
May 17, 2006 12:47 WSPC/INSTRUCTION FILE emgIJAT06

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Combining Audio and Video Surveillance with a Mobile Robot

Emanuele Menegatti, Manuel Cavasin, Enrico Pagello

Dept. of Information Engineering, University of Padua,

via G. Gradenigo 6/B , Padua, ITALY
{emg,epv}@dei.unipd.it

Enzo Mumolo, Massimiliano Nolich

Dept. of Information Engineering, University of Trieste,

via Valerio 10, Trieste, ITALY
{mumolo,mnolich}@units.it

This paper presents a Distributed Perception System for application of intelligent surveil-
lance. The audio and video sensors distributed in the environment are used as a single

sensor to reveal and track the presence of a person in the surveilled environment. The

system prototype presented in this paper is composed of a static acoustic agent and a
static vision agent cooperating with a mobile vision agent mounted on a mobile robot.

The mobile robot extends the capabilities of the system by adding a mobile sensor, in

this work an omnidirectional camera. The mobile omnidirectional camera can be used
to have a closer look of the scene or to inspect portions of the environment not covered

by the fix sensory agents. In this paper, the hardware and the software architecture of

the system and of its sensors are presented. Experiments on the integration of the audio
localization data and on the video localization data are reported.

Keywords: audio and video surveillance; sensor fusion; mobile robot; omnidirectional

vision

1. Introduction

In this paper, we present our current project on the development of an intelligent
surveillance system that uses both mobile and static surveillance agents. The sce-
nario of application is the monitoring of a room or a multi-room environment with
a dynamic structure, for instance the storage room of a shipping company where
the position of piles of boxes can change day after day. In this case most of the
traditional surveillance systems 4 8 based on static sensors will fail, because they
will not be able to re-configure in order to avoid occlusions from objects piled-up
in front of the sensors. In our system, one (or more) mobile robot can be send to
inspect suspicious areas occluded by movable objects, as already introduced in 12.

Several work deal with the integration of the information gathered by a network
of cameras (among the others 14,10,9. In this paper, we focus on the integration
of the visual and audio information provided by different “sensing agents”. The
concept of “sensing agent” is introduced to shade the lights on merely perceptual
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actions.
In our approach, the sensors distributed in the environment cooperate in order

to form a sort of “super-sensor” distributed among the agent team. This distributed
sensor is used to provide the single mobile robot and the remote human supervisor
of the system with richer information than the one coming from the single agents.

2. Related works

Many researchers focused on the integration of vision and acoustic senses, motivated
by the fact that there usually exists a strong correlation between the motion of a
sound source and the corresponding audio data. In 6, for example, this fact has been
exploited for lip/speech-reading for improving speech recognition in adverse condi-
tions. As far as the position of a sound source is concerned, two approaches have
been considered. In the this approach, audio data and vision data are fused together
with suitable information fusion methods. A system able to automatically detect the
identity of the talker and the position of the talker’s mouth is described in 5. In this
work, the speaker’s head is first box-bounded in the video data and visual features
from the image are extracted as a measure of change between two subsequent im-
ages. The audio features are mel-cepstrum coefficients, which are commonly used in
speech recognition systems. A Time Delay Neural Network (TDNN) is then trained
to learn the audio-visual correlations between audio and visual features. Another
possibility is to process separately each channel to get the localization information
of the two sources and the results are integrated only in the final step. One example
is presented in 3. In this work, the position of the sound source (a talking mouth)
in a video scene is estimated by fusing auditory and visual information, based on
skin-color and nonskin-color information, using a Bayesian network. A different ap-
proach is the system described in 17 uses an array of eight microphones to initially
locate a speaker and then to steer a camera towards the sound source. The camera
does not participate in the localisation of objects. It is used simply to take im-
ages of the sound source after it has been localised. This system is well suited for
video-conferences, but not for surveillance purposes. Our approach is more similar
to the one described in 1, i.e. a multi-modal sound localisation system that uses two
cameras and a 3-element microphone array. In this work, Aarabi and Zaki demon-
strated that the localisation integrating audio and video information is more robust
compared to localisation based on stand alone microphone arrays. Their approach
seemed to be reliable only when using ad-hoc narrow band acoustic signals.

