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Abstract— We study the problem of mapping a large indoor
environment using an omnivideo camera. Local features from
omnivideo images and epipolar geometry are used to compute
the relative pose between pairs of images. These poses are
then used in an Extended Information Filter using a trajectory
based representation where only the robot poses corresponding
to captured images are reconstructed. The features with the
geometric constraints also give a robust similarity measure
that is used for data association. Our experiments show that
an accurate map can be built in real time of a small office
environment. For large environments, big loops can be closed
and a map can be built in nearly linear time.

I. INTRODUCTION

SLAM stands for Simultaneous Localization and Mapping
[1][2]. SLAM represents the process in which a robot drives
around an unknown environment taking measurements with
a certain sensor device. These measurements are then used
to both estimating its own position within the environment
while building a consistent map of it. Despite the fact that
the basic SLAM framework was presented long ago [3],
many new developments have been published that aim at
the definition of a practical, simple and affordable solution.
The SLAM framework can be described in terms of its
challenges as: measuring the environment, data association
and computational costs.

The trend during the last years with respect to the sensing
device has been on using cameras as the principal measure-
ment source [4][5][6][7][8][9]. Furthermore, the use of om-
nidirectional [10] [11] [12] cameras present some advantages
with respect to monocular vision or stereo vision due to
the large field of view. This simplifies the task of detecting
when a previous are has been visited and has been used
with success in the task of robustly detecting loop closures
[13] and creating topological maps [13][11]. Although laser
based SLAM seems to be the standard accurate solution, it
is not suitable for very large environments as the number of
features in the map grows rapidly.

Data association is the task of detecting when the robot
is revisiting a previously seen area. This is necessary in
order to detect when a loop has been closed and in order
to bound the growth of the error in the estimation of the
map. Data association is usually computationally expensive
and methods exist that exploit both probabilistic information
[14] [7] of the current location, and observations analysis
[15] [9] [16] to obtain measurement matches.

Finally, the computational cost has received a lot of
attention due to the limitations of the standard Kalman Filter
(KF) solution. State augmentation, sparsification, particle

filters or sub-mapping (see [2] for a complete review) are
some of the most recent approaches that try to overcome
these computational limits. Extended Information Filters for
trajectory based representations [17] [14] [18] have received
special attention due to their computational advantages and
their potential to solve large mapping problems.

In this paper we present our Omnidirectional SLAM
System for mapping large indoor environments. We use
local image features, extracted from omnidirectional images,
and epipolar geometry to obtain geometrical constraints
between different robot poses. These, together with odometry
measurements, are then used within an Extended Information
Filter [17] to estimate both the robot’s trajectory and the
error in its estimation. As presented by Eustice et. al. [17]
[14] [18] , EIF for trajectory based representations offer
computational advantages, however, they require the state
recovery process which is also computationally expensive.
They propose a method for partial state recovery that intro-
duces new errors in the estimated state. This method, though
computationally interesting it is not suitable for loop closure
as the information introduced at the loop closing points is
disregarded. We explore the use of 5 different techniques to
perform state recovery and analyze their performance for the
task of large scale mapping. Further, we consider the problem
of loop closure and solve the data association by estimating
the similarity between current and previous images [13].
This is essentially different as in [17] as we do not use any
pose information to search for image features matches. The
complexity of a naive approach for data association where
all images are compared to all other images is O(n) while
the complexity of EKF is O(n2), hence we do not consider
the computational costs of data association and only focus
on detecting loop closure situations.

This paper is organized as follows. Firstly we present our
trajectory based map representation and how measurements
are obtained from omnidirectional images. Secondly we
describe the theoretical background of the Extended Infor-
mation Filter and how both odometry and measurements are
used to estimate the robot’s trajectory. Thirdly we describe
our experimental setup and detail our results for two different
experiments. Finally we point out some conclusions and
future work.

