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Abstra
t. In this paper, we present results of a 
omplete framework
for non-holonomi
 robot navigation in indoor and outdoor environments
using a single wide �eld-of-view 
amera. The proposed navigation frame-
work for wheeled robots is based on a visual memory 
ontaining key im-
ages to rea
h. During a human-guided learning step, the robot performs
paths whi
h are sampled and stored as a set of ordered key images, a
-
quired by an embedded 
amera. The set of these obtained visual paths
is topologi
ally organized and provides a visual memory of the envi-
ronment. Given an image of one of the visual paths as a target, the
robot navigation mission is de�ned as a visual route. When running au-
tonomously, the 
ontrol guides the robot along the referen
e visual route
without expli
itly planning any traje
tory. The 
ontrol 
onsists in a 
on-
trol law adapted to the nonholonomi
 
onstraint and dire
tly 
omputed
from visual points. The proposed framework has been designed for a
generi
 
lass of 
ameras. In this paper, experiments have been 
arried
on with 
atadioptri
 and �sheye 
ameras, in indoor environment with
a AT3 Pioneer robot and in outdoor environment with an autonomous
urban vehi
le.

1 Introdu
tion

Often used among more "traditional" embedded sensors - proprio
eptive sensors

like odometers as extero
eptive ones like sonars - vision sensor provides a

urate

lo
alization methods. The authors of [1℄ a

ounts of twenty years of works at

the meeting point of mobile roboti
s and 
omputer vision 
ommunities. In many

works, a map of the environment and the robot lo
alization in this absolute

frame are simultaneously updated. Both motion planning and robot 
ontrol 
an

then be designed in this spa
e. The results obtained by the authors of [2℄ leave

to be for
asted that su
h a framework will be rea
hable using a single 
amera.

However, although an a

urate global lo
alization is unquestionably useful, our

aim is to build a 
omplete vision-based framework without re
overing the po-

sition of the mobile robot with respe
t to a referen
e frame. In [1℄ this type of

framework is ranked among qualitative approa
hes.

The prin
iple of this approa
h is to represent the robot environment with a
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Fig. 1. Three appli
ations: navigation of a Pioneer AT3 equipped with a 
atadioptri


amera (a) and with a �sheye 
amera (b) and navigation of an urban vehi
le (
).

bounded quantity of images gathered in a set 
alled visual memory. In the 
on-

text of mobile roboti
s, [3℄ proposes to use a sequen
e of images, re
orded during

a human teleoperated motion, and 
alled View-Sequen
ed Route Referen
e. This


on
ept underlines the 
lose link between a human-guided learning and the per-

formed paths during an autonomous run. However, the automati
 
ontrol of the

robot in [3℄ is not formulated as a visual servoing task. In [4℄, homing strategy is

used to 
ontrol a wheel
hair from a memory of omnidire
tional images but the


ontrol of this holonomi
 robot is not part of the presented framework.

In the proposed framework, the 
ontrol design dire
tly takes into a

ount the

non-holonomi
 model of the robot and is 
omputed from the feature mat
hing.

Panorami
 views a
quired by large �eld-of-view 
ameras are well adapted to this

approa
h sin
e they provide a large amount of visual features whi
h 
an be ex-

ploited as well as for lo
alization than for visual servoing.

The aim of this paper is to present di�erent experimental validation. The 
on-


ept of visual memory is brie�y explained in Se
tion 2 and more details 
an be

found in [5℄. The Se
tion 3 deals with the vision-based 
ontrol s
heme designed

to 
ontrol the robot motions along a visual route using large �eld-of-view im-

ages. Finally, in Se
tion 4, experiments on a Pioneer AT3 mobile robot using


atadioptri
 and �sheye 
ameras (refer to Fig. 1 (a), (b)) and on an urban vehi-


le equipped with a �sheye 
amera (refer to Fig. 1 (
)) illustrate the proposed

framework.

