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Abstract. This paper describes a visual odometry algorithm for on-
road vehicles under planar motion assumption. The algorithm uses as
only input images taken by a single omnidirectional camera mounted on
the roof of the vehicle. To achieve accurate motion estimation results,
we decouple the rotation and translation estimation. In particular, we
use a feature based ground plane tracker to estimate the translation and
an appearance based method to estimate the rotation. As we show, the
use of image appearance to estimate the vehicle heading outperforms
the pure feature based approach. This pose estimation method has been
successfully applied to videos from an automotive platform. We give
an example of camera trajectory estimated purely from omnidirectional
images over a distance of 400 meters.

Key words: omnidirectional camera, visual odometry, vehicle ego-motion
estimation, homography, SIFT features

1 Introduction

Accurate estimation of the ego-motion of a vehicle relative to the road is a key
component for autonomous driving and computer vision based driving assistance.
Most of the work in estimating robot motion has been produced using stereo
cameras and can be traced back to Moravec’s work [1]. Similar work has been
reported also elsewhere (see [2, 3]). Furthermore, stereo visual odometry has
also been successfully used on Mars by the NASA rovers since early 2004 [4].
Nevertheless, visual odometry methods for outdoor applications have been also
produced, which use a single camera alone. Very successful results have been
obtained over long distances using either perspective or omnidirectional cameras
(see [3,5]). In [3], the authors deal with the case of a stereo camera but they also
provide a monocular solution implementing a structure from motion algorithm
that takes advantage of the 5-point algorithm and RANSAC robust estimation
[16]. In [5], the authors provide two approaches for monocular visual odometry
based on omnidirectional imagery. In the first approach, they use optical flow
computation while in the second one structure from motion.
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The benefit of camera trajectory determination using omnidirectional cam-
eras was firstly demonstrated in [6] and further recognized in [7]. However, in
those works structure and motion estimation were performed only over short
distances (up to a few meters) while in this paper we concentrate on accurate
trajectory recovery over long distances.

In our approach, we use a single calibrated omnidirectional camera mounted
on the roof of the car (Fig. 4). We assume that the vehicle undergoes a purely
two-dimensional motion over a predominant flat ground. Furthermore, because
we want to perform visual odometry in city streets, flat terrains, as in well as in
motorways where buildings or 3D structure are not always present, we estimate
the motion of the vehicle by tracking the ground plane.

Ground plane tracking has been already exploited by the robotics community
for indoor visual navigation and most works have been produced using standard
perspective cameras ( [8–11]). In those works, the motion of the vehicle is esti-
mated by using the property that the projection of the ground plane into two
different camera views is related by a homography.

In this paper, we propose a similar approach for central omnidirectional cam-
eras but our goal is to estimate the ego-motion of the vehicle in outdoor environ-
ments and over long distances. Thanks to the large field of view of the panoramic
camera, SIFT keypoints [12] from the scene all around the car are extracted and
matched between consecutive frames. After RANSAC based outlier removal [16],
we use these features only to compute the translation in the heading direction.
Conversely, to estimate the rotation angle of the vehicle we use an appearance
based method. We show that by adding this second approach the result outper-
forms the pure feature based approach.

This paper is organized as follows. Section 2 describes our homography based
ground plane navigation. Section 3 describes the appearance based method. Sec-
tion 4 details the steps of the whole visual odometry algorithm. Finally, Section
5 is dedicated to the experimental results.

2 Homography Based Ground Plane Navigation

The motion information that can be extracted by tracking 2D features is central
to our vehicle navigation system. Therefore, we briefly review here a method that
uses planar constraints and point tracking to compute the motion parameters.

2.1 Homography and Planar Motion Parameters

Early work on exploiting coplanar relations has been presented by Tsai and
Huang [13], Longuet-Higgins [14], and Faugeras and Lustman [15]. The coplanar
relation between two different views of the same plane can be summarized as
follows.

λx2 = K(R +
TnT

h
)K−1x1 = Hx1 (1)
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where R ∈ SO(3) and T ∈ R
3 are the rotation and the translation matrices

encoding the relative position of the two views; n ∈ R
3 is the plane normal

and h ∈ R is the distance to the plane; x1, x2 are the images of the same
scene points expressed in homogeneous coordinates ([x, y, 1]T ); K is a 3 × 3
matrix describing the camera intrinsic parameters; λ is a scalar; H is a 3 × 3
matrix called homography that relates the two camera projections of the same
plane points. Note that matrix K in equation (1) is defined only for perspective
cameras. However, in this paper we assume that our omnidirectional camera is
already intrinsically calibrated and that the image points x1 and x2 are already
normalized to have the third component equal to 1. This allows us to write
K = I. If not stated otherwise, in the remainder of this paper we will assume that
the image coordinates are always normalized. To calibrate our omnidirectional
camera, we used the method proposed in [17].

