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CaliPSO: Omnidirectional camera calibration

based on Particle Swarm Optimization

Daniele Marzorati, Domenico G. Sorrenti, and Leonardo Vanneschi

Universitá di Milano - Bicocca, Italy

Abstract. In this paper we present a method for calibrating a cata-
dioptric omnidirectional camera that is based on Particle Swarm Opti-
mization (PSO). Like for other known approaches, only a few images,
of a known calibration pattern, are required. First the projection model
is shortly reviewed, and then it is shown that our proposed method can
cope with the realistic noise acting during calibration. The experiments
are presented in simulation, so that a comparison with ground truth is
available, to characterize the performance of the method.

1 A short introduction

Omnidirectional vision systems provide a 360◦ panoramic view about the optical
axis, like traditional perspective ones, but with a much larger vertical field of
view. A common approach is to obtain such result by means of the combination
of a catoptric (mirror) and a dioptric (lenses) part. Such devices, called cata-
dioptric omnidirectional cameras, play an important role in robotics, and can be
divided in two categories, as defined in [2]. On one hand, we have the devices
where the Single View Point (SVP) property holds, e.g., hyperbolic mirror under
perspective projection. The SVP property, provided the projection parameters
are known, allow the un-warping of the panoramic image to perspective one. On
the other, we have non-SVP devices, where the designer degrees of freedom are
much more, and more complex application requirements might be satisfied, at
the price of dealing with a non perspective image.

The calibration of the projection parameters of SVP catadioptric omnidirec-
tional cameras have been the topic of relevant literature contributions, like [18],
[15], [11], [16], [9], and [5]. Most notable, in our view, are [18] and [15] as the
accompanying software toolboxes are available to the general public for use.

In general the number of parameters and the choice of the initialization
for the optimization required in the calibration of such cameras make the task
difficult, citing from [15] “too many parameters make the equations difficult to
minimize because of the numerous local minima, the need for a lot of data and
the numerical instability introduced into the Jacobian”. The authors of this work
approaches the problem by reducing the parameters, in particular leveraging on
the assumption that the errors due to the assembly of the system are small, which
we believe not being appropriate for most real systems. For instance, catadioptric
lenses produced by VStone, a well established company in the field, are not
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rigid with respect to the solicitations onboard a mobile robot, also when moving
indoor; even worse is the fact that such systems tend to show some plasticity,
under mechanical solicitations, so that, for high accuracy, continuous calibration
could be a definitive solution. We are not tackling the continuous calibration
problem in this work, as we are indeed dealing with the problem of robustness
to local minima, noise, under a complete or even redundant, parametrization.

In [18] a toolbox is presented that allows to estimate the intrinsic parameters
of the camera, the pose of the mirror and also the mirror shape (out of a family
of polynomials). One can observe that the procedure is quite complex, with
many steps independently performed, while the problem would be naturally
formulated as a single optimization problem. Moreover, here and there in the
paper, one can find dependencies on initial guesses, which are required to be
reasonably good. PSO, on the other hand, allows to tackle the problem really as
a single optimization and is quite robust to large errors in the initialization.

In [15] a method, and source code, is presented that allow to compute the
parameters of the projection model. The model is simpler than appropriate, in
our view, as it disregards misalignments between the optical axis and the mirror
axis, taken as in the design, by fully trusting the assembly process. This method
also requires accurate initializations, in order for the estimates to converge to the
appropriate values. They rely on the mirror border to determine the principal
point, a limitation in building a catadioptric system because it requires to waste
a part of the image (i.e., {full image area} - {image of the mirror area}).

Like in [18] we compute the unknowns using only the points the user selects,
without the need to observe the circular outer boundary of the mirror. Differ-
ently from others, beside basing on PSO, we sum distances between calibration
points and interpretation lines of the calibration points. Anyway, the main con-
tribution of this paper is to prove that a simple definition of the problem, i.e.,
a criterium for the evaluation of the solutions, and the PSO approach can solve
the problem of estimating the parameters of catadioptric camera calibration, and
allow an easy and accurate implementation of the procedure. On the contrary,
other approaches tend to rely on fragmenting the problem and then tackling
each sub-problem with a different method.

