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Abstract. Most of robotic systems need visual outfits to interact with the envi-
ronments. Since the arrival of humanoid robots with foveolar vision, and other
mobile platforms with catadioptric sensors, variable scale imaging has became a
major issue to work on biologically realistic data. In this aim, the use of visual
neurosciences has been limited to early vision mechanisms of cortex areas and
higher order features where the camera is seen as a simple acquisition tool. It
seems that at the early stages of acquisition, the retina processes a dual coding
action on images. This paper proposes a new bio-inspired method to extract infor-
mation from foveolar images giving a model to the lateral inhibition mechanism
of the retina. The presented model shows that using a redundant pyramidal ar-
chitecture produces a coding effect of the image that reduces noise. In addition it
provides an implicit coding of images: the reduced original image, the location of
edges and eventually texture. Experimental results on real images are presented
along with a scene recognition task showing the reliability of these features.

1 Introduction

Machine vision has always used neuroscience as an inspiration for several important
tasks (stereo [2], derivative filtering [3], gabor filtering [5]). Several methods have been
developed to extract image features, gaussian derivative receptive fields give a local de-
scription of features [6] whereas low derivative measure the basic geometry of features
[7]. It is interesting to point out that most considered features are biologically provided
by high visual areas (visual areas located in the cerebral cortex called V1 and V2). Few
attention has been paid to the early retina mechanism that is the first processing oper-
ated by the visual system. This paper uses the topology of the retina as a starting point
to inquire on the possible processing derived from its structure. It is thought that the
internal structure of the eye apart from all the known foveolar advantages [8] probably
pre-processes the visual information introducing a pre-coding of the acquired images.
This eases the tasks performed later by the visual cortex and other brain areas. It is also
thought that there might be different channels of coding as contrast is particularly im-
portant at borders, whereas intensity is important away from them. Edges being among
the most important features for segmentation of scenes, lateral inhibition might be at
the beginning of image segmentation. The information provided by this step is prob-
ably non accurate but enough to be used as an entry for higher-levels areas [9]. The
presented work is proposing a method performing both features extraction and noise
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minimisation while preserving the information content. It relies on the use of the lateral
inhibition mechanism and the foveolar structure of the retina showing their dual impor-
tance. It will be shown that the model provides an implicit image coding, giving the
reduced original image, the location of edges and eventually texture.

In section 2, foveolar vision is presented followed by the architecture of the pre-
processing based on a local decomposition of histograms. The mathematical model is
introduced in section 3, with considerations about noise, information content, and seg-
mentation. Finally, conclusion and future works will be found in section 4.

2 Foveolar image : spatial geometry and preprocessing

2.1 The retina simplified structure

For readers not familiar with these biological mechanisms please refer to [1]. The retina
is a multi-layered structure involved in signal transduction. This structure is constituted
by two kinds of cells: the interneurons (horizontal and amacrine cells), which aid in
signal processing, and the informative neurons (bipolar and ganglionic cells), which
contain and transmit the information. Each layer contain both informative neurons and
interneurons. Moreover the amount of standard neurons decreases when closer to the
optic nerve, (Fig. 1(a)). And finally despite the data amount reduction, the organisa-
tion of cells are not purely convergent. There is statistically one ganglionic cell for five
bipolar cells and about twenty photoreceptors, but one bipolar cell is connected to more
than an only ganglionic cell. The structure is then over-all convergent and locally diver-
gent, which brings in information redundancy. Thereby it appears that the information
contained in a bipolar cell considers the information of many photoreceptors, and in
similar manner, the information contained in a ganglion cell considers information of
many bipolar cells.

2.2 Foveolar image decomposition

Similar to mammals visual system, the developed method takes into account the foveo-
lar vision which can be introduced by merging contiguous variable sets of pixels using
variable neighbourhoods windows in a classical perspective image as shown in Fig.
1(b). Let V be a square subimage and b be the half-width of V , as shown in Fig. 1(b).
The bounds of b are bmin and bmax with bmin ≤ b ≤ bmax. It is essential that the values
of b depend according to the distance between C (the center of V) and the center of the
whole image. This distance is actually the r component of polar coordinates.

With rmax the upper bound of r, the relation between b and r is then given by :

b = bmin +
bmax − bmin

log(2)
log

( r

rmax
+ 1

)
. (1)
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(a) The convergent as-
pect of retina neurones.

(b) Radius influence on the size of
subimages to ensure the foveolar struc-
ture of the image.

Fig. 1. Convergent aspect and non linearity of the retina.

Image coding of foveolar areas Different kinds of visual features could be extracted
from the foveolar image. But due to the non linear resolution, the accuracy of the de-
tection can severely be altered according to the location of the feature within the image.
The choice made here consists of using statistical tools (local histograms) inside fove-
olar areas in order to start an image coding and implicitly extract features as will be
shown further.