3. A system overview

As we said in the introduction, the system is composed of several sensors. The
sensors are shown in Fig. 1 and in Fig. 2. In Fig. 1 are depicted: one of the static
Vision Agents composed of an omnidirectional camera with a hyperbolic mirror (on
a tripode on the left of the image), and one the mobile robots (on the left bottom of
the image). The robot is equipped with an omnidirectional camera with a different
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miror profile. It mounts a multi-part omnidirectional mirror 11. The vision system
on board of the robot is called mobile Vision Agent. In Fig. 2 is imaged the audio
sensor (Static Acoustic Agent) composed of a circular microphone array able to
perform beamforming and to estimate the position of a person using its speech.

Fig. 1. The two vision agents the static one on the tripod and the mobile one on the mobile

robot.

Every sensory agent is realised with a sensor (microphone or camera) connected
to a computer equipped with a IEEE 802.11b wireless LAN card. The computer
provides the agent the computational power necessary to process the raw sensory
data and to transmit the results of this processing via the wireless LAN to a remote
console, where an human operator can monitor the situation. The communications
are managed by a middlewar, we developed for the RoboCup project, called ADE 2.
Thanks to ADE, message passing from one agent to the other is totally transparent,
independently if they reside on the same machine or on machines connected through
a LAN or a wireless LAN.

The system is able to detect and track intruders in a indoor dynamic environ-
ment grabbing close-up images of the intruder with the mobile robots. The basic
functioning of the system is:

• the static vision agent, i.e. the omnidirectional camera over the tripod,
detects moving objects in the image and transmits their coordinates in the
world frame of reference to the static acoustic agent;
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Fig. 2. The audio sensory agent: on the left, the circular microphone array used by the audio

agent; on the right, the acoustic agent present in the environment.

• the static acoustic agent performs beamforming in the direction of the de-
tected motion, estimates the position of the noise produced by the intruder
and start tracking it;

• the different measurements on the position of the intruder coming from the
static vision agent and static acoustic agent are fused by the computer of
the static acoustic agent in order to improve the position estimation, which
is sent to the mobile robot and used for moving it toward the position of
the localized intruder;

• once the intruder is detected by the mobile vision agent a close-up image
is sent to the monitoring station, so an operator can check if the moving
object represents a danger or if it is just a false alarm. Moreover the mobile
robot might ask the intruder to present itself using speech and it is verified
if the person is authorized or not on the basis of its speech.
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Let us discuss the implementation of the single sections of the system.

4. The Static Vision Agent

As hinted before, the static vision agent is composed of a catadioptric omnidirec-
tional camera composed of a standard perspective camera and a hyperbolic mirrora.

To detect the intruder the image is segmented into a moving foreground and into
the stationary background. As we said, our system is conceived to work in a dynamic
environment in which the objects and the obstacle might change configuration in
time. For this reason we adopted a historical background subtraction algorithm. In
this technique the background image is not a static image, but it is updated frame
after frame slowly incorporating changes in the scene.

In Fig. 3 is depicted a sequence in which the history image is changing to incor-
porate a person that entered the scene and was stationary for a long time.On the
left image, the person is just a ghost in the image on the left of the door, in the
middle image, the ghost of the person become more tangible, on the right image
the person is merged into the background.

The historical background is calculated according to Eq. 1, creating a grey-level
image representing the fix luminance in the image.

historyt(i, j) = historyt−1(i, j) · (1 − α) + luminancet(i, j) · α (1)

Fig. 3. An example of the evolution of the dynamic background. From left to right an object
that was moved into a new position, and then stays stationary, is gradually merged into the static

background.

The parameter α describe how fast the changes in luminance of the single pixels
are incorporated in the image. The foreground, i.e. the moving objects in the scene,
is obtained as the set of pixels that differ from the corresponding value stored in
the historical image more than the standard deviation of these pixels, Eq. 2.

|luminancet(i, j) − historyt−1(i, j)| > c · stdDevt−1(i, j) (2)

aThe camera and the hyperbolic mirror are kindly lent by prof. H. Ishiguro of Osaka University.
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Once the foreground is calculated, it is divided in blobs of similar colors and
the connected blobs are considered to belong to a single object. For every object
are calculated the position in the world and the three principal colors. The position
of the object are sent to the acoustic agents and to the robot to be used in the
subsequent tracking steps (the three principal colors are sent to the mobile robot
only).

5. The Static Acoustic Agent

The acoustic agent is composed of a microphone array (shown in Fig. 2), a DSP
board for acoustic acquisition and processing and a host PC. The different tasks
performed by the acoustic agent are discussed in details in the following.