2 A short introduction to Particle Swarm Optimization

Many contributions have recently been dedicated to Particle Swarm Optimiza-
tion (PSO) [12, 19, 4], since it is easily implementable, it does not rely on gra-
dient information, and it is able to solve a wide array of optimization problems
efficiently [8]. Furthermore, as reported in [1], PSO features reduced memory re-
quirements and fast convergence with respect to other evolutionary algorithms
(EAs).

PSO basic formulation works by establishing two attractors (normally the
best local and global positions so far); besides that, the swarm behavior is influ-
enced by parameters that control global exploration and local exploitation, and
try to prevent the particles from prematurely converging to local minima [17].
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Starting from the work presented in [21], several papers have been recently pub-
lished which analyze and improve the performance of the PSO, trying to find the
best possible values for these parameters. Several recent interesting researches
in the literature describe techniques aimed at improving the performances of the
PSO with different settings, which focus on the optimization of parameters such
as the inertia weight, and the constriction and acceleration coefficients (see for
instance [3, 1, 21, 22]).

Another interesting variant of PSO original formulation consists in establish-
ing a given “structure” (or “topology”) to the swarm. Among others, Kennedy
and coworkers evaluate different kinds of topologies, finding that good perfor-
mance is achieved using random and Von Neumann neighborhoods [13]. Never-
theless, the authors also indicate that, selecting the most efficient neighborhood
structure is in general a problem-dependent task. In [6], Oltean and coworkers
evolve the structure of an asynchronous version of the PSO algorithm. They
use a hybrid technique that combines PSO with a genetic algorithm (GA), in
which each GA chromosome is defined as an array which encodes an update
strategy for the particles of the whole swarm. Such an approach works at macro
and micro levels, that correspond, respectively, to the GA algorithm used for
structure evolution, and to the PSO algorithm that assesses the quality of a GA
chromosome at the macro level. The authors empirically show that the evolved
PSO algorithm performs similarly and sometimes even better than standard ap-
proaches for several benchmark problems. They also indicate that, in structure
evolution, several features, such as particle quality, update frequency, and swarm
size influence the overall performance of PSO [7].

Many improvements based on the conjunction of EAs and PSO have been
proposed, for example considering self-update mechanisms [20] or formation of
3D complex patterns in the swarm [14], to increase convergence speed and per-
formance in the problems under consideration. Recently, a modified genetic
PSO has been defined by Jian and colleagues [10], which takes advantage of
the crossover and mutation operators, along with a differential evolution (DE)
algorithm which enhances search performance, to solve constrained optimization
problems.

Other work, aimed at solving global non-linear optimization problems is pre-
sented by Kou and colleagues in [23]. They have developed a constraint-handling
method in which a double PSO is used, together with an induction-enhanced evo-
lutionary strategy technique. Two populations preserve the particles of the fea-
sible and infeasible regions, respectively. A simple diversity mechanism is added,
allowing the particles with good properties in the infeasible region to be selected
for the population that preserves the particles in the feasible region. The authors
state that this technique could effectively improve the convergence speed with
respect to plain PSO.

As reported PSO has had such a fast development and growing popularity
in the last few years that it can now be considered a widely accepted method
of optimization of continuous parameters. It thus comes natural to us to employ
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PSO for the omnidirectional camera calibration, where the local minima and the
noise contribute to make the optimization difficult.

3 Omnidirectional Camera Model

In this section, we present the geometric model adopted to describe catadioptric
imaging systems. In Figure 1 we see a schematic drawing of a typical omndi-
rectional camera system. The reference system in the middle, indicated with
C, represents the camera (camera reference frame [xC , yC , zC ]T ). Note that this
reference frame has a precise physical meaning, as its origin is the center of
projection. It depends on the camera intrinsic parameters. In front of the cam-
era there is an hyperbolic mirror. In the rest of the paper, this mirror will be
represented by a quadric Q.