In our experiments, we mounted the omnidirectional camera on the roof of
the car (as in Fig. 4) with the z-axis of the mirror perpendicular to the ground
plane. By fixing the origin of our coordinate system in the center of projection
of the omnidirectional camera, we have that n = [0, 0,−1]T . The distance h of
the origin to the ground plane can be manually measured.

2.2 Decomposing H

If a camera is internally calibrated, it is possible to recover R, T, and n from
H up to at most a two-fold ambiguity. A linear method for decomposing H was
originally developed by Wunderlich [19] and later reformulated by Triggs [20].
The algorithm of Triggs is based on the singular value decomposition of H. The
description of this method as well as its Matlab implementation can be found
in [20]. This algorithm outputs two possible solutions for R, T, and n which
are all internally self-consistent. In the general case, some false solutions can be
eliminated by sign (visibility) tests or geometric constraints, while in our case
we can disambiguate the solutions by choosing the one for which the computed
plane normal n is closer to [0, 0,−1]T . In the remainder of this paper, we will
refer to this method as the “Triggs algorithm”.

In our implementation, we used the Triggs algorithm but we combined it
also with another method that we are now going to describe. Indeed, the Triggs
algorithm works in general very well if the image points are spatially uniformly
distributed on the camera image (see Fig. 1.a). If the image points are too close
to a degenerate configuration or they are spatially distributed within one side of
the whole omnidirectional image (Fig. 1.b), then it is better to use the following
Euclidean approximation:

H = R +
TnT

h
=





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 +
1

h





t1
t2
0



 ·





0
0

−1





T

(2)

Here we describe how to use the Euclidean approximation to derive the ro-
tation and translation parameters. From (2), we have:
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{

x2 = cx1 − sy1 − a
y2 = sx1 + cy1 − b

(3)

with c = cos θ, s = sin θ, a = t1/h, b = t2/h, x1 = [x1, y1], and x2 = [x2, y2].
Each point pair gives two equations, and hence given two point pairs we can
linearly recover c, s, a, b. When more point correspondences are given (say
n corresponding pairs) a linear least-squares solution can be found with the
pseudo-inverse matrix method. To this end, observe that (3) can be rewritten
as:

[

x1 −y1 −1 0
y1 x1 0 −1

]

·









c
s
a
b









=

[

x2

y2

]

, A ·









c
s
a
b









= B (4)

where A is a 2n×4 matrix and B is a 2n×1 vector. The linear least squares solu-
tion of (4) is [c, s, a, b]T = A+B, where A+ = (ATA)−1AT is the pseudoinverse
of A.

Observe that the matrix Q = [c,−s; s, c] may not be orthonormal because of
the method used to compute its coefficients s and c. However, we can compute
an orthonormal matrix that better approximate Q.
The best rotation matrix R2D to approximate Q in the Frobenius sense is
R2D = UVT, where [U,S,V] = SV D(Q) and SV D(Q) is the singular value
decomposition of Q.
Here, ”best” is in the sense of the smallest Frobenius norm of the difference
R2D − Q, which solves the problem:

min
R2D

‖R2D − Q‖2
F

subject to R2D · RT

2D
= I (5)

FRONT
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BACK

(a) (b)

Fig. 1. (a) Uniform distribution of features. (b) Non uniform distribution.

Finally, from R2D the rotation angle θ can be easily computed. At the same
time, t1, t2 can be directly computed from a and b knowing h.
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Correcting Vehicle Heading in Visual Odometry by Using Image Appearance 5

In the remainder of this paper, we will refer to this last method as the “Eu-
clidean method”.

In the final implementation of our algorithm, we implemented both the Triggs
algorithm and the Euclidean method. The trigger condition to use the one or
the other is given by the spatial distributions of the image points. If the image
points occupy both the left and the right half of the omnidirectional image (like
in Fig. 1.a), then the Triggs algorithm is used. If the image points are only in
one half (i.e. either the left or the right one) of the image (like if Fig. 1.b), then
the Euclidean method is used.