2 Vision-based memory navigation (VBMN) strategy

Our approa
h 
an be divided in three steps 1) visual memory building, 2) lo
al-

ization into the visual memory, 3) navigation into the visual memory (refer to

Fig. 2).

2.1 Visual Memory Stru
ture

The learning stage relies on the human experien
e. The user guides the robot

along paths where the robot is authorized to go. Only some key views are kept
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Fig. 2. Prin
iple of our VMBN approa
h

and form the visual memory. The key image sele
tion is done as detailled in the

sequel. The 
onsidered visual features are points. As proposed in [2℄ and su

ess-

fully applied for the metri
 lo
alization of autonomous robots in outdoor envi-

ronment, interest points are dete
ted in ea
h image with Harris 
orner dete
tor

and mat
hed by 
omputing a Zero Normalized Cross Correlation s
ore. In our ex-

periment, 500 points are dete
ted in ea
h image. The �rst image of the sequen
e

a
quired during the learning step is sele
ted as the �rst key frame I1. A key

frame Ii+1 is then 
hosen so that there are as many frames as possible between

Ii and Ii+1 while there are at least M 
ommon interest points tra
ked between

Ii and Ii+1. From this sele
tion, it results a visual path Ψ whi
h is a dire
ted

graph 
omposed of n su

essive key images (verti
es): Ψ = {Ii|i = {1, 2, . . . , n}}.
For 
ontrol purpose, two hypothesis are supposed to be veri�ed: 1) the autho-

rized motions during the learning stage are assumed to be limited to those of a


ar-like robot, whi
h only goes forward and 2) two su

essive key images Ii and

Ii+1 
ontain a set Pi of mat
hed visual features, whi
h 
an be observed along a

path performed between RFi and RFi+1 and whi
h allows the 
omputation of

the 
ontrol law.

Finally, the visual memory 
onsits on a set of visual paths 
onne
ted (multi-

graph).
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2.2 Visual route

A visual route des
ribes the robot's mission in the sensor spa
e. Given the images

I∗

s and Ig, a visual route is a set of key images whi
h des
ribes a path from I∗

s

to Ig. I
∗

s is the 
losest key image to the 
urrent image of the robot determined

during a lo
alization step. This step 
onsists in �nding the image of the memory

whi
h best �ts the 
urrent image a
quired by the embedded 
amera. The last

step of the framework is to follow this visual route.

3 Routes following using an omnidire
tional 
amera

Ic is the 
urrent image and Ii+1 is the next key image of the path to rea
h. The

hand-eye parameters (i.e. the rigid transformation between Fc and the frame

atta
hed to the 
amera) are supposed to be known. The vehi
le is supposed to

lo
ally navigate in a planar surfa
e. Let us note Fi+1 = (Oi+1,Xi+1,Yi+1,Zi+1)
the frame atta
hed to the robot when Ii+1 was stored and Fc = (Oc,Xc,Yc,Zc)
a frame atta
hed to the robot in its 
urrent lo
ation (refer to Fig. 3). The origin

Oc of Fc is the origin of the 
ontrol frame of the robot.

y θ

Oi+1

Xi+1

Yi+1

Zi+1

Xc

Yc

Zc

V

ω

Fc
Fi+1

(R, t)

(Γ)

Oc

Fig. 3. The frame Fi+1 along the traje
tory (Γ ) is the frame where the desired image
Ii+1 was a
quired. The 
urrent image Ic is situated at the frame Fc.