We can define a reference frame local to the mirror whose z-axis corresponds
to the hyperbolic axis (mirror reference frame [xM , yM , zM ]T ). The mirror is in
a generic position w.r.t. the camera: its axis is not parallel to the optical axis and
it does not pass through the pinhole. The roto-translation between the camera
reference frame and the mirror will be represented with RM

C (position of the
camera w.r.t. the mirror).

Moreover, we introduce a further reference frame [xW , yW , zW ]T , called world
reference frame. All calibration data (points on the calibration pattern) will be
referred w.r.t. this reference system. The roto-translation from the mirror to
the world reference frame is RW

M (position of the mirror w.r.t. the world). This
transformation will be the extrinsic parameters of the omnidirectional camera
system.

4 PSO Calibration of a catadioptric omnidirectional

camera

The purpose of the calibration procedure is to estimate the values of the intrinsic
parameters of the camera M and the coefficients of the roto-translations RM

C

and RW
M . To compute these parameters we use a set of calibration points and

the corresponding image points whose coordinates are known. In particular, the
calibration points are on the calibration pattern in the world reference frame
while the corresponding image points are referred w.r.t. the camera reference
frame.

Using the intrinsic parameters M (unknown) and the coordinates of the corre-
sponding image points we can compute the interpretations lines w.r.t the camera
system. The roto-translation between camera and mirror RM

C (unknown) allows
to compute the reflected interpretation lines w.r.t the mirror reference system.
Finally, if we know the transformation between mirror and world reference sys-
tem RW

M (unknown) we can compute the intersections between the interpretation
lines and the calibration points.
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Fig. 1. Reference frames: in red the camera reference frame, in green the mirror refer-
ence frame and in blue the world reference frame.
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Therefore, the estimation of the parameters of the omnidirectional camera
model can be treated as a optimization problem, in which the aim is to minimize
the following point to line distance:

D =

i
∑

i≤m∗n

‖pi − ki − vi t̂i‖ (1)

where pi is the i-th 3D point, qi = ki− viti is the parametric form of the line
and t̂i = vT

i (pi − ki).
This equation describe the distance between a calibration 3D point pi in the

mirror reference frame and the interpretation line qi. This interpretation line is
computed in different steps.

– roto-translation of the interpretation line w.r.t the mirror reference frame
– computation of the intersection between this interpretation line and the mir-

ror
– computation of the normal plane to the surface w.r.t. intersection point
– computation of the reflected interpretation line

Thus, let Q be a symmetric, non-zero matrix representing the quadric (mir-
ror). The locus of points belonging to the quadric surface is given by F =
xT Qx = 0 where x = [x, y, z, 1]T .

Given a point k = [kx, ky, kz ]
T and a direction v = [vz , vy, vz]

T , let q(t) =
k + vt be the parametric equation of the line passing through k with direction
v, whose intersection with the quadric we want to compute.

This line is computed using the following relation:

pC
2D = MRC

MpM
3D (2)

By substituting the line into the quadric, grouping and rewriting as a function
of t we obtain At2 + Bt + C = 0 which is a second degree polynomial in t.

We solve it to find t1 , t2 and substitute them into the line to find the
intersection points P1, P2 of the line with the quadric. Only one of the two
intersections has a physical meaning, while the other is a point either behind the
camera or outside the mirror or also occluded by the mirror itself.

Once the intersection point Pi is known, we compute the normal to the
quadric in Pi as:

n̂i =







∂F

∂xi

∂F

∂yi

∂F

∂zi






(3)

computed in Pi.
Finally, we apply the law of reflection to the line q obtaining the direction

vector r as:

r = 2
(

n̂T v
)T

n̂− v (4)
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These equations are obtained using the projected image points p2D, the
intrinsic camera parameters M and the roto-translation between the camera
and the mirror RC

M
.