II. MAPPING LARGE ENVIRONMENTS

In this section we detail our definition of the map we
are going to build using the trajectory based SLAM rep-
resentation, also termed View based SLAM [17]. We first
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define the state we want to estimate (the robot pose and the
map) and then we describe how to obtain information from
omnivideo images taken at every robot location to improve
such estimate.

Fig. 1. Sample robot trajectory with odometry u and observations z

A. States

In conventional landmark based SLAM the state x that
needs to be estimated consists of only the most recent robot
pose as well as a growing set of 2D or 3D positions of
landmarks reconstructed from the raw sensor data. This set
of landmarks is called the map. In Trajectory SLAM the
landmarks are not explicitly modeled, rather, the state at time
step t consists of current and all previous robot poses. In
our case these are the 2D positions and orientation angles:
xt = [x∗t ,M]T = [x0,x1, . . .]T = [x0,y0,θ0,x1,y1,θ1, . . .]T . The
first pose in xt is always the current robot pose, also called
x∗t while the remaining of the poses represent the map M.
This trajectory based representation reduces the complexity
of the SLAM method as described in Section III.

Figure 1 visualizes an example operation of the Trajectory
SLAM with 4 robot poses. The first robot pose x0 is added to
the state (process called state augmentation) as [0,0,0]T and
thus defines the coordinate frame for the rest of the state. An
omnidirectional image is taken at this position. The state is
then augmented with a new robot pose x1 using the odometry
readings u0, also called the control vector. Again, an image
is taken which is then compared with the image from the
previous pose providing additional positional information z0

1,
the observation vector, that is used to improve the estimate
of the state. In x2 this procedure is repeated, matching with
both previous robot poses. Then the robot drives around the
corner to x3, causing the overlap of the new image with the
first two images to reduce. The image comparison method,
as explained in II-B, detects this and the pose estimation of
x3 will be based on the observation of the last pose z2

3 and
the odometry reading u3. An important aspect of any SLAM
method that is not in this small example is the problem of
data association (detecting when an image has been seen
before). We solve this by using a robust image similarity
measure as explained below.

An alternative approach to any SLAM mapping technique
is the so called topological mapping [11] [13]. T.Goedeme et
al. use omnidirectional image to build a topological map of

an indoor environment. Topological mapping is conceptually
closer to the way humans build spatial representations but
offer significant disadvantages in terms of real applications
where metrics are required to the robots to operate. On
the other hand, a topological map is very sensitive to the
imaging sensor (lightning conditions, cluttered spaces, etc)
while a filtering approach is less sensitive as it filters out the
inadequate measurements. In fact, we also build a topological
map as we define links between successive images given their
similarity. The difference with respect to other topological
mapping approaches is that we build a metric map on top of
them.

B. Observations

An observation z describes the relative positional informa-
tion extracted from the current omnidirectional image and
all the previous images which depict the same part of the
environment. It is well known that the relative pose can be
estimated from two images using the epipolar constraint [19].
Even though work has been published in the definition of
the epipolar geometry for omnidirectional cameras [10], we
use an entirely different approach. In [10][11] the epipolar
geometry is defined to the very specific case of a central
catadioptric camera with an hyperbolic mirror. Given this
definition, 8 point correspondences are used to estimate the
essential matrix. We approach the problem using regular
epipolar geometry instead. Given the known calibration pa-
rameters of the camera and the exact shape of the hyperbolic
mirror, we re-project the image to a cylinder around the ray
between the center of the mirror and the center of the camera
(see figure 2). This cylindrical image can then be treated a
a regular image and the essential matrix can be estimated
with a regular approach. The reason to use this approach
instead of the more specific version of Svoboda is the fact
that we can then use a standard fast SIFT implementation,
whereas using the central catadioptric epipolar geometry
will require the definition of a different descriptor for the
image features. Hence, the estimation of the relative pose
between two images is performed in the standard way by first
extracting a set of local image features (computation O(1))
from both omnidirectional images which are then compared
to give a set of n 3d point correspondences, p1, . . . ,pn on
one image surface and q1, . . . ,qn on the other (see figure 2).
In our experiments we used SIFT features (Scale Invariant
Feature Transform) [20]. Point correspondences that resulted
from the same world point in the environment can be related
by the essential matrix which describes the relative camera
pose: pT