3.1 Prin
iple and 
ontrol law design

The 
ontrol strategy 
onsists in guiding Ic to Ii+1 by regulating asymptoti
ally

the axle Yc on the straight line (Γ ) = (Oi+1,Yi+1) (refer to Fig. 3). The 
ontrol

obje
tive is a
hieved if Yc is regulated before the origin of Fc rea
hes the origin

of Fi+1. The longitudinal velo
ity (respe
tively the angular velo
ity) of the robot

is V (respe
tively ω). Let y be the distan
e between Oc and (Γ ) and θ the angular

error between the 
urrent dire
tion of the vehi
le and the desired dire
tion. As
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proposed in [6℄, an asymptoti
ally stable guidan
e 
ontrol law based on the 
hain

system approa
h 
an be designed to a
hieve this goal:

ω(y, θ) = −V cos3 θKpy − |V cos3 θ|Kd tan θ (1)

As long as the robot longitudinal velo
ity V is non zero, the performan
es of

path following 
an be determined in terms of settling distan
e [7℄ that is to say in

terms of the distan
e to travel before rea
hing the desired position. Kp and Kd

are two positive gains whi
h set the performan
es of the 
ontrol law depending

on the settling distan
e. The lateral and angular deviations of Fc with respe
t

to (Γ ) 
an be obtained through partial Eu
lidean re
onstru
tions as des
ribed

in Se
tion 3.2.

For robot relying on the A
kermann's model (bi
y
le model) as the RobuCab

vehi
le, the 
ontrol law 
an be obtained using the same approa
h.

3.2 State estimation from the uni�ed model of 
amera on the

sphere

A 
lassi
al model for 
entral 
atadioptri
 
ameras is the uni�ed model on the

sphere [8℄. It has been shown in [9, 10℄ that this model is also suitable for �sheye


ameras in roboti
 appli
ations.

The point in the image plane 
orresponding to the 3D point X of 
oordinates

X = [X Y Z ]
T
is obtained after a proje
tion on a virtual unit sphere, followed

by a perspe
tive proje
tion on the normalized image plane Z = 1−ξ and a plane-

to-plane 
ollineation [8℄ (refer to Figure 4) where the parameter ξ des
ribes the

type of sensor. The homogeneous 
oordinates x
i
of this image point is

Image Plane

Image Plane

O∗
c

X ∗
m

X

Fi+1

C

Xm

Fc

xi

x
∗
i

ξ

C

Oc

(R, t)

Fig. 4. Geometry of two views using the uni�ed model on the sphere.

xi = KcM

[

X

Z + ξ‖X‖

Y

Z + ξ‖X‖
1

]

(2)
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Kc 
ontains the usual intrinsi
 parameters of the perspe
tive 
amera and M


ontains the parameters of the frames 
hanges.

We noti
e that the 
oordinates Xm of the proje
tion on the sphere 
an be


omputed as a fun
tion of the 
oordinates in the image x and the sensor param-

eter ξ:

Xm = (η−1 + ξ)x (3)

x =

[

x
T 1

1 + ξη

]T

with:







η =
−γ − ξ(x2 + y2)

ξ2(x2 + y2) − 1
γ =

√

1 + (1 − ξ2)(x2 + y2)

Depending on the 
ontext, a s
ale eu
lidean re
onstru
tion is 
omputed using

the homography matrix when 3D points are 
oplanar or using the essential ma-

trix otherwise as detailled in the sequel.

Let X be a 3D point with 
oordinates Xc = [Xc Yc Zc ]
T

in the 
urrent frame

Fc and X
∗ = [Xi+1 Yi+1 Zi+1 ]

T
in the frame Fi+1. This point is proje
ted onto

the unit spheres into the points Xm and X ∗

m (refer to Fig. 4). We suppose that

the 
amera is 
alibrated.

S
aled Eu
lidean re
onstru
tion from planar 3D points Let 
onsider

that the point X belongs to a plane (π). After some algebri
 manipulation, we

obtain:

x ∝ Hx
∗ (4)

where H is the Eu
lidean homography matrix relative to the plane (π), fun
tion
of the 
amera displa
ement and of the plane 
oordinates in Fi+1. As usual, the

homography related to (π) 
an be estimated up to a s
ale fa
tor with at least

four 
ouples of points. From the H-matrix, the 
amera motions parameters (the

rotation matrix R and the s
aled translation td∗ = t

d∗
) and the stru
ture of the

observed s
ene 
an be estimated (for more details refer to [11℄).

