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Abstract. The paper presents a new metric for computing the image
similarity using the Spherical Fourier Transform (SFT) of omnidirec-
tional images projected on a sphere. This metric is designed for image-
based localization of mobile robot. Given a set of omnidirectional images,
generated from an uncalibrated catadioptric sensor composed of an hy-
perbolic mirror and a prospective camera, we map them on the sphere
to calculate the Spherical Fourier Transform. The transform coefficients
are used to calculate the similarity between two images, and the rotation
around optical axis of the camera is calculated using the SO(3) transform
(SOFT).
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1 Introduction

Localization is a fundamental problem in robotics. Mobile robots need to deter-
mine their current robot position to solve most of their tasks. In this paper we
investigate a vision-based solution to the localization problem.

In the localization process, a robot can use either a metric or a topological
map of the environment. The metric map represents geometrically the environ-
ment, the topological one is a subdivision in zones of an environment connected
among them, differentiated on the basis of physical characteristics (appareance
in the space) and/or for the presence of special features (landmarks). The par-
tition obtained is transposed on a graph whose nodes are zones and edges are
geographical connections among them.

Among methods using metrics maps there are [1] and [2] where a robot,
moving in an environment, compares images acquired in two consecutive instants
and calculates the rototranslation, integrating the result on the map. In [5] a
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2 Visual localization using spherical images

perspective camera is used to grab images from the environment. For every
image a list of descriptor is created (using SIFT, see [6]). The list will be used
to decide if two images are equal. Other approaches that use SIFT can be found
in [7] and [8].

Among methods using topological maps we can cite: the work of Dudek in
[4] uses Principal Component Analysis to classify images comparing images in
a space of dimension lower than the number of pixels that form. This is done
using covariance matrix Q composed from a training set images. Input images
are projected on the basis formed by images in the training set. All the im-
ages are transformed in polar coordinates then, to obtain rotational invariance,
a bidimensional Fourier Transform is applied. Another approach of topological
localization is presented in [9]. In this work, image comparison is based on color
histogram. Omnidirectional camera are used, so a rotation does not change the
histogram. This approach allows to reduce the amount of information to store
since color can be discretized, but, although fast and reliable, it looses geomet-
rical information.
Certainly two of the main works on topological mapping are [27] and [26], both
use bayesian inference for building up the map, but the first method uses global
feature recognition, while the second one resolves the same problem with local
feature recognition.

1.1 Spherical Fourier Transform on omnidirectional images

In a previous work, we used the magnitude coefficients of the circular Fourier
transform of panoramic images to compare two images [10], following the idea of
measuring similarity up to a rotation around a single axis by using the Fourier
transform on a cylinder elaborated in [25]. An omnidirectional image f is mapped
on a panoramic cylinder to calculate the Fourier transform of each row. If the
initial image is rotated, obtaining f ′, rows of projected image are function of
initial rows

f(x) = f ′(x + a),

Now the transform of f ′ is related to that of f as

F ′(θ) = ei2πaF (θ)

thus noting that the magnitude does not change. That work showed that not
all the coefficients of the Fourier tranform are needed for a correct localization,
allowing to speed-up the compare and recognition tasks.

Recently, in [11], [12], [13], [14], [15], [16], [17], [18] Spherical Fourier Trans-
form is applied on two omnidirectional images with single view point (SVP)
mapped on the sphere, which differs for a rotation. Using the SO3 (the group of
rotation matrix) Fourier transform (SOFT) for calculating correlation in SO(3)
to obtain a first estimation of the rotation existing between two images. The
importance of Makadia’s research consists in having found a global evaluation
method to compare images, in contrast with methods that use local feature to
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Visual localization using spherical images 3

estimate rotation (epipolar geometry).
For a tutorial on SOFT and SFT refer to [21], [20], [22], [23].

2 Proposed approach

In this paper it is proven that rotational invariance of Spherical Fourier trans-
form (SFT) can be used as the basis for a new similarity measure between images
differing for a rototranslation.

In particular we will show that it is possible:

– to map an omnidirectional image on the sphere without knowing the pa-
rameters of the sensor generating it, so without applying the unified theory
of catadioptric projection of Geyer ([19]), and still having a representation
usefull for localization;

– to apply SFT to image projected on the sphere and to use the energy of
block coefficients could be a similarity measure for topological localization;

– to apply the SOFT to calculate the rotation existing between two images
differing by a rototranslation.