5.1. Circular microphone array based localization

Microphone array technologies are commonly used for performing acoustic localiza-
tion, both in 2D and in 3D, and several techniques can be adopted 16. One class of
algorithms can be derived directly from antenna array theory and are well suited for
narrow-band signals. Another class of algorithms, well suited for wide band signals,
are based on the Generalized Cross Correlation.

A 2D acoustic localization algorithm suited for wide band signals and circular
arrays is presented. Circular arrays allow an omnidirectional localization around the
acoustic agent. Only 2D localization is considered, which provides enough informa-
tion to plan the movements of the robots.

In this work a circular array has been considered, which has a 30 cm diameter
and 32 microphones equally spaced on the circumference. Out of the 32 microphones,
the 16 microphones directed towards the acoustic source are selected on the basis
of energetic considerations.

The localization of the source is determined from the knowledge of the time delay
between microphone pairs. The estimation of the localization from the time delay
is obviously a non linear problem. However, by introducing some approximations it
is possible to derive simple geometrical methods to solve this problem.

• Estimation of the time delay. Popular approaches for the estima-
tion of the time delay of arrival of an acoustic signal to a couple of
microphones are based on the maximization of the cross-correlation be-
tween a couple of signals si(t) and sj(t) received by microphones i and j:
Rik(τ) = E{si(t)sk(t+ τ)}. In fact, assuming that a reasonable model for
the signal received by microphone i is si(t) = αir(t− τi) + ni(t), where τi
is the time of flight from the source r(t) to the microphone i and αi is the
propagation lossy factor, the cross-correlation becomes

Rik(τ) = αiαkRrr(τ − δik) +Rnink
(τ) (3)

where Rrr is the autocorrelation of the acoustic source r(t). Sharp cross-
correlation peaks can be obtained by filtering in the spectral domain. More
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precisely, a spectral weighting filter ψ(f) ? can be introduced to whiten the
input signal:

R
(g)
ik (τ) =

∫ +∞

−∞
ψg(f)Gik(f)ej2πfτdf (4)

The function reported in (4) is called Generalized Cross Correlation (GCC).
Various choices of the weighting function are possible. For instance, the ψ(f)
function can be derived with a Maximum Likelihood formulation leading
to the TDOA (Time Delay Of Arrival) algorithm as described in ?.

Another approach is the Modified Cross-power Spectrum Phase (MCSP)
estimator ?:

ψMCSP (f) =
1

|Gik(f)|ρ
(5)

where 0 < ρ ≤ 1.
• Geometric consideration. The localization of the source is determined
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Fig. 4. Geometric location of the microphones in the circular array

from the knowledge of the time delay between microphone pairs. The es-
timation of the localization from the time delay is obviously a non linear
problem. However, by introducing some approximations it is possible to
derive simple geometrical methods to solve this problem.

In this work a circular array has been considered, which has a 30 cm
diameter and 32 microphones equally spaced on the circumference as rep-
resented in Fig. 4. Out of the 32 microphones, the 16 microphones directed
towards the acoustic source are selected on the basis of energetic consider-
ations.

• Estimation of the TDOA with Neural networks. The neural network
model adopted was a Multi-Layer Perceptron ? with one hidden layer. Each
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hidden node use the hyperbolic tangent as activation function. With ref-
erence to Fig. 4, the sixteen microphones towards the source are divided
into eight couples as follows: (1, 5), (2, 6), (3, 7), (4, 8), (9, 13), (10, 14),
(11, 15), (12, 16). For each couple the time delay is computed using MCSP.
δ1, δ2, · · · , δ8 are given as input to the neural network. Several optimization
techniques ?, including in particular backpropagation with momentum, the
Levemberg-Marquardt approach, and Newton-based approaches, have been
tested for training the neural network, and the best results were obtained
with Levemberg-Marquardt ? and Rprop ?.

• TDOA performances. The localization is based on the estimation of the
TDOA using the MCSP as described in eq. (5).

Let us summarize now the procedure: first the signal is divided into
frames and then a MCSP function is computed on the considered frame.
The TDOA is then estimated by peak picking. Besides the usual approach
to make an average estimation of the localized coordinate, which has a long
algorithmic delay as it requires to localize each incoming frame, a faster
approach was investigated: the localization was performed on the maximum
energy frame only and on the first frame only. Both these approaches seemed
reasonable, because the former implies a higher SNR while the latter is less
affected by echoes and reverberations.