i Eqi = 0 for all i. Based on this function and the as-
sumption that the robot moved on a planar surface, the matrix
E can be estimated from 3 correspondences using the planar
constrained 8-point algorithm [19]. To be robust against false
point correspondences we use the planar constrained 8-point
algorithm inside the hypothesize and test method RANSAC
(RANdom SAmple Consensus). This provides us with the
matrix E and the number of correspondences for which the
re-projection error given E is small. If the ratio between
this number and the number of features found in the images
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Fig. 2. Matching features in 3 typical office environments. TOP: typical
narrow corridor. MIDDLE: entrance to a room after a corridor. BOTTOM:
wide room.

is bigger than a certain threshold, which we set to 0.1
in our experiments, then we extract the pose information
from E. Otherwise, we do not use this image pair for the
observation. In this way we use the same algorithm for both
determining which measurements to add to the observation
vector, solving the data association problem, as computing
the measurements themselves.

From E the relative pose can be extracted using [21]
and results, in the case of 2D motion, in the direction of
the translation φ and a 2D rotation θ . Both parameters
are used to improve the estimate of the robot trajectory.
The observation vector thus gets the following form: z =
[φ0,θ0,φ1,θ1, . . .]T .

This data association approach costs O(n) in the number
of images. A more interesting approach could be employed
that takes advantage of a graph representation of the image
similarity as shown in [22]. In that case, the computational
costs of the data association step are lower than O(n).

In [11] a two layer approach is used for image matching.
First, a set of global features such as color histograms are
used to determine a base similarity between two images. In
this similarity measure is large enough, a set of local features
is the extracted and compared to finally determine if the
two images are sufficiently similar. As we use re-projected
cylindrical images, we can use SIFT features and RANSAC
to successfully discard false matches.

It is worth mentioning that our approach for relative pose
estimation is valid as we obtained the calibration parameters
from the manufacturer of the mirror and the camera and
only the center of the mirror needed to be estimated to
correctly re-project the images to a cylinder. If calibration
parameters were not know, B.Micusik [12] proposes a simple
yet accurate auto-calibration procedure where the circular
field of view of the camera is used to obtain the calibration
parameters, including the relative pose. Also, they use bundle
adjustment to further improve the estimate. We believe that
our results will be further improved by the use of such
technique.

III. EXACTLY SPARSE EIF

We have described the representation of our map x and the
set of measurements z. We now use an Extended Information
Filter to estimate both the map and the error covariance
matrix.

The EIF is a mathematical equivalent to the well known
Extended Kalman Filter. It is based on the information form
or canonical representation of a Gaussian distribution, hence
the state and error covariance are not directly estimated, but
instead their relatives the information vector and information
matrix.

Λt = Σt
−1 (1)

ηt = Λt µt (2)

The EIF works in a similar fashion as the EKF. First,
using information from the odometry readings, the state
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is estimated as described in Section II-A. Then, using the
observations obtained through the images, this estimate is
improved.

In this section we will first describe our motion and
measurement models. Then the state augmenting procedure
is detailed, and the computational implication of the use of
the information vector and information form. We also show
how the new measurements are introduced to improve the
estimates. Finally, we introduce the problem of state recovery
and propose five different practical solutions.

A. Motion and measurement models

The use of the EIF requires the definition of a motion
model for the motion prediction step and a measurement
model for the measurement update step. Most SLAM ap-
proaches require both models to be non-linear (hence the
use of the Extended version of the filter to linearize those
processes). However, as our robot did not have the raw odom-
etry measurement readily available but only the variation in
translation and heading (ut = [∆x,∆y,∆α), we use a linear
motion model:

xt = xt−1 +ut +w, (3)

where w is the odometry error model (white Gaussian
noise with zero mean and covariance matrix Q).