Exploiting precedent facts will result in the proposal of a framework for robot
navigation in unknown environment based exclusively on spherical harmonics
theory: ego-motion information can be extracted using [17], thus a metric map
of the environment can be built, then topological information are extracted from
global comparing of images based on spherical invariant. The latest assertion
has been tested with uncalibrated camera, while all works done till now on ego-
motion is based on calibrated camera, so it remains to experiment which results
can be achieved in the non calibrated case.
Another particularity of the framework is that is based on global feature com-
paring: in [28] and [29] navigation of insects are studied and conclusions stated
that basically they rely on global matched filters for doing that.

2.1 Previous work on localization using spherical harmonics

Recently in [24] spherical harmonics signature of a panoramic image has been
choosen as similarity measures. Having calculated Q as the squared difference of
two image signals in the spherical harmonics domain up to order l

Q =

∞∑

l=0

l∑

m=−l

∞∑

l′=0

l′∑

m′=−l′

(f l
k − hl

k)(f l′

k′ − hl′

k′)λl′lλm′m (1)

for the localization task two operations are performed: a fast rotation invariant
similarity measure to drop all unlikely views, then, for all reference views which
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4 Visual localization using spherical images

survived prefiltering, an estimation of the best matching rotation with respect
to the current view descriptor is computed and de-rotate it accordingly. The
dissimilarity is computed according to 1.
The approach proposed in [24] required up to O(l2) coefficients for a similarity
estimation and a two step algorithm, while the similarity measure of this paper
needs to store only l coefficients (energy block) for each reference image.

In the next section the procedure for obtaining the new similarity measure
is described.

3 Similarity measure

Suppose we are given two images, where f is the image taken in a unknown
location and h is a reference image. The Eq. 4 defines a similarity measure to
compare the images f and h, where El(f) is the sum of coefficients energy of
degree l; f l

k is the SFT coefficient of degree l and order k of f .

El(f) =

k≤l∑

k=0

f l
kf l

k (2)

Dissim(f, h) =
k<B∑

k=0

|Ek(f) − Ek(h)|

Ek(f)
. (3)

Sim(f, h) = 1000 − 1000
Dissim(f, h) − minDissim

maxDissim − minDissim
(4)

minDissim = min {Dissim(h, p) : h ∈ Sinput, p ∈ Sref}

maxDissim = max {Dissim(h, p) : h ∈ Sinput, p ∈ Sref}

In Eq. 3 and Eq. 4, B is the bandwidth of the SFT. Sref is the images training
set and Sinput is the images input set.

Several parameters can influence the of the image similarity. Here, we present
result for the following list:

– maximun latitude of mapping of omnidirectional image on the sphere, so
how much the sphere is covered by the image;

– the available visual information (image pixels) and the bandwidth of SFT;
– the number of energy block used for similarity measure.

3.1 Latitude of projection

The omnidirectional images are projected on the sphere using the stereographic
projection depicted in Fig. 1(b). The image plane is on the equatorial plane, a
point I on this plane is projected from the north pole N to the point P on the
sphere. The result is plotted in Fig. 1(c). If the image is scaled the sphere can be
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Visual localization using spherical images 5

covered more or less. Our omnidirectional images are taken from an uncalibrated
catadioptric sensor (see Fig. 1(a)), whose resolution is 640× 480 pixels, but the
image which reflects the mirror is composed by 400 × 400 pixels. The result of
our tests is that scaling the image does not affect the localization performances.

(a) Omnidirectional image
(Wakayama University, Japan)

(b) Stereographic projection

(c) An image projected on the
sphere

Fig. 1. The stereographic project of an omnidirectional image on the sphere.