The parameters to optimize are therefore: whether the best results are
obtained using the first frame or the maximum energy one, the frame di-
mension and the value of the ρ used in the MCSP formulation. The opti-
mization has been performed on the basis of the geometric TDOA described
in eq. (6):

TDOAgeometric = round

{
d(p,m1) − d(p,m2)

Vsound
· fs

}
(6)

where p is the source position, (m1,m2) is the microphone couple, d() is
the distance measure, Vsound is the sound velocity and fs is the sampling
frequency. The analysis has been carried out by computing the number of
times that a set of parameters gave a TDOA equal to that obtained with
eq. (6).

The results are reported in 5, which shows that the best results are
obtained for the first detected frame of the vocal signal with a frame length
equal to 1024 and ρ = .5 while for DTMF signals the best results are
obtained for the first detected frame but with a frame dimension equal to
128 and a ρ = 0.

It was the considered the possibility to average several TDOA results
instead than a single frame. The results are that both for the vocal signal
and the DTMF signal the TDOA improvements obtained averaging several
frames are not significant.

The TDOA estimation described so far is obtained from a couple of
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Fig. 5. TDOA results.

microphones. Coming back to Fig.4 we see that, out of the 32 microphones
of the array, several definitions of the microphone couples are possible.
We considered 8 couples in each semi-circle, according to the description
reported in Table 1.

Conf.1 1-9 2-10 3-11 4-12 5-13 6-14 7-15 8-16
Conf.2 1-8 2-7 3-6 4-5 9-16 10-15 11-14 12-13
Conf.3 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-16
Conf.4 1-3 2-4 5-7 6-8 9-11 10-12 13-15 14-16
Conf.5 1-5 2-6 3-7 4-8 9-13 10-14 11-15 12-16
Conf.6 1-4 2-3 5-8 6-7 9-12 10-11 13-16 12-15
Conf.7 1-16 2-15 3-14 4-13 5-12 6-11 7-10 8-9
Conf.8 1-8 2-5 3-6 4-7 9-16 10-13 11-14 12-15

In Fig. 6 the average absolute localization errors obtained using geo-
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metrical localization are reported. The configuration that provides better
results is the nr. 5.

Fig. 6. Localization performance using different microphone configurations.

• From TDOA to source coordinates: acoustic localization. We tested
two approaches for acoustic localization. The first approach is based on a
classical triangulation as described in ?.

The second approach is based on Neural Networks (NNs). The training
of the NN has been performed by dividing a 8m · 8m area around the
omnidirectional device into a grid, as shown in Fig. 7, and playing in the
points of such grid a signal. Half a grid is used for training the NN while
the remaining half is used for testing. The network has 8 inputs, coming
from 8 microphone couple, and two outputs, that is the X, Y coordinates
of the sound source. For increasing the effectiveness of the training, other
artificially shifted signals has been added to the signal played in the points of
the grid. Two classical techniques for training the network are used, namely
he Rprop and the Levenberg-Marquardt. The former is less computational
expensive but it requires a higher number of iterations to converge towards
a good local minimum while the latter has a greater computational cost
but it requires a lower number of iterations. Average localization errors in
meters for the two algorithms are shown in Fig. 8 for speech and DTMF
signals respectively.

Two kinds of acoustic signals were tested: speech and DTMF tones. The speech
used for testing is composed by three Italian phrases typical of human-robot inter-
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action:

(1) Vieni qui (Come here);
(2) Vai al sito A (Go to A site);
(3) Prendi l’oggetto B (Take the object B).

The DTMF tones used for testing are three dial tones used in telephony.

0

0,5

1

1,5

2

2,5

3

3,5

4

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2

Fig. 7. Training grid

Real signals were acquired in the big points on the grid of Fig. 7 in our laboratory.
In each point 10 replicas of the same 6 signals were acquired: 5 replicas have been
used for training and the other 5 for testing. Other synthetic signals were created
shifting the original signals as it were emitted in the small points of Fig. 7. In Fig. 8
results concerning speech and DTMF tones localization are reported. It is depicted
the absolute mean localization error of acoustic signal considering two different
neural network training algorithms: Rprop and Levemberg-Marquard. Better results
have been obtained using the Rprop learning algorithm, obtaining an absolute mean
localization error of about 45 cm.

The training is performed offline and the system operates really fast only using
the pre-learned neural network. Using such approach we can obtain better results
than using linear intersection algorithm of Rabinkin ?.