For the measurement model and due to the nature of
the observations (see Section II-B) we defined a non linear
measurement process based on the transfer function h(x).
The function h transforms the state to measurements (mea-
surement prediction):

zi = h(xt ,xzi)+ v (4)

=
[

atan2(yzi − yt ,xzi − xt)−θt
θzi −θt

]
+ v, (5)

where zi is the observed robot pose, zi is the measurement
prediction given the state xt and v is the measurement error
model (white Gaussian with zero mean and covariance matrix
R).

As part of the EIF, the non-linear measurement process is
linearized using a first order Taylor series:

zi ≈ h(µ̂t , µ̂zi)+Hi

[
xt − µ̂t

xzi − µ̂zt

]
, (6)

where Hi is the Jacobian of the function h evaluated at the
mean.

B. Augmenting the state

In the EKF, the state is augmented with a new robot pose
at every time step. This procedure can be simply described
in terms of the new state vector and error covariance matrix:

µ
′
t+1 =

 µx∗t +ut+1
µx∗t
µM


Σ
′
t+1 =

 (Σx∗t x∗t +Q) Σx∗t x∗t Σx∗t M
Σx∗t x∗t Σx∗t x∗t Σx∗t M
ΣMx∗t ΣMx∗t ΣMM

 , (7)

where Q is the error model for the odometry (3x3 diagonal
matrix).

Using the alternative information form to describe the
Gaussian distribution, we know that the estimate at time t is
described by an information form Gaussian distribution as:

p(x∗t ,M | zt ,ut) = N −1
([

ηxt

ηM

]
,

[
Λxt xt Λxt M
ΛMxt ΛMM

])
Again, when a new robot pose is reached the robot state

needs to be augmented:

p(x∗t+1,x
∗
t ,M | zt ,ut+1) = N −1 (

η
′
t+1,Λ

′
t+1
)

(8)

Taking the previous standard representation of this dis-
tribution used in the EKF, and the formal relation between
the normal form and the information form (see equations 1
and 2) we reach a state augmentation scheme by means of
inverting the augmented error covariance Σ′t+1 (equation 7),
obtaining the information vector η ′t+1 and information matrix
Λ′t+1:

η
′
t+1 =

 Q−1( f (µx,ut+1)−µxt )
ηxt −Q−1( f (µx,ut+1)−µxt )

ηM


Λ
′
t+1 =

 Q−1 −Q−1 0
−Q−1 Λxt xt +Q−1 Λxt M

0 ΛMxt ΛMM


Note the zeros that result from augmenting the state in

the information form. This is the key result that leads to
the computational gain as the matrix is naturally sparse.
When the state vector is augmented to include the new
robot position xt+1 only shared information between the
current robot pose and the previous robot pose is introduced.
The shared information between the map M and the new
robot pose is always zero. The only exception occurs when
a loop is closed. In such situation, non diagonal elements
will appear in the information matrix as shared information
between the new robot pose and previously visited robot
poses is introduced. If we would continue to introduce new
states, we shall observe that the information matrix will
present a block tridiagonal structure where each state is only
linked to the previous and following one.

When we marginalize the state x∗t from the distribution
in equation 8 to perform the motion prediction, it can be
proved [17] that it can be implemented in constant time as
only a fixed portion of the information matrix is involved in
the marginalization calculation.
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Having seen the state augmentation in the time update
step in both the covariance and information form, we can
similarly obtain the expression in the information form for
the measurement update step [17]:

ηt = η̂t +HT R−1(zt −h(µ̂t)+H µ̂t)
Λt = Λ̂t +HT R−1H

This description of the measurement update step in the
information form shows that the information matrix is ad-
ditively updated by the product HT R−1H. As the jacobian
H is always sparse and the amount of observations can
be considered constant [17], only some elements of the
information matrix need to be modified, hence the updates
are constant in time.

Up to this point, the total complexity of the information
filter equations is constant in time (O(1)) as opposed to the
quadratic complexity of the standard EKF.