2.3 Coplanarity Check

So far we have assumed that the corresponding image pairs x1 and x2 are cor-
rectly matched and that their correspondent scene points are coplanar. Even
though in omnidirectional images taken from the roof of the car the ground plane
is predominant, there are also many feature points that come from other objects
than just the road, like cars, buildings, trees, guardrails, etc. Furthermore, there
are also many unavoidable false matches that are more numerous than those
usually output by SIFT on standard perspective images (about 20-30% accord-
ing to [12]) because of the large distortion introduced by the mirror. To discard
the outliers, we use the Random Sample Consensus paradigm (RANSAC) [16].

Observe that if a prior estimate of the rotation angle is available (consider
for example that coming from the appearance based method of Section 3) then
this can be used as a pre-stage in the first step of RANSAC to constrain the
selection of putative matches. This has the effect of speeding up the search of
inliers and reducing the percentage of outliers. In our implementation in fact, we
do this in the following manner: under planar motion assumption the motion can
be computed from at least two putative point pairs. If the rotation estimate is
consistent (within a certain threshold) with that given by the appearance based
method, then the two point pairs are retained (see also Section 4).

3 Visual Compass

In the previous session, we described how to use point features to compute the
rotation and translation matrices. Unfortunately, when using features to estimate
the motion, the resulting rotation is extremely sensitive to systematic errors due
to the intrinsic calibration of the camera or the extrinsic calibration between
the camera and the ground plane. This effect is even more accentuated with
omnidirectional cameras due to the large distortion introduced by the mirror. In
addition to this, integrating rotational information over the time has the major
drawback of generally becoming less and less accurate as integration introduces
additive errors at each step. An example of camera trajectory recovered using
only the feature based approach described in Section 2 is depicted in Fig. 5.

To improve the accuracy of the rotation estimation, we use an appearance
based approach. This approach was inspired by the work of Labrosse [18], which
describes a method to use omnidirectional cameras as visual compass.
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6 D. Scaramuzza, R. Siegwart

Fig. 2. Two unwrapped omnidirectional images taken
at consecutive time stamps. For reasons of space, here
only one half of the whole 360 deg is shown. The red
line indicates the horizon.

Rmin

Rmax

FRONT

BACK

Fig. 3. The cylindrical
panorama is obtained by
unwrapping the white re-
gion.

Directly using the appearance of the world as opposed to extracting features
or structure of the world is attractive because methods can be devised that do
not need precise calibration steps. Here, we describe how we implemented our
visual compass.

For ease of processing, every omnidirectional image is unwrapped into cylin-
drical panoramas (Fig. 2). The unwrapping considers only the white region of
the omnidirectional image that is depicted in Fig 3. We call these unwrapped
versions “appearances”. If the camera is perfectly vertical to the ground, then a
pure rotation about its vertical axis will result in a simple column-wise shift of
the appearance in the opposite direction. The exact rotation angle could then
be retrieved by simply finding the best match between a reference image (before
rotation) and a column-wise shift of the successive image (after rotation). The
best shift is directly related to the rotation angle undertaken by the camera. In
the general motion, translational information is also present. This general case
will be discussed later.

The input to our rotation estimation scheme is thus made of appearances
that need to be compared. To compare them, we use the Euclidean distance. The
Euclidean distance between two appearances Ii and Ij , with Ij being column-
wise shifted (with column wrapping) by α pixels, is:

d(Ii, Ij , α) =

√

√

√

√

h
∑

k=1

w
∑

h=1

c
∑

l=1

|Ii(k, h, l) − Ij(k, h − α, l)|2 (6)

where h × w is the image size, and c is the number of color components. In our
experiments, we used the RGB color space, thus having three color components
per pixel.

If αm is the best shift that minimizes the distance between two appearances
Ii and Ij , the rotation angle ∆ϑ (in degrees) between Ii and Ij can be computed
as:
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Correcting Vehicle Heading in Visual Odometry by Using Image Appearance 7

∆ϑ = αm ·
360

w
(7)

The width w of the appearance is the width of the omnidirectional image
after unwrapping and can be chosen arbitrarily. In our experiments, we used
w = 360, that means the angular resolution was 1 pixel per degree. To increase
the resolution to 0.1 deg, we used cubic spline interpolation with 0.1 pixel pre-
cision. We also tried larger image widths but we did not get any remarkable
improvement in the final result. Thus, we used w = 360 as the unwrapping can
be done in a negligible amount of time.