In Fig. 9 a comparison between geometric linear intersection localization and
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Fig. 8. Average performances of sound localization using Speech and DTMF tones

neural network localization (trained using Rprop) is presented: the histograms re-
port the mean absolute localization error (in meter) for two types of signal used,
namely Speech and DTMF tones. It is evident that the neural network approach
gives better performances.

Fig. 9. Comparison between geometric linear intersection and neural localization.
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5.2. Microphone array and beamforming

5.2.1. Preliminaries

A sensor can be viewed as a window, called aperture, through which a field of certain
physical quantities is measured. The aperture is described by its aperture function,
which contains information on dimension and shape of the window, and describes
how the measure depends on the direction of arrival of the variable physical quan-
tities. If we consider a situation where there is a source generating a field which
propagates in the space, identified by f(x, t), and a finite number of apertures, we
have a signal which is the result of a spatial sampling of the field, that is the sig-
nal ym(t) = f(m · d, t) where d is the spatial distance between the apertures, or
the sampling interval in space. As in temporal sampling, the original signal can
be reconstructed from its spatial samples using the sampling function, where the
spatial frequency instead of oscillation frequency is used. Each signal ym(t) mea-
sured at the m-th aperture can be modified by multiplying the signal itself by a
weight wm. Let us consider the weighted signal z(t) =

∑M−1
m=0 wmym(t− τm). This

is the simplest form of beamforming, called delay and sum, since if the delays τm
are chosen equal to the time delay of arrival (TDOA) of the second to the M-th
microphone relative to the first microphone, the signal coming from a certain direc-
tion is incremented while the signal coming from other directions is decremented.
The delay and sum beamforming operation can thus be described, in the spectral
domain, as Z(ω) =

∑M−1
m=0 wmYm(ω)ejωτm . Defining the steering vector sM (ω) as

the set of elements which cancel the plane-wave signal’s propagation related phase,
more precisely sM (ω) = [1, e−jωτ2 , e−jωτ3 , . . . , e−jωτM ], the beamforming operation
is described as Z(ω) =

∑M−1
m=0 Ym(ω)wms

∗
m.

5.2.2. Minimum variance beamforming

When the acoustic agent receives the position of the intruder from the static vision
agent, a beamforming algorithm is used to direct the microphone array toward the
acoustic source, i.e. the intruder. The beamforming algorithm in frequency domain
is performed using the circular microphone array, obtaining a directional main lobe
in the reception diagram. In other words, the inputs of the microphone array are
combined in order to obtain a directional microphone. In Fig. 10 a reception diagram
is reported; in this case the array is steered towards a −30 degree direction and the
interfering noise coming from the broadside direction (0 degree) is de-emphasised.
The beamforming algorithm is schematically depicted in Fig. 11.

The adaptive algorithms for beamforming apply a vector of weights Wi =
wie

−jωτm to the vector of observations (i.e. the signals coming from the micro-
phones in the frequency domain), in order to minimise the mean square value of
the weighted observations, such that wi = argminE[|z(t)2|]. Minimizing power pre-
sumably reduces the effect of noise and unwanted signals. Using the method of the
Lagrange multipliers the general solution of the minimization problem is described
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Frequency:

Fig. 10. The reception diagram obtained for the array of microphones once beamforming is per-

formed.

Fig. 11. A schematical representation of the beamforming algorithm.

by

wopt =
R−1d

d∗R−1d
. (7)

where R is the normalized cross power spectral density.
The beamforming algorithm is applied to frames derived from an incoming sig-

nal. As a sequence of frame is obtained, the signal can be reconstructed using the



May 17, 2006 12:47 WSPC/INSTRUCTION FILE emgIJAT06

Combining Audio and Video Surveillance with a Mobile Robot 15

overlap-add method to the result of the IFFT block.

5.3. Speaker classification

The acoustic signal obtained by beamforming is therefore cleaned up by most of
other noises and can be used to train an HMM (Hidden Markov Model) of the
speech of the human person, with the technique described in 15. When the person
moves, the learnt HHM can be used to identify a person moving in the environment
by his/her voice from another person and so allowing a audio tracking of a walking
person. Otherwise, if the voice is unknown, a new HMM can be trained using the
next five acquisitions of the acoustic agent.

6. The fusion of the observations

Fig. 12. The architecture of the sensor fusion module.