C. State Recovery

The drawback of the EIF is the fact that we no longer
obtain an estimation of the state and its error covariance but
we do obtain their relatives in the information form. Once
the information matrix and information vector are obtained
we need to transform them back to the original covariance
and mean form in order to perform the following state
augmentation.

The most naive recovery method inverting the information
matrix results in cubic complexity and voids the efficiency
obtained with the new information filter. In fact, recovering
the state mean can be described as solving a sparse, sym-
metric, positive-definite, linear system:

Λt µt = ηt , (9)

In our Matlab experiments we tested five different state re-
covery techniques. All these techniques are generic solutions
to solving the set of equations defined by Ax = b.
• Inversion: just to use as baseline for improvement

measurement, we use the naive inversion technique
which uses Gaussian elimination with partial pivoting.
This is far from optimal and will make the experiments
on large data-sets impractical.

• CGS (conjugate gradients squared method): this is an
iterative solution to the set of equations. It requires the
definition of an initial guess. In our case we used the
state vector of the previous time step augmented with
a new robot pose and a tolerance value of 1e−7. The
solution is not guaranteed to be exact.

• PCG (preconditioned conjugate gradients method): if
the information matrix is ill conditioned, a precondi-
tioner can be used to speed up the process. For our
experiments we used the incomplete Cholesky factor-
ization of the information matrix as preconditioner with
a tolerance of 1e− 7. The solution in this case is also
not guaranteed to be exact.

• LU (Lu decomposition): this method decomposes the
information matrix into two triangular matrices, one
of them with values in the upper right diagonal, and
the other one on the lower left diagonal. It is an exact
solution and works by solving the system for each of
the triangular matrices.

• Cholmod2 (supernodal sparse Cholesky backslash): this
is not a method but rather an implementation of a
solution using the Cholesky decomposition for sparse
matrices. It is similar to the LU decomposition but in
this case the two triangular matrices are the transpose
of each other. It is part of the package SuiteSparse 1 by
Tim Davis which is available on-line.

IV. EXPERIMENTS AND RESULTS

Our approach to the SLAM problem did face three dif-
ferent challenges: computational complexity of the standard
EKF solution, adequacy of an omnivideo camera to measure
the environment and the loop closing problem. In order to
test the performance of our omnivision trajectory based EIF
approach, we carried out a set of experiments to demonstrate
how our approach can solve each of the three problems.

Two sets of experiments are discussed. The first ex-
periment illustrates the ability of our approach to build
consistent and accurate maps of small environments. The
second experiment was designed to measure the ability of
our method to close large loops where the odometry error is
very large and demonstrate the important computation gain
of the EIF with respect to the standard EKF solution.

Doe to the difficulty to obtain ground truth data for
our experiments, we only present laser data for the small
scale experiment. This can be used to visually inspect the
accuracy of our omnidirectional approach. For the large scale
experiment, we are only concern with the computational
costs of the state recovery and the loop closure scenario,
hence no ground truth is presented.

A. Experimental Setup

For our experiments we used a Nomad Scout robot
equipped with an omnivideo system consisting of a one
mega-pixel firewire camera and an Accowle convex hyper-
bolic mirror. Additionally, and for visualization purposes
only, the robot was equipped with a laser range scanner.
The measurements taken with the laser were then used after
the trajectory was corrected with our method to visualize the
environment and illustrate the improvement in the accuracy
of the map.

Due to the large field of view of the camera it was possible
to generate 360 degrees images. Two images per second were
recorded while the robot was driving at a maximum speed of
20 cm per second, resulting in an average of 1 image every
10 cm. A large portion of the long hallways where the robot
was driven were poorly illuminated, posing a real challenge
for the image matching algorithm. We measured the amount

1SuiteSparse is a collection of packages for working with ex-
tremely large sparse matrices. It is freely available on-line at:
http://www.cise.ufl.edu/research/sparse/SuiteSparse/
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of light in some of these corridors obtaining an equivalent
amount of light to a living room lit by Christmas tree lights
(30 lux).