The distance minimization in (6) makes sense only when the camera un-
dergoes a pure rotation about its vertical axis, as a rotation corresponds to a
horizontal shift in the appearance. In the real case, the vehicle is moving and
translational component is present. However, the “pure rotation” assumption
still holds if the camera undergoes small displacements or the distance to the
objects (buildings, tree, etc.) is big compared to the displacement. In the other
cases, this assumption does not hold for the whole image but an improvement
that can be done over the theoretical method is to only consider parts of the
images, namely the front and back part (Fig. 3). Indeed, the contribution to
the optical flow by the motion of the camera is not homogeneous in omnidirec-
tional images; a forward/backward translation mostly contributes in the regions
corresponding to the sides of the camera and very little in the parts correspond-
ing to the front and back of the camera, while the rotation contributes equally
everywhere.

Because we are interested in extracting the rotation information, only con-
sidering the regions of the images corresponding to the front and back of the
camera allows us to reduce most of the problems introduced by the translation,
in particular sudden changes in appearance (parallax).

According to the last considerations, in our experiments we use a reduced
Field Of View (FOV) around the front and back of the camera (Fig. 3). A reduced
field of view of about 30 deg around the front part is shown by the white window
in Fig. 2. Observe that, besides reducing the FOV of the camera in the horizontal
plane, we operate a reduction of the FOV also in the vertical plane, in particular
under the horizon line. The objective is to reduce the influence of the changes in
appearance of the road. The resulting vertical FOV is 50 deg above and 10 deg
below the horizon line (the horizon line is indicated in red in Fig. 2).

4 Motion Estimation Algorithm

As we already mentioned, the appearance based approach provides rotation angle
estimates that are more reliable and stable than those output by the pure feature
based approach. Here, we describe how we combined the rotation angle estimates
of Section 3 with the camera translation estimates of Section 2.

In our experiments, the speed of the vehicle ranged between 10 and 20 Km/h
while the images were constantly captured at 10 Hz. This means that the distance

Workshop Proceedings of SIMPAR 2008
Intl. Conf. on SIMULATION, MODELING and PROGRAMMING for AUTONOMOUS ROBOTS

Venice(Italy) 2008 November,3-4
ISBN 978-88-95872-01-8

pp. 285-296



8 D. Scaramuzza, R. Siegwart

covered between two consecutive frames ranged between 0.3 and 0.6 meters. For
this short distance, the kinematic model of the camera configuration (x, y, θ),
which contains its 2D position (x,y) and orientation θ, can be approximated in
this way:







xi+1 = xi + δρi cos(θi + δθi

2
)

yi+1 = yi + δρi sin(θi + δθi

2
)

θi+1 = θi + δθi

(8)

where we use δρ = |T| h and δθ = ∆ϑ. |T| is the length of the translation vector;
h is the scale factor (i.e. in our case this is the height of the camera to the ground
plane). The camera rotation angle ∆ϑ is computed as in (7). Observe that we
did not use at all the rotation estimates provided by the feature based method
of Section 2.

Now, let us resume the steps of our motion estimation scheme, which have
been detailed in Section 2 and 3. Our omnidirectional visual odometry operates
as follows:

1. Acquire two consecutive frames. Consider only the region of the omnidirec-
tional image, which is between Rmin and Rmax (Fig. 3).

2. Extract and match SIFT features between the two frames. Use the double
consistency check to reduce the number of outliers. Then, use the calibrated
camera model to normalize the feature coordinates by reprojecting them
onto a plane perpendicular to the z-axis and distant 1 from the origin.

3. Unwrap the two images and compare them using the appearance based
method described in Section 3. In particular, minimize (6), with reduced
field of view, to compute the column-wise shift between the appearances
and use (7) to compute the rotation angle ∆ϑ.

4. Use RANSAC to reject points that are not coplanar (Section 2.3); in par-
ticular, use the available rotation estimate ∆ϑ from the visual compass to
speed up RANSAC as explained at the end of Section 2.3.

5. Apply the algorithm described in Section 2.2 to estimate R and T from the
remaining inliers. In doing this, switch between the Triggs algorithm and the
Euclidean method as described in Section 2.2.

6. Use δρ = |T| h and δθ = ∆ϑ and integrate the motion using (8).
7. Repeat from step 1.

5 Results

The approach proposed in this paper has been successfully tested on a real
vehicle equipped with a central omnidirectional camera. A picture of our vehicle
(a Smart) is shown in Fig 4.