In order to reduce the amount of information of the histogram, it is decomposed as a
Gaussian Mixture Model (GMM, [10]) with Expectation Maximisation algorithm (EM,
[4]). The Bayesian Information Criterion (BIC, [12]) is used to find the right number of
Normal Distribution (ND) to correctly characterize an histogram. This step is applied
to each RGB-level of the colour image, that enables to keep colour information.

Optimisation of histogram representation Considering a subimage V . After GMM
decomposition, the distrubution of its gray-levels is defined as the histogram HV(x):

HV(x) =
Nbg∑
n=1

mnN(µn,σn)(x), (2)

N(µ,σ)(x) is the normal distribution whose standard deviation and mean are σ and µ:

N(µ,σ)(x) =
1

σ
√

2π
e−( x−µ

σ )2 , (3)

and mn is the corresponding weight of the ND n, in the global histogram HV(x) strictly
composed by Nbg ND. In most of case, one normal distribution fits with one class of
pixels existing in the neighbourhood V . The most representative ND are sorted accord-
ing to their weights.

2.3 Multi-layer coding

From the acquired images to the gathering layer In the following sections, Vj
i is

a subimage, (i is its index, and j the layer to which it belongs). The acquired image,
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is set to be the initial layer corresponding to j = 0, in what follows Vj will implicitly
represents the whole layer. As shown an Fig. 2, subimages of V0 are gathered according
to the foveolar decomposition: gathering layer cells receive the information of variable
size pixel sets, depending on the distance from the image center. A subimage V0

Max

located in the macula encodes more pixels than the one V0
min located in the fovea.

Fig. 2. Data reduction from an acquired image V0 to the first layer V1.

Fig. 3. Layer-1: convergent/divergent properties.

For a better understanding, assuming that the acquired images are taken from a lin-
ear camera (one rank of pixels), Fig. 3 shows a planar representation of the mechanism
from the original image to the gathering layer. Four subimages are represented: V0

m3
,

V0
m2

, V0
m1

and V0
m0

. Two contiguous subimages have common pixels introducing re-
dundancy into the system. Each subimage can be characterized by its histogram. This
histogram is then GMM-decomposed to provide the information of the cells of layer-1.

From the gathering layer to the second layer The system proposed here introduces
also a second layer, whose information are controlled by a process acting as interneu-
rones. These interneurones consider the information of many neurones to inhibit or ease
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Fig. 4. Control process: the set of histograms and the control ones share the black colored ND,
therefore only these two ND are transmitted to the following layer.

the transmitted data to the next layer informative neurone. As shown in Fig. 4, the GMM
histogram of the subimage of V0 corresponding to the original image of the neighbour-
hood of V1 is used as a control information to inhibit or ease the transmitted data to the
next layer. The information is stored in the GMM-decomposed Hc.

3 Multi-layer decomposition: Mathematical and Visual results

3.1 Model Generation

In the aim of obtaining a functional model, we will set in this section the mathemati-
cal framework of the decomposition operated by layer-2 in order to give a predictable
model and provide a better understanding of the process. The information contained in
an informative neurone of the second layer can be expressed as:

Hi(x) =
Nbg∑
n=1

minN(µin ,σin )(x), i = 2. (4)

where i is the layer index, n is the index of the ND and Nbg is their number. The
question is now to express the layer-2 parameters as functions of the layer-1 parameters.
Modifiying the influence of a Gaussian histogram does not mean changing the averages
and the standard deviations but obviously the weights of the normal distribution. The
information of a layer-2 neurone is linked to a layer-1 neighbourhood. Let V1

1 be a
neighbourhood of layer-1. We then set :

µ2n =

∑
V1

1
µ1n

card(V1
1 )

and σ2n =

∑
V1

1
σ2n

card(V1
1 )

. (5)

Using the Bhattacharyya proximity defined from the Bhattacharyya distance [11] DB
as:

PB(X, Y ) = 1−DB =
∑

i

√
X(i).Y (i), 0 < PB < 1, (6)
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X and Y are two same size normalized vectors, the weights m2 are provided by:

m2n
=

∑
V1

PB
(
m1nN(µ2n ,σ2n )(x),Hc(x)

)
(7)

with Hc(x) defined as equation 4 (c being reserved for control parameters). Replacing
each term, it comes that:

m2n
=

∑
V1

PB
(
m1nN(µ2n ,σ2n )(x),mcnN(µcn ,σcn )(x)

)
. (8)

We set: P = PB
(
m1n

N(µ2n ,σ2n )(x),mcnN(µcn ,σcn )(x)
)
. (9)