For each image point we have an interpretation line. All the reflected inter-
pretation lines are so defined:

q̂i = rit + Pi (5)

They pass through their corresponding 3D scene points, i.e., the distance
between a line and its point is zero. These points needed to be represented w.r.t.
the mirror reference frame by the roto-translation RM

W .

Our aim is to find the following quantities:

– roto-translation between the camera and the mirror reference frame RC
M

– roto-translation between the mirror reference frame and the world reference
frame RM

W

– the camera intrinsic parameters

that allows the zeroing of the distances between the calibration points and their
reflected interpretation lines.

Actually, because of noise, the lines will only pass close to the scene points,
i.e., we can only find quantities that minimizes the sum of the squares of the
calibration points distances to their interpretation lines.

We choose to use a Particle Swarm Algorithm to solve this minimization
problem. The algorithm starts with a set of random particles. The idea is to
minimize the objective function f(x), with f ∈ ℜn → ℜ , using a swarm of
dynamic particles which explore the parameter space x ∈ Ω ⊂ ℜn searching for
the minima.

For each step, each particle evaluates the function and keeps track of the best
solution it has found so far. The current best solution among all the particles is
also tracked using a global best parameter. In this way, during the evolution the
particles are directed to the good solution while maintaining some randomness
to explore the search space trying to find the best solution. The PSO algorithm:
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Initialize xi and vi . The value of xi is randomly drawn from an uniform
distribution among [xmin, xmax] and the value of vi is randomly drawn
from an uniform distribution among [vmin, vmax]. Evaluate f(xi) and set
g = argminf(xi) and x̂i. while g > threshold do

foreach xi do
vi ← ωvi + c1ṙ1(x̂ixi) + c2ṙ2(gxi)
if vi > vmax then

vi = vmax

else if vi < vmin then
vi = vmin

tmp← xi + vi

if tmp > xmax then
vi ← −vi

xi ← xmax

else if tmp < xmin then
vi ← −vi

xi ← xmin

else
xi ← tmp

if f(xi) < f(x̂i) then
x̂i = xi

if f(xi) < f(g) then
g = xi

end

end

Each particle xi represents, in our case, a vector containing: the camera intrinsic
parameters M, the roto-translation RC

M and the roto-translation RM
W . The best

position up to now is x̂i and the global best is g. At any given time, the velocity
of particle i, vi, is updated to point towards x̂i and g, up to a random factor. The
inertia coefficient is represented by ω, while c1 and c2 are the . . . coefficients. r1

and r2 are random vectors uniformly distributed among [0, 1].

5 Experimental Results

In this section we present the capabilities of our system using simulated data.
The simulator allows to compute the projection of a 3D point in the camera im-
age plane through the mirror. Given a point in the scene (from the calibration
pattern), the position of the camera w.r.t. the mirror and the position of the ref-
erence system of the calibration pattern w.r.t. the mirror, we simulate the image
formation on the device. This process includes the reflection of the interpretation
line of this 3D point on the mirror and, subsequently, the projection of them on
the camera image plane. The motivation for using a simulated environment to
test the proposed model is to have access to the ground truth and therefore to
compare different runs using the same data.

The simulated world is a set of planar calibration patterns. Each pattern is
composed by n calibration points. Parameters used for the simulated camera
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are: image resolution of 640x480 pixels, focal length of 650 pixels and projection
center of 320 pixels.

The mirror is an hyperbolic surface with equation:

−
x2

a2
−

y2

b2

z2

c2
= 1 (6)

where a = 50, b = 50 and c = 50.

