as well as for localization than for visual servoing.

The aim of this paper is to present different experimental validation. The con-
cept of visual memory is briefly explained in Section 2 and more details can be
found in [5]. The Section 3 deals with the vision-based control scheme designed
to control the robot motions along a visual route using large field-of-view im-
ages. Finally, in Section 4, experiments on a Pioneer AT3 mobile robot using
catadioptric and fisheye cameras (refer to Fig. 1 (a), (b)) and on an urban vehi-
cle equipped with a fisheye camera (refer to Fig. 1 (c)) illustrate the proposed
framework.

2 Vision-based memory navigation (VBMN) strategy

Our approach can be divided in three steps 1) visual memory building, 2) local-
ization into the visual memory, 3) navigation into the visual memory (refer to
Fig. 2).

2.1 Visual Memory Structure

The learning stage relies on the human experience. The user guides the robot
along paths where the robot is authorized to go. Only some key views are kept
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Fig. 2. Principle of our VMBN approach

and form the visual memory. The key image selection is done as detailled in the
sequel. The considered visual features are points. As proposed in [2] and success-
fully applied for the metric localization of autonomous robots in outdoor envi-
ronment, interest points are detected in each image with Harris corner detector
and matched by computing a Zero Normalized Cross Correlation score. In our ex-
periment, 500 points are detected in each image. The first image of the sequence
acquired during the learning step is selected as the first key frame Z;. A key
frame Z; 4 is then chosen so that there are as many frames as possible between
Z; and Z; 1 while there are at least M common interest points tracked between
Z; and Z;; 1. From this selection, it results a visual path ¥ which is a directed
graph composed of n successive key images (vertices): ¥ = {Z;|i = {1,2,...,n}}.
For control purpose, two hypothesis are supposed to be verified: 1) the autho-
rized motions during the learning stage are assumed to be limited to those of a
car-like robot, which only goes forward and 2) two successive key images Z; and
Z;y1 contain a set P; of matched visual features, which can be observed along a
path performed between ®F; and %F;,; and which allows the computation of
the control law.

Finally, the visual memory consits on a set of visual paths connected (multi-

graph).
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2.2 Visual route

A visual route describes the robot’s mission in the sensor space. Given the images
Z; and Z,, a visual route is a set of key images which describes a path from Z;
to Zy. I is the closest key image to the current image of the robot determined
during a localization step. This step consists in finding the image of the memory
which best fits the current image acquired by the embedded camera. The last
step of the framework is to follow this visual route.

3 Routes following using an omnidirectional camera

Z. is the current image and 7,41 is the next key image of the path to reach. The
hand-eye parameters (i.e. the rigid transformation between F. and the frame
attached to the camera) are supposed to be known. The vehicle is supposed to
locally navigate in a planar surface. Let us note F;11 = (O;+1, Xit1, Yit1, Zit1)
the frame attached to the robot when Z; 1 was stored and F. = (O., X¢, Y¢, Zc)
a frame attached to the robot in its current location (refer to Fig. 3). The origin
O, of F,. is the origin of the control frame of the robot.

Z. Zin
Fit1

Oi+1

Yi

4

Fig. 3. The frame F;1 along the trajectory (I") is the frame where the desired image
Zi+1 was acquired. The current image Z. is situated at the frame F..

3.1 Principle and control law design

The control strategy consists in guiding Z. to Z; 1 by regulating asymptotically
the axle Y. on the straight line (I") = (O;4+1, Yi+1) (refer to Fig. 3). The control
objective is achieved if Y. is regulated before the origin of F. reaches the origin
of F;t1. The longitudinal velocity (respectively the angular velocity) of the robot
is V (respectively w). Let y be the distance between O, and (I") and 6 the angular
error between the current direction of the vehicle and the desired direction. As
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proposed in [6], an asymptotically stable guidance control law based on the chain
system approach can be designed to achieve this goal:

w(y,0) = =V cos® 0K,y — |V cos® 0| Ky tan 6 (1)

As long as the robot longitudinal velocity V is non zero, the performances of
path following can be determined in terms of settling distance [7] that is to say in
terms of the distance to travel before reaching the desired position. K, and K4
are two positive gains which set the performances of the control law depending
on the settling distance. The lateral and angular deviations of F. with respect
to (I') can be obtained through partial Euclidean reconstructions as described
in Section 3.2.

