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1. Introduction

The simulation of real robots is one of the fundamental research areas in robotics
for its many applications. Indeed, a realistic simulation allows researchers to de-
velop and test programs in a virtual environment, without the physical presence
of the robot. This may be extremely useful, especially, in situations in which there
are many people working on different aspects of the same robot, like in the case
of humanoid robots. In this situation, each person can work independently with-
out interfering with the others. Moreover, simulators are very useful in education:
Students can develop different motions and behaviors for the robot, without been
physically in the laboratory or without the risk to damage the robot. Again, this is
particularly true for humanoid robots which are complex units built with expensive
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electronic and mechanical parts.

However, create a realistic simulation of a humanoid robot is a challenging task
due to the complex structure of the kinematic chain created by the robot limbs and
body and due to the complex dynamics of robots with several degrees of freedom
(DOF). In fact, even the simplest humanoid robots have easily more than 15 DOG.
An additional complication is that usually humanoid robots have different kinds
of actuators for the different joints. This requires in the simulator the need to
specify different kind of joints or hinges and different parameters for the actuators
controlling them (e.g. different torque or friction coefficients, for the different joints,
like the elbow or the knee of the robot). Most of the large humanoid robot projects
that involve big and expensive humanoid robot platforms have a dedicated simulator
to simulate just that specific humanoid robot. Some examples are:

However, if one is interested in multi-robot humanoid teams, as in the soccer
game, this kind of simulator is not appropriate. The simulation of multi-robot hu-
manoid teams requires much more flexible simulators with the capability to simulate
different robotic platforms that can interact each other. Moreover, the simulation
of a soccer match between two teams of soccer robots requires to simulate several
robots at the same time, in which the robots of the two teams are probably differ-
ent (in terms of bodies and actuators, and might be also heterogeneous within the
same team) and physically interact among them, with the ball, and with the other
objects in the field. So far, most of the research on multi-robot systems used 2D
simulators, just to cite few of them:

However, for simulating a multi-robot humanoid team the 2D simulation is not
enough. It can be enough for wheeled robot, but robots with many degrees of free-
dom cannot properly simulated in a 2D world. Legged robots, and humanoid robots
in particular, need a more complex simulator creating a faithfully 3D simulation.
This was correctly understood several years ago by the RoboCup Simulation com-
munity that understood that to contribute to achieve the 2050 goal of beating a
human soccer team with a robot soccer team they had to move from a 2D simulation
XXX to a 3D simulation.

We are interested in simulators providing, not only realistic physical simulations,
but also realistic rendering of the 3D scenes. This is because we are interested in
simulating robots whose main sensor is a camera. If the simulator can provide a
realistic rendering of the 3D scene and if it is possible to generate what is called an
egocentric view of the scene, i.e. to render the scene as viewed by a camera mounted
on the robot, it is possible to “close the loop“of the robot control directly in the
simulation. In fact, it is possible not only to view the virtual robot moving in the
virtual world, but also to run the image processing algorithm designed for the robot
on the synthetic images generated by the virtual camera and to use the result of the
image processing as input for the robot behavior control module in order to select
the most appropriate command to be sent to the virtual robot.

Another feature we are interested in is the possibility to control the simulated
robot in the virtual world exactly with the same code used to control the real robot
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in the real world. Additionally, in order to validate the simulation and the robot
model, we would like to control both robots (i.e. the virtual and the real one) at
the same time.