3.2 Resolution and bandwidth

We investigated also the the minimal resolution needed to localize correctly
an image. Images were undersampled to resolution of 2B × 2B, with B ∈
8, 16, 32, 64, 128, 256, then the SFT at bandwidth B is calculated (for hav-
ing a ratio equal to one between number of pixels and number of point on the
sphere). Tests show that with bandwidth less than 32 is not possible to localize.
In Fig. 2(c), Fig. 2(b), and Fig. 2(a) the values of similarity between an image
of input and a set of reference images plotted over the map (which is a grid of
point). The cross in the image identifies the point where the input image is taken,
while the square identifies the reference image most similar to input image.
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6 Visual localization using spherical images

(a) bandwidth 256 (b) bandwidth 128

(c) bandwidth 64 (d) bandwidth 32

Fig. 2. localization varying bandwidth

3.3 Saturation of energy block

Our test shows that not all the energy blocks are needed for similarity mea-
surement, so it is possible to truncate the sum defined in Eq. 4 to a certain
index k lower than the maximum bandwidth B. In Fig. 3 are reported the num-
bers of correct localizations varying the number of energy block used. After the
twentieth block there is no improvement in localization.

3.4 Calculating rotation

The test images differ only by a translation, so they were manually rotated
around the actual image center (i.e. the optical axis of camera) to test the
calculation of a rotation of an input image with respect to the reference image.
Since the rotation is around optical axis, using the Eulero representation for
rotation, the rotation calculated with SOFT has the component of β (rotation
around axis y, lying on the image plane) near to zero. Thus we can assume that
the β is null and sum the components α and γ (rotations around z axis, the
optical one). The result of this assumption is reported in Fig. 4(a), 4(b), where
for different bandwidth the rotation estimation (as sum of α and γ) among all
the pairs of input image and the most similar reference image (input images are
rotated of 30 degrees) is reported.

3.5 Consideration

Omnidirectional images keep all their potential on localization, presenting with
SFT another invariance property usefull for similarity comparison. Images align-
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Visual localization using spherical images 7

(a) bandwidth 128 (b) bandwidth 64

(c) bandwidth 32

Fig. 3. Correct localization varying the number of block coefficients.

(a) bandwidth 64 (b) bandwidth 32

Fig. 4. Rotation estimation
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8 Visual localization using spherical images

Fig. 5. Time for executing algorithm

ment is done using another interesting property of SOFT (correlation via inverse
SO(3) fourier transform): this is a method that refers only to global appareance
of images and does not use any image pre-elaboration (like SIFT methods do).

Once again, analyzing images in the spectral domain, richness of information
allows to retain frequencies in function of the precision of the localization. That
leads to present hierarchical localization, using more spectral information for
landmarks of major interest.

4 An algorithm for topological localization

Results explained before are exploited in the following algorithm for topological
localization:

1. given an omnidirectional image, obtain its representation on the sphere by
a stereographic projection;

2. calculate the coefficients of SFT of spherical image;
3. given the SFT coefficients of a reference image, calculate the similarity with

the input image as defined in Eq. 4. The reference image with maximum
similarity is candidated to be the most similar to input image and the nearest
in the space;

4. calculate the rotation between input image and most similar reference image
with SOFT.

Some tests which use this algorithm are shown: a robot makes a path on a grid
(the blue dotted line in Fig. 6(c), Fig. 6(b), and Fig. 6(a)), the red solid line
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Visual localization using spherical images 9

path is the estimation of this path on the topological grid. The red segments
are the estimated orientation (the real orientation, plotted in blue, is partially
overlapped by red orientation segment). In the case with bandwidth 128 the
orientation is estimated with bandwidth 64 (because of lack of computer RAM).
Even with an undersampling of the transform the algorithm works.

Execution times are reported in Fig. 5.

5 Conclusion

SFT (and SOFT) can be used for topological localization. SFT has been applied
for images comparison, noting that SFT energy block of higher degree can be
omitted from the similarity formula. Then SOFT gives an estimation of the
rotation. Results of this phase are then integrated to establish the path followed.
In summary, the original contribution of this paper is that four properties of SFT
of omnidirectional images are highlighted:

– the magnitude of the Fourier components are related to the position of the
robot;

– the coefficients of the Fourier components are related to the heading of the
robot;

– by using the SFT signatures a high data compression can be achieved;
– a hierarchical localization is embedded in this approach;
– the similarity function we defined is effective in the proposed method to

self-organise the visual memory.

5.1 Future work

Extension to work are:

1. implement an ibrid localization algorithm (metric and topological) based on
SFT and SOFT;

2. test it on a robot, both in outdoor and indoor environments;
3. try to parallelize the computation of the SFT and SOFT;
4. test topological localization on images which differ by an arbitrary rotation.
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