For robot relying on the Ackermann’s model (bicycle model) as the RobuCab
vehicle, the control law can be obtained using the same approach.

3.2 State estimation from the unified model of camera on the
sphere

A classical model for central catadioptric cameras is the unified model on the
sphere [8]. It has been shown in [9,10] that this model is also suitable for fisheye
cameras in robotic applications.

The point in the image plane corresponding to the 3D point A of coordinates
X=[XYZ ]T is obtained after a projection on a virtual unit sphere, followed
by a perspective projection on the normalized image plane Z = 1—¢ and a plane-
to-plane collineation [8] (refer to Figure 4) where the parameter £ describes the
type of sensor. The homogeneous coordinates x; of this image point is

Fig. 4. Geometry of two views using the unified model on the sphere.
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K. contains the usual intrinsic parameters of the perspective camera and M
contains the parameters of the frames changes.

We notice that the coordinates X, of the projection on the sphere can be
computed as a function of the coordinates in the image x and the sensor param-
eter &:

X = (7" + X (3)
T —y —&@* +v°)
% T 1 i =222 -1
X = |x T+ en with: (2 +y?) -1
Y=+ (1 =)@ +y7)

Depending on the context, a scale euclidean reconstruction is computed using
the homography matrix when 3D points are coplanar or using the essential ma-
trix otherwise as detailled in the sequel.

Let X be a 3D point with coordinates X. = [X. Y, Z. ]T in the current frame
F. and X* = [X;41 Yig1 Zig1 | in the frame F, . This point is projected onto
the unit spheres into the points X, and X, (refer to Fig. 4). We suppose that
the camera is calibrated.

Scaled Euclidean reconstruction from planar 3D points Let consider
that the point X belongs to a plane (7). After some algebric manipulation, we
obtain:

X oc HX* (4)
where H is the Euclidean homography matrix relative to the plane (), function
of the camera displacement and of the plane coordinates in F;, ;. As usual, the
homography related to (7) can be estimated up to a scale factor with at least
four couples of points. From the H-matrix, the camera motions parameters (the
rotation matrix R and the scaled translation tqx = 2-) and the structure of the
observed scene can be estimated (for more details refer to [11]).

Scaled Euclidean reconstruction from non planar points When con-
sidering non-planar 3D points, the epipolar geometry is used. The epipolar plane
contains the projection centers O, and O;y; and the 3D point X. The points
of coordinates X, and X7, clearly belong to this plane which is traduced by the
relation:

X 'Rt x X5T) =X TRt X5 =0 (5)

where R and t represent the rotational matrix and the translational vector be-
tween the current and the desired frames. Similarly to the case of pinhole model,
the relation (5) can be written:

X TEXET =0 (6)

where E = R[t], is the essential matrix [12]. The essential matrix E between
two images is estimated using five couples of matched points as proposed in [13].
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From the essential matrix, the camera motion parameters (that is the rotation
R and the translation t up to a scale) can be determined.

Finally, the estimation of the input of the control law (1), i.e the angular devia-
tion 6 and the lateral deviation y, are computed straightforwardly from R and
t.

4 Experimentations

For our experiments, cameras have been calibrated using the Matlab toolbox
presented in [14]. The parameters of the rigid transformation between the cam-
era and the robot control frames are roughly estimated. Grey level images are
acquired at a rate of 15 fps. A learning stage has been conducted off-line and
images have been memorized as proposed in Section 2.

4.1 Experimentation with a catadioptric camera and planar 3D
points in indoor environment

The proposed framework is implemented on an external standard PC which
wireless controls a Pioneer AT3 robot. A catadioptric camera is embedded on
the robot and its principal axis is approximately confounded with the rotation
axis of the robot (refer to Fig. 1 (a)). Three key views (refer to Fig. 5) have
been selected to drive the robot from its initial configuration to the desired one.
For this experiments, the positions of four planar points are memorized and then
tracked. The control is realized using the homography matrix from the projection
of the patterns onto the equivalence sphere. Note that distances from the optical
center at the desired position to the reference plane have been overestimated
and that the directions of the normals of the plane are roughly estimated. The
results of the experimentation (refer to Fig. 6) show that the lateral and the
angular errors are regulated to zero before reaching a key image.

Fig. 5. Initial image I and desired images the robot has to reach I7,j =1:3 (Ist
experimentation).
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Fig. 6. Evolution of the lateral (in m) and the angular (in rad) errors and of the control
input (angular speed in deg/s) during the experimentation (1st experimentation).