The odometry error covariance matrix Q was set to
[1mm2,1mm2,2deg2] in the diagonal, and zeros in the non-
diagonal. For the measurement error, we used a covariance
matrix R with [15deg2,15deg2] in the diagonal and zeros in
the non-diagonal.

We collected datasets in two different environments. A first
dataset was collected by driving the robot manually in a small
loop around two different offices and a small portion of the
hallway that communicates them. The trajectory was driven
twice in order to test our approach when previously seen
areas are revisited. The total trajectory consist of 875 images
taken at every robot pose along with odometry measures. Due
to the smooth surface and the limited size of the environment,
we artificially increased the odometry error by making the
robot’s wheel slip at some points of the trajectory to better
illustrate the improvement in the accuracy of the SLAM
corrected map.

The second data set was collected in the same office
environment but driving a much larger loop. The robot was
driven for more 1.5 hours along corridors and offices over a
surface of more than 10,000 squared meters. In order to test
the ability of our approach to cope with closing large loops,
we drove to the starting point after 45 minutes and having
already taken 5,210 images. The robot was then driven over
the same part of the corridors to increase the overlap and
finalized at the end of a corridor after having taken 10,325
images in total. After the complete data-set was recorded, the
accumulated error in the odometry added up to more than
80 meters in distance and 100 degrees in heading.

B. Small Office Environment

We present two maps of the same trajectory. Each map
contains the same information, namely, the estimated tra-
jectory of the robot shown as black circles, the laser data
obtained at every robot location and the connected graph
that represents the images that were found to have sufficient
similarity shown as light gray lines connecting robot poses.

As we can see in figure 3, the images taken at sections of
the trajectory where the robot drives multiple times over a
hallway or office, are correctly matched. No false links are
present in this data-set.

The first map (see figure 3) was built using odometry as the
only information source. Despite the fact that some structure
can be distinguished in the map (walls, doors and hallways),
the odometry error adds up yielding duplicated structures
(see figure 5, Left). If the robot would continue driving the
same space for more loops, the accumulated error will make
the map completely cluttered.

The second map (see figure 4) represents the same trajec-
tory corrected with our omnivision trajectory based SLAM
approach. Firstly, it is clear that our method can cope with
loop closure in small environments as the duplication of
structures in loop closing points is no longer present (see
figure 5, Right) and previously seen areas are correctly

Fig. 3. Odometry based map with laser data and connectivity map for
robot poses - small office

Fig. 4. Omnivision SLAM corrected map with laser data for visualization
purposes - small office

Fig. 5. Left: Odometry map, Right: SLAM map - small office
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matched together. Secondly, the fact that no duplicated
structures are present at all in the corrected map implies
that the information regarding the relative pose obtained
through the omniview images convey enough information
to compensate for the accumulation of error in odometry.
Features like walls, hallways, doors and even the small ”box-
like” structure where the robot goes around are now clearly
visible.

Regarding the representation of the information matrix, the
diagonal structure discussed in section III can be appreciated
(see figure 6, Left). The non diagonal elements represent the
information introduced when a loop is closed. The small non
diagonal elements crossing perpendicularly the main diago-
nal represent the information introduced when small loops
are closed. The other non diagonal elements shown far away
from the main diagonal but in the same direction, represent
the information introduced when the big loop is closed and
the robot comes back to the initial position. It is important to
note the clear difference between the information matrix and
the error covariance matrix. In the information matrix, new
information is only introduced as links between the previous
pose and the following one and only additional information
is present in the case of loop closure. On the other hand
(see figure 6, Right), the correlations present in the error
covariance matrix are updated at every stage and the matrix
presents a ”checkers board-like” structure. The fact that the
information matrix presents so many ”white” space (actual
zeros in the matrix) is a fundamental gain in computational
complexity as only a few elements in the matrix are updated
at every step, hence the matrix is naturally sparse. 2

Fig. 6. Left: Information matrix, Right: error covariance matrix - small
office

Regarding the computational benefits of the EIF with
respect to the EKF standard solution, we present in figure 7
the computation times. This plot is only show for the small
office experiments as the times required to compute the EKF
on more than 1000 robot poses are very high.