Our omnidirectional camera, composed of a hyperbolic mirror (KAIDAN 360
One VR) and a digital color camera (SONY XCD-SX910, image size 640 × 480
pixels), was installed on the front part of the roof of the vehicle. The frames
were grabbed at 10 Hz and the vehicle speed ranged between 10 and 20 Km/h.
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Correcting Vehicle Heading in Visual Odometry by Using Image Appearance 9

Fig. 4. Our vehicle with the om-
nidirectional camera (blue circle).
The field of view is indicated by
the red lines.
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Fig. 5. Comparison between the standard feature
based approach (dashed blue) and the approach
combining features with visual compass proposed
in this paper (red).
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Fig. 6. A comparison of camera trajectory
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Fig. 7. The heading direction θ (degrees)
vs. the traveled distance (meters). The re-
sults are shown for different FOVs.

The resulting path estimated by our visual odometry algorithm using a hor-
izontal reduced FOV of 10 deg is shown in figures 5, 8, and 9. Our ground truth
is a aerial image of the same test environment provided by Google Earth (Fig.
8). The units used in the three figures are in meters.

In this experiment, the vehicle was driven along a 400-meter loop and re-
turned to its starting position (pointed to by the yellow arrow in Fig. 8). The
estimated path is indicated with red dots in Fig. 8 and is shown superimposed
on the aerial image for comparison. The final error at the loop closure is about
6.5 meters. This error is due to the unavoidable visual odometry drift; however,
observe that the trajectory is very well estimated until the third 90-degree turn.
After the third turn, the estimated path deviates smoothly from the expected
path instead of continuing straight. After road inspection, we found that this
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10 D. Scaramuzza, R. Siegwart

Fig. 8. The estimated path superimposed onto a Google Earth image of the test envi-
ronment. The scale is shown at the lower left corner.

Fig. 9. Image mosaicing that shows a textured 2D reconstruction of the estimated path.
The two arrows point out the final error at the loop closure (the pedestrian crossing
pointed to by the cyan arrow should theoretically coincide with that pointed to by the
yellow arrow).

deviation was due to three 0.3 meter tall road humps (pointed to by the cyan
arrow in Fig. 8) that violate the planar motion assumption.

The content of Fig. 9 is very important as it allows us to evaluate the quality
of motion estimation. In this figure, we show a textured top viewed 2D recon-
struction of the whole path. Observe that this image is not an aerial image but
is an image mosaicing. Every input image of this mosaic was obtained by an In-
verse Perspective Mapping (IPM) of the original omnidirectional image onto an
horizontal plane. After being undistorted through IPM, these images have been
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Correcting Vehicle Heading in Visual Odometry by Using Image Appearance 11

merged together using the 2D poses estimated by our visual odometry algorithm.
The estimated trajectory of the camera is shown superimposed with red dots. If
you visually and carefully compare the mosaic (Fig. 9) with the corresponding
aerial image (Fig. 8), you will recognize in the mosaic the same elements that are
present in the aerial image, that is, trees, white footpaths, pedestrian crossings,
roads’ placement, etc. Furthermore, you can verify that the location of these
elements in the mosaic fits well the location of the same elements in the aerial
image.

We also evaluated the effect of the reduced horizontal FOV on the final
motion estimation. Fig. 6 shows the recovered estimated trajectory respectively
using FOV=10 deg, FOV=20 deg, FOV=30 deg, and FOV=60 deg. Observe that
the estimation of the trajectory improves as the FOV decreases. Indeed, as we
mentioned already in Section 3, the fact of reducing the field of view allows us to
reduce most of the problems introduced by the translation, like sudden changes
in parallax. The best performance in terms of closeness to the ground truth of
Fig. 8 is obtained when FOV=10 deg.

In Fig. 7, the effect of the FOV on the estimation of the heading direction
is also shown. Also from here, it is clear that the best performance is obtained
when FOV=10 deg. In this case in fact 90-degree turns are very well estimated.
Furthermore, when FOV=10 deg the heading direction stays quite constant after
each turn, that is when the vehicle covers a straight path. Note that when the
vehicle returns to its start position, the estimated heading direction is equal to
355 deg, that means the orientation error at the loop closure is 5 deg.

6 Conclusion

In this paper, we described an algorithm for computing the ego-motion of an
on-road vehicle under planar motion assumption. The algorithm uses as only
input images provided by a single omnidirectional camera. The front ends of
the system are two different methods. The first one is a pure feature based
method that is used to estimate the translation. The second one is an appearance
based approach which gives high resolution estimates of the rotation angle of the
vehicle. The use of image appearance to compute the vehicle heading proved to
give very good estimates against the pure feature based method.

The proposed algorithm was successfully applied to videos from an automo-
tive platform. We gave an example of camera trajectory estimated purely from
omnidirectional images over a distance of 400 meters. For performance evalua-
tion, the estimated path was superimposed onto a aerial image of the same test
environment and a textured mosaic of the path was built.
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