There are a fair number of 3D simulators which fulfill these requirements, and
each of them presents advantages and disadvantages, in the following we report
some of them. The ASURA RoboCup Software by the Asura RoboCup team ’ has
been developed for the simulation of four legged robots. It allows to use strategies
and sensors acquisition, but it lack in representing dynamic simulation, so giving
a poor representation of the virtual environment. SimRobot simulator by Laue et
al. ”, supports different models with a great flexibility of control and different body
models, sensors, and actuators are available. Dynamics is simulated with the open-
source physical engine Open Dynamic Engine (ODE) *. Also, UCHILSIM by Zagal
and Ruiz-del-Solar * uses the ODE engine for the physical simulation. This project
has been developed to became a standard framework for the AIBO robot simulation.
A simulator able to simulate both AIBOs and humanoid robots is MuRoSimF *.
MuRoSimF is very interesting for soccer matches simulations mainly for two reasons:
it provides single robot sensors simulation (in order to close the control loop in
simulation) and it provides a scalable level of detail and complexity of the kinematics
and dynamics which can be tailored to the requirements of a specific simulation
(even chosen individually for each simulated robot). Thus, the user can trade off
between available computational resources and simulation fidelity. However, so far
this software is not available and the rendering of the simulated camera is not
very realistic. Webots 7 is a commercial software for robotic simulation. It uses
the ODE engine. It has an extensive library of actuators, sensors and robots. In
addition, the mechanical features of the robots are well defined and the available
libraries allow to control the virtual robot and the real robot with the same code.
However, it lacks in the quality of the 3D graphical representation of the virtual
environment and being a commercial robotic simulator its cost is not affordable
by everyone. Another popular simulator in the robotics community is the toolkit
Player - Stage - Gazebo. Player is the server coordinating the simulations, Stage
is the 2D rendering client and Gazebo is the 3D rendering client. Player/Stage is
well suited for 2D simulation and several groups are using it around the world for
research and education. However, the 3D rendering is quite simple and does not
have good rendering performance. In particular, the creation of the virtual scene is
quite difficult and the 3D rendering is not realistic.

Our final choice was for USARSim (Urban Search And Rescue Simulator) *
USARSim provides a great fidelity in visual 3D rendering and realistic simulation
of physics in the virtual environment exploiting the rendering and the physical
engines of a commercial computer game called Unreal Turnment. In addition, we
choose USARSim because there is a large open-source community that is developing
and maintaining it, especially people from the RoboCup Rescue community *, *,
7.7, 7. So far, USARSim has been used to simulate wheeled or tracked robots, the
only legged robots available were AIBO robots and a non realistic model of the
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Sony QRIO?. To the best of our knowledge the model we created in USARSim
was the first model of a commercially available humanoid robot (nowadays, other
models are spawning like the Robonova model presented in *). While working on this
project Microsoft released its development suite for robotics called Robotics Studio.
Robotics Studio provides an integrated software development kit for programming
real robots and it provides a simulator to test the software before mounting it on
a real robot. Considering the major role of Microsoft in the computer world and
the huge effort they are putting in this product in term of software development,
promotion in the robotics community and even commercial advertising, we think
Robotics Studio will have a strong impact on the robotics community, even because
it is free of cost for reasearch and educational purposes. Therefore, we think it is
mandatory to compare Robotics Studio simulator with the best simulators already
there.

In this paper, we describe how we created the model of a commercial humanoid
robot platform called Robovie-M by VStone ltd. for two general purpose robotic
simulators which are easy available for the research communit: USARSim and Mi-
crosoft Robotics Studio. This paper describes how we created each of the two robot
models from scratch, which are the difficulties we encountered, and which are ad-
vantages and disadvantages of the two simulators and their ability to faithfully
simulate the motion of a real humanoid robot.

The remainder of the paper is organized in this manner. In Section ... XXX
XXX...

2. The robot Robovie-M

The robot we modeled is Robovie-M (version 2) by Vstone ’. This is sold as
commercial construction kit to build a small humanoid robot. Its dimensions are
290x240x65mm, with a complexive weight of 1.9 Kg. It has 22 DOF (degrees of
freedom), and 22 Sanwa servomotors: 6 for each inferior art (legs), 4 for each supe-
rior art (arms), for the trunk. The characteristics of the servomotors are in Table
1.