φ γ θ x y z

10.000000 2.000000 4.000000 50.000000 20.000000 100.000000
7.000000 3.000000 6.000000 0.000000 40.000000 200.000000
4.000000 4.000000 8.000000 -50.000000 60.000000 300.000000

Table 1. GroundTruth of the calibration pattern position w.r.t. the mirror reference
frame: angles terms are in degrees and the traslation terms are in cm

φ γ θ x y z

-1.800000 0.000000 4.500000 0.700000 1.500000 30.300000
Table 2. GroundTruth of the rototraslation between the camera reference frame and
the mirror reference frame: angles terms are in degrees and the traslation terms are in
cm

fx fy cx cy

650.000000 320.000000 650.000000 240.000000
Table 3. GroundTruth of the camera intrisic parameters

In the experiment we use m = 3 planes. The positions of the reference frame
of these planes w.r.t. the mirror reference frame are shown in table 5. A Gaus-
sian noise with 0 mean and σ = 0.3pixels standard deviation is added to each
projected image point.

The parameters of the PSO algorithm are: w = 0.6, c1 = 1.19 and c2 = 1.19.
We use 100 particles and the cost function is described in section 4. The algorithm
stops when the fitness falls above a termination threshold.

In table 5, the estimated camera parameters are compared with the ground
truth : in particular we represent the relative error for the focal length fx and
fy while absolute error for the image center cx and cy.

In table 5 and 5 we show the differences (as absolute error) between both
the estimated position of the camera and the computed location of the patterns
with the expected values.
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φ γ θ x y z

10.013215 2.030693 4.059546 48.927297 20.036825 100.026407
6.993828 3.014812 6.063330 -1.830115 40.145591 200.236215
4.000911 4.012032 8.055714 -52.240358 59.977741 300.409171

Table 4. Estimated rototraslation between the calibration pattern position w.r.t. the
mirror reference frame: angles terms are in degrees and the traslation terms are in cm

φ γ θ x y z

-1.767626 0.053566 4.540408 0.554351 1.483190 30.328784
Table 5. Estimated rototraslation between the camera reference frame and the mirror
reference frame: angles terms are in degrees and the traslation terms are in cm

fx fy cx cy

650.128196 650.255554 319.341323 240.321775
Table 6. Estimated camera intrisic parameters

fx rel.err. fy rel.err. cx abs.err. cy abs.err.

0.02% 0.04% 0.658677px 0.321775px
Table 7. Relative and absolute error w.r.t. the groundtruth in the estimated camera
intrisic parameters

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.032374 0.053566 0.040408 0.145649 0.01681 0.028784
Table 8. Error in the estimated rototraslation between the camera reference frame
and the mirror reference frame

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.013215 0.030693 0.059546 1.072703 0.036825 0.026407
0.006172 0.014812 0.063330 1.830115 0.145591 0.236215
0.000911 0.012032 0.055714 2.240358 0.022259 0.409171

Table 9. Error in the estimated rototraslation between the calibration pattern position
w.r.t. the mirror reference frame

fx rel.err. fy rel.err. cx abs.err. cy abs.err.

0.0496% 0.0746% 3.3477px 0.8653px
Table 10. Relative and absolute error w.r.t. the ground truth in the estimated camera
intrinsic parameters with image error σ=1px

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.0018 0.0040 0.0006 0.0590 0.0398 0.1259
Table 11. Error in the estimated rototraslation between the camera reference frame
and the mirror reference frame with image error σ=1px
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φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.0003 0.0001 0.0017 2.0834 0.1381 0.3521
0.0004 0.0007 0.0014 3.5876 0.3140 0.4953
0.0005 0.0005 0.0008 3.9270 0.2103 0.2663

Table 12. Error in the estimated rototraslation between the calibration pattern posi-
tion w.r.t. the mirror reference frame with image error σ=1px

fx rel.err. fy rel.err. cx abs.err. cy abs.err.