S
aled Eu
lidean re
onstru
tion from non planar points When 
on-

sidering non-planar 3D points, the epipolar geometry is used. The epipolar plane


ontains the proje
tion 
enters Oc and Oi+1 and the 3D point X . The points

of 
oordinates Xm and X
∗

m 
learly belong to this plane whi
h is tradu
ed by the

relation:

Xm
T
R(t × X

∗

m

T ) = Xm
T
R [t]

×
X
∗

m

T = 0 (5)

where R and t represent the rotational matrix and the translational ve
tor be-

tween the 
urrent and the desired frames. Similarly to the 
ase of pinhole model,

the relation (5) 
an be written:

Xm
T
EX

∗

m

T = 0 (6)

where E = R [t]
×

is the essential matrix [12℄. The essential matrix E between

two images is estimated using �ve 
ouples of mat
hed points as proposed in [13℄.
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From the essential matrix, the 
amera motion parameters (that is the rotation

R and the translation t up to a s
ale) 
an be determined.

Finally, the estimation of the input of the 
ontrol law (1), i.e the angular devia-

tion θ and the lateral deviation y, are 
omputed straightforwardly from R and

t.

4 Experimentations

For our experiments, 
ameras have been 
alibrated using the Matlab toolbox

presented in [14℄. The parameters of the rigid transformation between the 
am-

era and the robot 
ontrol frames are roughly estimated. Grey level images are

a
quired at a rate of 15 fps. A learning stage has been 
ondu
ted o�-line and

images have been memorized as proposed in Se
tion 2.

4.1 Experimentation with a 
atadioptri
 
amera and planar 3D

points in indoor environment

The proposed framework is implemented on an external standard PC whi
h

wireless 
ontrols a Pioneer AT3 robot. A 
atadioptri
 
amera is embedded on

the robot and its prin
ipal axis is approximately 
onfounded with the rotation

axis of the robot (refer to Fig. 1 (a)). Three key views (refer to Fig. 5) have

been sele
ted to drive the robot from its initial 
on�guration to the desired one.

For this experiments, the positions of four planar points are memorized and then

tra
ked. The 
ontrol is realized using the homography matrix from the proje
tion

of the patterns onto the equivalen
e sphere. Note that distan
es from the opti
al


enter at the desired position to the referen
e plane have been overestimated

and that the dire
tions of the normals of the plane are roughly estimated. The

results of the experimentation (refer to Fig. 6) show that the lateral and the

angular errors are regulated to zero before rea
hing a key image.

Fig. 5. Initial image I0
c and desired images the robot has to rea
h I∗j , j = 1 : 3 (1st

experimentation).
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Fig. 6. Evolution of the lateral (in m) and the angular (in rad) errors and of the 
ontrol
input (angular speed in deg/s) during the experimentation (1st experimentation).

4.2 Experimentation with a �sheye 
amera in indoor environment

The Pioneer AT3 robot is now equiped with the Fujinon �sheye lens mounted

onto a Marlin F131B 
amera . The 
amera providing a �eld of view of 185 deg
and looking forward, is situated at approximately 30 
m from the ground. Sev-

eral paths have been memorized (some of the images are shown in Fig. 7). The

robot starts indoor and ends outdoor and the 
amera grabs images with natural

landmarks. Given a goal image, a visual path has been extra
ted. At ea
h frame,

points are extra
ted from the 
urrent image and mat
hed with the desired key

image. A robust partial re
onstru
tion is then applied using the 
urrent, de-

sired and the former desired images of the memory. Angular and lateral errors

are extra
ted and allow the 
omputation of the 
ontrol law (2). A key image is

supposed to be rea
hed when one of the "image errors" is smaller than a �xed

threshold. In our experiment, we have 
onsidered two "image errors": the longer

distan
e between an image point and its position in the desired key image (errIm-