Moreover these expressions are valid for each normal distribution of the histogram,
therefore n will be voluntarily missing:

P =
∫

R

√√√√ m1

σ2

√
2π

e
−
(

x−µ2
σ2

)2

mc

σc

√
2π

e
−
(

x−µc
σc

)2

dx (10)

P = K

∫
R

e
− 1

2

(
x−µ2

σ2

)2

− 1
2

(
x−µc

σc

)2

dx, (11)

with K =
√

m1mc

2πσ2σc
. (12)

The numerator of the exponential function is quadratic, it can then be written as:

P = K

∫
R

e
−
(

α(x−β)2+γ

)
dx = K ′

∫
R

e−α(x−β)2dx (13)

with α =
1

2

“ 1

σ2
2

+
1

σ2
c

”
, β =

(µcσ
2
2 + µ2σ

2
c )

σ2
c + σ2

2

, K′ = Ke−γ (14)

and γ =
1

σ2
2σ2

c

“
(µcσ2)

2 + (µ2σc)
2 − 1

2

(µcσ
2
2 + µ2σ

2
c )2

σ2
c + σ2

2

”
. (15)

Considering the result: Z
R

e−x2
dx =

√
π, (16)

After the variable substitution X =
√

α(x− β), it comes finally that:

P = K′
r

π

α
. (17)

This last equation means that the information of a layer-2 neurone is completely computable
and predictable from the values of layer-1.
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(a) Original 640×480. (b) 1-ND. (c) 2-ND. (d) 3-ND.

Fig. 5. The mean images of the first four must weighted normal distribution of a GMM decom-
posed image in layer-1. 310× 230.

3.2 Multi-layer image processing

First layer: Scene decomposition Fig. 5 shows the decomposition of the image appearing
in Fig. 5(a) representing an indoor scene. Each processed image 5(b), 5(c), 5(d), corresponds
to the ND averages of respectively the first (1-ND), the second (2-ND), the third (3-ND) ND
provided by the GMM. We notice that the 1-ND image (Fig. 5(b)) is very close to the original
image as most details can still be perceived even with the decrease of resolution. In the 2-ND
image (Fig. 5(c)) uniform areas are set to zero. Actually this second image provides elementary
edges. The 3-ND image provide more and more complex images regions corresponding to three
or four (at least) pixels classes. These ND images can correspond in some cases to textured areas.
It is important to notice that the whole visual features seen in Fig. 5 are still complex and non
accurate. The edges defined by a wide variety of gray-levels are surely difficult to use at this step.

Second layer: Scene segmentation After the layer-2 reduction data, the information con-
tained by the informative cells are shown in Fig. 6 where the control influence can be observed.
Comparing all images of Fig. 5 and Fig. 6, the images of Fig. 6(b), and Fig. 6(c) look indeed like
images of Fig. 5, but the gray level of edge portions are more homogeneous. Moreover, the edges
seem to be simpler, with filled gaps. The data reduction combined to the foveolar decomposition
fills the textured areas. This means that using image of Fig. 6(b) as a mask for the original image
provides an automatic segmentation of the interesting scene areas (shown in Fig. 6(d)).

(a) 1-ND. (b) 2-ND. (c) 3-ND. (d) Automatic seg-
mentation

Fig. 6. The mean images of the first four ND of second layer-2. 145 × 105, and the automatic
segmentation of discriminant scene areas.
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3.3 Retinal coding and catadioptric images

Because of their non linearity, there is an analogy between biological retinas and catadioptric
sensors. In both case, a picture area close to the image periphery covers a field of view wider than
one located on the center.

(a) Classic image. (b) Catadioptric image.

Fig. 7. Test pattern images token with classic and catadioptric sensors.

Two images (FIG. 7) are used to show the parallel between the presented coding and omni-
directionnal vision. The first one is a classic image of two different size test pattern provided
by a classic sensor (FIG. 7(a)). This image will be coded as described above. The other image
is the same scene viewed by an omni-directionnal sensor located in the middle of the pattern
(FIG. 7(b)). This image will be also coded as described above, but to take into account that this is
already a non linear image, all gathering windows will have the same size, wherever the location
can be. Using the notation presented in FIG. 3:

V0
min = V0

k = V0
max. (18)

(a) 1-ND. (b) 2-ND. (c) 3-ND.

Fig. 8. Classic sensor coding results: 5 pixels < V0
k < 30 pixels

Coding images 1-ND, 2-ND, and 3-ND of FIG. 7(a) are shown in FIG. 8.
The visual aspects of the images observed in FIG. 9 and in FIG. 8 are very close. Details

in the periphery are merged together, and details located at the center are still well conserved.
At the center the coding merges areas small enough to define the big square insides with an
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(a) 1-ND. (b) 2-ND. (c) 3-ND.