0.1318% 0.1166% 2.8844px 1.5356px
Table 13. Relative and absolute error w.r.t. the groundtruth in the estimated camera
intrisic parameters with image error σ=1.5px

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.0014 -0.0044 0.0005 0.2614 0.1012 0.8455
Table 14. Error in the estimated rototraslation between the camera reference frame
and the mirror reference frame with image error σ=1.5px

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

0.0012 0.0018 0.0019 2.8576 3.9626 2.5486
0.0012 0.0026 0.0026 5.1842 3.9093 1.8180
0.0005 0.0006 0.0000 4.0907 7.7427 2.5765

Table 15. Error in the estimated rototraslation between the calibration pattern posi-
tion w.r.t. the mirror reference frame with image error σ=1.5px

φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err. fx rel.err. fy rel.err. cx abs.err. cy abs.err. run

0.000190 0.001040 0.000327 0.044153 0.036161 0.508815 0.046286 0.017978 0.729404 0.169850 1
0.009352 0.002027 0.000714 0.481637 0.308773 0.212802 0.145977 0.225087 2.961853 3.054735 2
0.004604 0.002318 0.001048 0.285156 0.112183 0.555148 0.009929 0.060829 1.589454 2.965404 3
0.000733 0.002632 0.000446 0.291984 0.123066 0.295119 0.043363 0.043161 2.327046 0.913163 4
0.003679 0.002344 0.000829 0.039905 0.090441 0.171289 0.079702 0.056704 2.610476 2.051325 5
0.006699 0.001757 0.000114 0.108475 0.123923 0.785393 0.173032 0.037745 1.147003 4.531109 6
0.003531 0.001731 0.000062 0.073676 0.059392 0.006993 0.023689 0.080116 1.238297 1.555388 7
0.007434 0.006689 0.000024 0.011204 0.055356 0.572381 0.153693 0.116142 4.914833 4.757583 8
0.001438 0.002958 0.000278 0.107102 0.022454 0.139206 0.026949 0.040314 2.055081 1.031710 9
0.010494 0.002108 0.000283 0.042087 0.127189 0.839445 0.145986 0.008466 1.712255 6.088573 10
0.001755 0.001126 0.000554 0.056696 0.024599 0.142849 0.083002 0.057012 1.082364 0.968800 11
0.004761 0.004047 0.000146 0.233204 0.067994 0.473782 0.069670 0.057046 2.726377 2.746185 12
0.007255 0.001481 0.004183 0.372138 0.092056 1.200014 0.455616 0.480298 1.899352 4.653922 13
0.010905 0.000232 0.000883 0.295697 0.128164 0.914409 0.003506 0.298597 1.030696 4.958919 14
0.002234 0.005052 0.000541 0.076094 0.062677 0.378180 0.024563 0.103262 3.683589 1.565450 15
0.013720 0.000501 0.000271 0.038796 0.358644 0.873706 0.136085 0.066848 0.068380 8.851165 16

Table 16. Error in the estimated rototraslation between the camera reference frame
and the mirror reference frame and camera parameters using the camera-mirror posi-
tions reported in 5
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run φ abs.err. γ abs.err. θ abs.err. x abs.err. y abs.err. z abs.err.

1 -0.104720 0 0 0 0 30
2 0.104720 0 0 0 0 30
3 0 -0.104720 0 0 0 30
4 0 0.104720 0 0 0 30
5 0 0 -0.104720 0 0 30
6 0 0 0.104720 0 0 30
7 0 0 0 -1 0 30
8 0 0 0 1 0 30
9 0 0 0 0 -1 30
10 0 0 0 0 1 30
11 0 0 0 0 0 27
12 0 0 0 0 0 33
13 -0.078540 0.078540 0 0 0 30
14 0.078540 0 0.078540 0 0 30
15 0 0 0 -1.500000 1.500000 30
16 0 0 0 -1.500000 0 31.800000
Table 17. Camera-mirror positions used in the experiment 5.

Fig. 2. Fitness values after 100 independent trials
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6 CONCLUSIONS AND FUTURE WORKS

We presented a method, based on Particle Swarm Optimization, for the cali-
bration of the parameters of a Single View Point catadioptric omnidirectional
camera. The method is quite robust to noise local minima, and has been eval-
uated in simulation, to obtain a comparison with with the ground truth, and
gave good results. The next steps for us is to compare the method with other
approaches, both with real and simulated data. Then to insert it in a proper
image interface, so to make the work a toolbox, and not a prototype.
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