ageMax) and the mean distan
e between those points (errPoints), expressed in

pixels. The longitudinal velo
ity V has been �xed to 200mms−1. The gains Kp

and Kd have been set in order that error presents a double pole lo
ated at value

0.3. For safety, the absolute value of the 
ontrol input is bounded to 10 degrees

by se
ond. Lateral and angular errors as well as 
ontrol input are represented

in Fig. 8. Red 
rosses are plotted when key images 
hange. As in the �rst ex-

perimentation, those errors are well regulated to zero for ea
h key view. The

image errors (expressed in pixels) are also de
reasing before rea
hing the key

views (refer to Fig. 9). Errors still remain di�erent to zero be
ause the 
urrent

image do not rea
hed exa
tly the desired image. As it 
an be noti
ed in Fig. 10,

our method is robust to 
hanges in the environment. A man was going in the

dire
tion of the robot (at the left) during the manually driven step whereas a

man is walking at the right of the Pioneer AT3 robot during the autonomous

navigation.
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(a)

(b)

Fig. 7. Parts of the visual path to follow (2nd experimentation).

Fig. 8. Lateral y and angular θ errors and 
ontrol input δ vs time (2nd experimentation)

Fig. 9. Image errors: (errImageMax) and (errPoints) vs time (2nd experimentation)

4.3 Experimentation with a �sheye 
amera in outdoor environment

Our framework is now applied to the navigation of an urban ele
tri
 vehi
le,

named RobuCab. The same �sheye 
amera as previously, looking forward, is

situated at approximately 80 
m from the ground. This vehi
le is manually

driven along the 800-meter-long path shown in blue in Fig. 11. This path 
ontains

important turns as well as ways down and up and a 
ome ba
k.

After the sele
tion step, 800 key images are kept and form the visual memory

of the vehi
le. The longitudinal velo
ity V is �xed between 1ms−1 and 0.4ms−1
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(a) (b)

Fig. 10. The image (a) 
orresponds to the rea
hed key image (b) of the visual memory
(2nd experimentation).

depending on the position on the path to follow (straight lines or turns). The

experiment lasts 13 minutes for a path of 754 meters whi
h results to a mean

velo
ity of 0.8ms−1. A mean of 123 robust mat
hing for ea
h frame has been

found. The mean 
omputational time during the online navigation was of 82 ms

by image. The errors in the images de
rease to zero until rea
hing a key image

(refer to Fig. 12).

Lateral and angular errors as well as 
ontrol input are represented in Fig. 13.

As it 
an be noti
ed, those errors are well regulated to zero for ea
h key view

ex
epted when high turns o

ur. Our 
ontrol law (line rea
hing) is not able to


onverge qui
kly in those 
ases. Signi�
ant errors are thus obtained during the

large turns but errors are then de
reasing. In future works, we plan to improve

our 
ontrol law to manage more e�
iently the navigation in large turns.

Fig. 11. Paths in the universitary 
ampus exe
uted during the memorization step (in
red) and the autonomous step (in blue) (3rd experimentation).
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Fig. 12. Errors in the images vs time (3rd experimentation).

Fig. 13. Lateral y and angular θ errors and 
ontrol input δ vs time (3rd experimenta-
tion).

5 Con
lusion

In this paper an image-based navigation framework dedi
ated to nonholonomi


mobile robots has been presented. The approa
h is illustrated in the 
ontext of

indoor/outdoor environment using a single wide �eld of view 
amera and natu-

ral landmarks. We propose to learn the environment as a graph of visual paths,


alled visual memory. A visual route is made of a sequen
e of key images of the

environment whi
h des
ribes, in the sensor spa
e, an admissible path for the

robot. This visual route 
an be performed thanks to a visual-servoing 
ontrol

law, whi
h is adapted to the robot nonholonomy.

Future works will be devoted to relax the stati
ity 
onstraint of the environment.

We will try to analyse and to take into a

ount environment modi�
ations, whi
h

may o

ur between learning steps and autonomous runs, in both visual route

building and following.
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