C. Large Office Environment

For the large office environment two maps are presented.
The first map is based on the odometry readings (see figure
8), while the second map represents the SLAM corrected
trajectory (see figure 9). For this maps we do not show the
laser readings as the size of the trajectory is much larger and
the laser becomes unreadable.

2In our experiments we also run the standard EKF solution to compare
obtaining indeed the exact same results.

Fig. 7. Computational cost of EKF vs. EIF. Data association and feature
extraction are not included.

Figure 9 shows the resulting SLAM corrected trajectory of
the robot. As we can see, the large loop is correctly closed
even though the accumulated error in odometry was very
large. However, the resulting SLAM corrected trajectory is
not as truthful as it was for the case of the small data-set. The
reason for this is the amount of correction needed to close
such a large gap in the loop closing point. When previously
seen areas are detected, the whole trajectory needs to be
bent in order for those areas to overlap. Given the constraints
between different robot poses, the bending is applied over the
complete trajectory, reconnecting the loop closing portions,
but spreading the rest of the trajectory. This behavior in the
loop closing is similar of that of a piece of wire that is bent
putting both extremes together. As there are forces between
the individual cells of the wire, the whole shape of the wire
is modified when connecting both extremes. This behavior
was also termed ”Certainty of Relations despite Uncertainty
of Position” by Udo Frese [23] and it is a direct result of
the strong relations introduced in the trajectory by both the
observations and the odometry.

In figure 10 we see the amount of matches found at every
time step. Only in the loop closing points or the stationary
moments the amount of observations increases. For the large
loop after 5,210 images, we see a sudden increase in the
amount of matches which represents the robot driving the
same hallway. As this portion of the trajectory was driven
before, the amount of matches doubles after revisiting for
the first time. Again, after 7,800 images, the same hallway
is visited again and the number of matches again doubles.
The smaller peaks in the plot represent portions where the
robot either closed small loops or the robot stood still for
some seconds.

D. State Recovery

Regarding the computation time of the state recovery, we
appreciate in figure 11 some interesting results. Initially,
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Fig. 8. Odometry based map - large loop. All grey circles represent the
same spot in the trajectory

Fig. 9. SLAM based map - large loop. All grey circles represent the same
spot in the trajectory

Fig. 10. Number of observations. Average 34,45.

and for reasonably large data-sets, the Cholmod2 method
performs better than the rest. However, this advantage in
performance is actually caused by the constant number of
observations. Looking closely at figures 11 and 10, we see
how at the moment of the first loop closure (time state
≈ 5,210), the growth in computation time of the Cholmod2
increases significantly and in a non linear fashion. This can
be seen in figure 13 where the computation time divided
by the number of non zero entries is displayed. It is clear
that the CGS remains approximately constant with the num-
ber of observations. This is an interesting result key to a
sucessfull implementation of the EIF over large data-sets.
For an efficient implementation, a mixed strategy could be
employed, using the Cholmod2 method when the number of
observations is limited, and switching to CGS when loops
are closed. The naive inversion technique grows so fast that
it is barely useful for maps with more than 100 features.
The PCG technique shows a reasonable performance up
to time step 1,000. The sudden increase in computation
time could be caused by an inappropriate conditioning. Lu
and CGS behave very similarly though their performance is
significantly worse than Cholmod2 for a constant amount
of observations. This difference in performance is specially
noticeable for data-sets with more than ≈ 2,000 robot poses.
The time required by LU or CGS is more than double at time
step 3,000, which implies that the total computation time up
to that time step is 27 minutes for LU and CGS and 10
minutes for Cholmod2.

Fig. 11. Computation speed per time step in state recovery. As we use a
trajectory based approach, the time step multiplied by 3 is the number of
map features (number of robot poses × dimensions of each pose)

Fig. 12. Computation speed per time step in state recovery divided by the
number of non zero entries in the information matrix.