To improve the localization results, the measurements on the position of the in-
truder coming from the static vision agent and the static acoustic agents are fused
using the technique described in 14. This technique was developed to fuse position
data coming from heterogeneous sensors. The only assumption on the measurements
were that they could be described as a Gaussian probability distribution and that
they are labelled with a time stamp indicating the time in which they were acquired.
This system used a modified Kalman filter to fuse the measurement coming from
different sensors and the information on the position of the tracked objects where
stored in tracks. The peculiarity of this system is that it can accept measurements
coming from heterogeneous sources with different errors associated to every estima-
tion and that the measurements can arrive also in the wrong time order and they
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will be reordered thanks to the time-stamp associated to every measure. In Fig. 12
is sketched the architecture of the module performing the data fusion.

7. The Mobile Vision Agent

The mobile vision agent is implemented on board of a Golem platform developed
by the Golem Team 7 bought a couple of years ago by the IAS-Lab. The Golem
platform is an holonomic robot driven by three motors with omnidirectional wheels.
It mounts an omnidirectional vision system realised with a Hitachi camera and a
customly designed omnidirectional mirror 13. The processing power is assured by a
PC-104 with a AMD K6 400MHz CPU. As one can notice in Fig. 13, the omnidirec-
tional camera of the mobile robot is very different from the omnidirectional camera
mounted on the tripod (the static vision agents). An example of how different are
the two images grabbed by these cameras is depicted in the screenshot of Fig. 15.

Fig. 13. (Left) The mobile robot on which is mounted the mobile vision agent. This is an

holonomous robot with an omnidirectional vision system where the mirror has a custom pro-
file. (Center) A close-up view of the principal robot’s carachteristics. (Right) A close-up view of

the omnidirectional camera of the static VA.

The mobile robot receives from the static vision agent its own position and
the position of the intruder. From these data, it calculates the relative position
of the intruder with respect to itself and it moves toward this position driven by
the odometric data. An update on its position and the position of the intruder is
received ten times per second and on this short time interval the odometric data
can be considered reliable.

Once the robot reach the position communicated by the static vision agent, it
analyses the current images to identify the intruder in the image. Because the two
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mirrors of the omnidirectional cameras are different the appearance of the intruder
in the two vision sensor will be very different. So the robot identifies the intruder by
locating in the image the three blob of the colours transmitted by the static agent.
If the intruder is identified in the image the grabbed image is sent to the monitoring
station, where a graphical interface display it to the operator, see Fig. 15.

8. Experimental results

For testing the data fusion and tracking system some simple experiments were
performed. In the first one, an intruder enters the surveilled room from the left
in Fig. 14. Once the position of the intruder is acquired, the mobile robot moves
toward the intruder, as shown in the right panel of Fig. 14, and a close-up image of
the intruder is grabbed and sent back to the monitoring station that displays it to
the remote operator with the graphical interface depicted in Fig. 15.

In the graphical interface it is displayed also the path followed by the tracked
intruder. In this experiment the intruder moves slowly (mean velocity of about 0.5
km/h) but continuously from the entrance on the left to the exit of the environment
on the right.In the second experiment, a talker enters the room and follows the walls.
Its position is tracked by the system as shown in Fig. 14. At the time of writing, we
are performing more intense tests to have a statistical analysis of the reliability of
the tracking system in determining the intruder position. Up to now the system is
limited to track an intruder a time, but the system is conceived to allow the tracking
of multiple intruders.

9. Conclusion and future works

In this work, we presented an intelligent surveillance system able to autonomously
monitor a room and to locate a track an intruder entering the room. The data
gathered by the heterogeneous sensory agents are fused to obtain a global estimation
of the position of the intruder. The system uses a static vision agent, a mobile vision
agent and five steerable acoustic agents, but it has been designed in order to connect
any number of sensory agents.

Future developments concern the fusion of the sensorial data provided by several
mobile robot in order to have a team of surveillance robots that can “go and seek”
for several intruders. At the time of writing we are further testing the system.

10. Acknowledgements

The authors wish to thanks: the students of the IAS-Lab, especially Nicola Milani
and Alberto Scarpa, for writing part of the software used in this experiments. We
wish to thank also Prof. Hiroshi Ishiguro of Osaka University (Japan) for lending
us the omnidirectional camera.



May 17, 2006 12:47 WSPC/INSTRUCTION FILE emgIJAT06

18 Menegatti et al.

Fig. 14. Three pictures taken during the preliminary experiments: (Top) the robot is patrolling;
(Middle) an intruder enters in the surveilled room; (Bottom) the robot approaches the intruder
directed by the Static VA on the right of the picture and recognize it in its omnidirectional image.
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