4.2 Experimentation with a fisheye camera in indoor environment

The Pioneer AT3 robot is now equiped with the Fujinon fisheye lens mounted
onto a Marlin F131B camera . The camera providing a field of view of 185 deg
and looking forward, is situated at approximately 30 ¢cm from the ground. Sev-
eral paths have been memorized (some of the images are shown in Fig. 7). The
robot starts indoor and ends outdoor and the camera grabs images with natural
landmarks. Given a goal image, a visual path has been extracted. At each frame,
points are extracted from the current image and matched with the desired key
image. A robust partial reconstruction is then applied using the current, de-
sired and the former desired images of the memory. Angular and lateral errors
are extracted and allow the computation of the control law (2). A key image is
supposed to be reached when one of the "image errors" is smaller than a fixed
threshold. In our experiment, we have considered two "image errors": the longer
distance between an image point and its position in the desired key image (errIm-
ageMax) and the mean distance between those points (errPoints), expressed in
pixels. The longitudinal velocity V has been fixed to 200 mms~!. The gains K,
and K4 have been set in order that error presents a double pole located at value
0.3. For safety, the absolute value of the control input is bounded to 10 degrees
by second. Lateral and angular errors as well as control input are represented
in Fig. 8. Red crosses are plotted when key images change. As in the first ex-
perimentation, those errors are well regulated to zero for each key view. The
image errors (expressed in pixels) are also decreasing before reaching the key
views (refer to Fig. 9). Errors still remain different to zero because the current
image do not reached exactly the desired image. As it can be noticed in Fig. 10,
our method is robust to changes in the environment. A man was going in the
direction of the robot (at the left) during the manually driven step whereas a
man is walking at the right of the Pioneer AT3 robot during the autonomous
navigation.
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Fig. 7. Parts of the visual path to follow (2nd experimentation).
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Fig. 9. Image errors: (errImageMax) and (errPoints) vs time (2nd experimentation)

4.3 Experimentation with a fisheye camera in outdoor environment

Our framework is now applied to the navigation of an urban electric vehicle,
named RobuCab. The same fisheye camera as previously, looking forward, is
situated at approximately 80 cm from the ground. This vehicle is manually
driven along the 800-meter-long path shown in blue in Fig. 11. This path contains
important turns as well as ways down and up and a come back.

After the selection step, 800 key images are kept and form the visual memory
of the vehicle. The longitudinal velocity V is fixed between 1ms~! and 0.4 ms™*
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Fig. 10. The image (a) corresponds to the reached key image (b) of the visual memory
(2nd experimentation).

depending on the position on the path to follow (straight lines or turns). The
experiment lasts 13 minutes for a path of 754 meters which results to a mean
velocity of 0.8ms~!. A mean of 123 robust matching for each frame has been
found. The mean computational time during the online navigation was of 82 ms
by image. The errors in the images decrease to zero until reaching a key image
(refer to Fig. 12).

Lateral and angular errors as well as control input are represented in Fig. 13.
As it can be noticed, those errors are well regulated to zero for each key view
excepted when high turns occur. Our control law (line reaching) is not able to
converge quickly in those cases. Significant errors are thus obtained during the
large turns but errors are then decreasing. In future works, we plan to improve
our control law to manage more efficiently the navigation in large turns.

Leamt Tmjectory
== {m-linc ‘I'rajoctory

Fig. 11. Paths in the universitary campus executed during the memorization step (in
red) and the autonomous step (in blue) (3rd experimentation).
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Fig. 12. Errors in the images vs time (3rd experimentation).
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Fig. 13. Lateral y and angular 6 errors and control input ¢ vs time (3rd experimenta-
tion).

5 Conclusion

In this paper an image-based navigation framework dedicated to nonholonomic
mobile robots has been presented. The approach is illustrated in the context of
indoor /outdoor environment using a single wide field of view camera and natu-
ral landmarks. We propose to learn the environment as a graph of visual paths,
called visual memory. A visual route is made of a sequence of key images of the
environment which describes, in the sensor space, an admissible path for the
robot. This visual route can be performed thanks to a visual-servoing control
law, which is adapted to the robot nonholonomy.

Future works will be devoted to relax the staticity constraint of the environment.
We will try to analyse and to take into account environment modifications, which
may occur between learning steps and autonomous runs, in both visual route
building and following.
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