Fig. 9. Results for a catadioptric image with constant gathering windows.

only pixel class, which means only one ND. It shows that despite that there is still different
geometric properties (particularly about straight line conservation), the coding proposed here
extract characteristic areas which are specially information-rich, whatever the case: catadioptric
or foveolar. The images provided are very close to salliency maps [14], and correspond indeed to
a potential way of scan for the eye on this kind of images.

3.4 Noise independence

As introduced in section 1, one of the roles of the retina neural coding seems to be the noise
reduction [13]. A polar striped image of increasing gray levels (Fig. 10(a)) has been used to study
the influence of noise. Three kinds of noise are used: Gaussian additive of 20 (AG), Salt and
Pepper of 10 (SP), and multiplicative of 30% (MU). Layer decomposition are applied on each
image.

(a) Original image (b) Example of a noisy
image (impulsive noise
of ten).

Fig. 10. Original and noisy image before coding.

For each stripe corresponding to a particular gray-level it is possible to compute the standard
deviation of the noise, using the difference between the original and the noisy image. This pro-
cess provides graphics given by Fig. 11. Fig. 11(a) shows that before processing, all the standard
deviations are very different. SP noise decreases with the gray-level, AG noise is almost constant,
and MU noise increases. Moreover, each standard deviation mean value differs from the others.
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(a) Maximal ordinate value: 0,22. (b) Maximal ordinate value: 0,037.

Fig. 11. Standard deviation of original noised and processed images according to gray values
before coding (a), and after (b).

Fig. 11(b) shows that all these differences disappear after processing the image : standard devi-
ation mean values are almost the same, and the different curves get nearly the same shape and
generally decrease strongly (see ordinate axis units of Fig. 11(a) and Fig. 11(b), its mean values
decrease for all types of noise: 83% for AG, 94% for SP, and 47% for MU).

Noise reduction has been tested on the image of Fig. 5(a) with an additional gaussian noise
whose standard deviation is 10. Fig. 12(a) and Fig. 12(b) express the residual noises. Fig. 12(c)
represents the histograms superposition of these both noisy images, before and after coding, in
(a) the original image, in (b) after coding. The standard deviation of the noise decreased from 9.3
to 1.5 (84%).

(a) Residual noise before
processing.

(b) Residual noise after pro-
cessing.

(c) Histogram superposition of
residual noises.

Fig. 12. Residual noise: Images and their histogram comparison.

3.5 Codification results: Information content

It is interesting to study the impact of the method on the amount of information contained in
both original foveolar image (Fig. 13(a)) and the processed one (Fig. 13(b)). In order to extract
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(a) Foveolar mapping:
480× 480.

(b) 1-ND: 117× 117. (c) Full images entropy.

Fig. 13. Original and codified images and the entropy of radius-variable size ring images.

the influence of the foveolar gathering, an entropy measure is computed on 18 annular rings Rk,
k ∈ [1, 18] following a log-polar coverage as shown in Fig. 13(a). This quantity of information
is given for a ring Rk by :

E(Rk) = −
c=255X
c=0

Occ(Rk = c) log P (Rk = c). (19)

with Occ(Rk = c) the occurrence of c in Rk and P(c) is the probability of appearance of the
grey value c within Rk. The entropy values for the whole image (considering I instead of Rk

in equation 19) is presented in Table 1. It can be noticed that the information content value of
the original image and the 1-ND image are very close (gap of 0.5%). The results using rings Rk

are given in figure 13(c). A very large amount of information is conserved after processing, it is
mostly located within the 1-ND images.

Table 1. Entropy values.

Original 1-ND 2-ND 3-ND 4-ND
7,12 7,08 5,57 3,32 1,01

3.6 Application: space localisation

An eye-viewpoint sequence of a man walking through corridors, gallery, stairs, along a trajectory
is shown in Fig. 14. N different locations characterize this sequence (here, N = 16). A simple
scene recognition algorithm [15] is tested on this sequence with 76 randomly chosen images. 64
location are well recognized which represents 84%.

4 Conclusion, opening, and future works

This paper presented a biologically-inspired implementation of the retina preprocessing neural
coding. A functional model has been mathematically obtained enabling theoretical results con-
firmed by experiments. The system provides image coding, giving implicitly reliable features due
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Fig. 14. Validation sequence, each image is a reference learned location.

to the robustness to different kind of noises and to the information content conservation despite
the resolution decrease. A simple localisation task using these features has been tested to ensure
its reliability. Providing edges and textures, and preserving the original image in the first most
weighted ND, this image coding also allows a wide variety of applications.
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