As the CGS is not an exact solution, a comparison measure
was needed to determine weather the CGS was overconfident
or conservative in the estimation of the information matrix.
Using a measure from [24], we compared the matrices
obtained in CGS and Cholmod. The resulting histogram
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shows how the estimated information matrix in CGS is
conservative with respect to the exact matrix obtained by
Cholmod2. We understand that a deeper understanding on
how this conservative estimation affects the overall trajectory
is required.

Fig. 13. Information matrix comparishon between CGS and Cholmod2.

V. DISCUSSION AND CONCLUSION

We have presented our Omnivideo SLAM System and we
can summarize our contributions as follows. We have succes-
fully used an omnivideo camera alone to both construct an
accurate map and provide localization skills to a robot placed
in a small office environment. For a larger scale environment,
we have shown that the standard KF solution is not appropri-
ate because of the computational costs. Furthermore, we have
provided a comprehensive comparison between 5 different
techniques to perform state recovery and have summarized
and analytically derived the computational advantages of
the EIF for trajectory based approaches. Regarding the data
association problem and loop closure scenario, we have
shown how a similarity measure can be used to detect
loop closure without using priors under O(n) complexity
in the number of images. Finally, we hope to have shown
some insight in the difficult task of accurately mapping
large indoor environments with an inexpensive camera sensor
where large loops are closed.

We have shown that an omnivideo system is adequate
for building an accurate map of indoor office environments.
Estimating the epipolar geometry of two panoramic images
and obtaining the relative heading and orientation of each
other yields enough information to create a consistent tra-
jectory map and compensate for the accumulation of error
in odometry. Furthermore, by means of a data-set recorded
with a mobile robot, we have shown that an accurate map
of a small office environment can be created and maintained
by our omnivision trajectory based SEIF approach. Given
the computation time required by the ESEIF and the state
recovery process, we have also shown that building such a
map with ≈ 1,000 robot poses can also be done in real time.

Using a robust image matching algorithm together with
the ESEIF, large loops can be effectively closed in extremely
large environments. The computational gain of the Informa-
tion Filter compared with the traditional Extended Kalman
Filter solution showed an improvement in performance. Our
large office experiment will not be possible with the standard
Extended Kalman Filter due to the quadratic time required.

Furthermore, it will not be possible without an appropriate
state recovery technique, as we have shown that only LU
decomposition, CGS and Cholmod2 are sufficiently fast
for less than 5,000 robot poses, though the Cholmod2 is
significantly better in terms of global computation time. For
data-sets with more than 10,000 robot poses we show that
the CGS will perform better as the computation time growth
in our experiments shows a more linear behavior less sensible
to number of observations. An efficient implementation will
consider using the Cholmod2 for a number of robot poses
below 5,000 and a constant number of observations. When
the number of features increases significantly, for instance
when closing large loops, the CGS seems to be the most
appropriate choice.

Having observed the amount of error induced by the
linearization process by means of an artificial data set our
SLAM algorithm could be improved with a more appropri-
ate linearization technique. The essential drawback of the
Information Filter is the need to recover the state in order
to compute the next filter step. Some approaches regarding
partial state recovery could be employed though they also
introduce error as they are only an approximation. Another
interesting alternative to explore will be the substitution of
the non linear function h(x) with an alternative function over
the information vector, namely h∗(η). This will shortcut the
need to recover the state vector x though the definition of
such function is difficult to foresee as the information vector
lacks geometrical meaning.

Regarding the ”bending” process of the trajectory on
the loop closing points, we believe, that using a relaxation
technique to introduce additional error between certain robot
poses, the bending could be enforced over those poses, acting
as joints in the bending process. This error introduction could
be done by a more detailed odometry error model. By drop-
ping the use of a static error covariance R and introducing an
improved model that accounts for the additional error when
the robot is turning. Such an error model will be integrated
in a non-linear motion process.
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