’ Motor ‘ Torque ‘ Speed ‘ Size
Hyper ERG-VB | 13 Kg x cm (6V) | 60°/0.1s (6V) | 39x20x37.4 mm
SPEC-APZ | 4 Kg x cm (4.8V) | 60°/0.2s (4.8V) | 39x20x35.5 mm

Table 1. Robovie-M: Technical characteristics of the servomotors.

The robot is sold without a camera, and its original control board does not sup-
port a camera device. We added a control board called IT4+R-~Core by IT4+Robotics
based on a Intel XScale PXA270 at 520MHz fitted with 64MB SDRAM and 32MB
FLASH memory. We built head-frame to support the camera and we fixed it to the
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Fig. 1. (top) The modeled robot Robovie-M by Vstone; (middle) the USARSim model of Robovie-
M; (bottom) the MS Robotics Studio model of Robovie-M.

shoulders of the robot, Fig. ?7. The power for the control board and for the motors
is prvided by five batteries of 1.2 V and 2300 mA.

3. The USARSim Simulator

USARSim provides a high fidelity simulation at a low cost. The current version of
USARSim is based on the Unreal Engine 2 game engine released by Epic Games
with Unreal Tournament 2004 °. Buying the game (for approximately 20 Euro),
it is possible to obtain the engine needed to run the simulator, together with a
complete game development framework. The Unreal Editor allows to rapidly create
the models of new objects and new environments. The Unreal Script, which is an
ad-hoc script language, allows to define the behavior of the objects in the virtual
environment even through a TCP/IP network since Unreal Engine 2 has been de-
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veloped for the development of networked multi-player 3D games. Robot control
programs can be written using one of the following tools: the GameBot interface,
the MOAST System °, the Player interface, or the Pyro middleware *.

USARSim was initially developed for extremely realistic simulation of Urban
Search and Rescue (USAR) robots and environments, in particular for the refer-
ence test arenas developed by the National Institute of Standard And Technology
(NIST) ” tasks. However, it has been used also as a research tool for the study of
human-robot interaction (HRI) and multi-robot coordination, and now for its real-
istic simulation and high quality rendering its is used also in other fields of robotics.
Using USARSim, problems like animation, and virtual environments rendering are
automatically solved. More robotics-specific tasks of modeling platforms, control
systems, sensors, interface tools and environments are accelerated by the advanced
editing and development tools integrated with the game engine. With the current
release of the simulator come various environmental models, different models of
commercial and experimental robots, and sensor models. There are some validation
of the accuracy of USARSim 7, 7,7, 7%,

An important feature of USARSim, which is derived from the game, is that the
scene can be observed by using egocentric view (first-person view, i.e., the robot
view) or external camera view (third-person view).

4. USARSim model of Robovie-M

The virtual model of the Robovie-M robot has been developed using the program
3DStudio. We measured the sizes and weights of each single part, including the
servomotors, of the Robovie-M as they come out of the box. Then, we drawn the
virtual model of the robot with Adobe 3DStudio. The 3DStudio model was exported
as *.ASE files (one file for each part). A .ASE file is a generic mesh file, which can
be recognized and imported by the Unreal Editor, as a static mesh into a (*.usx)
file to generate the correct visual rendering of each part. The physical properties of
the model (such as mass, friction, and inertial tensor) has been described with the
Unreal Script language, using a different script file for each of the different robot’s
part (for a total of 23 parts, which reduce to 13 because of the left-right symmetry).

Fig. 1 shows the final model of Robovie-M in USARSim.

In order to correctly scale the robot within the USARSim virtual environments,
we adopted the following proportion 4mm = luu. The uu is the measure unit used
in USARSim. For example, the high of the Robovie-M is 290mm that corresponds
to 72.5uu in the virtual scene of USARSIm.

To export the model in the Unreal Editor we established the hierarchy that
defines the joints of each part of the robot (Fig. 3). This hierarchy is not only
conceptual, but also spatial, meaning that it establishes the contact points of the
various parts. These parts will be subsequently connected in USARSim by using
the KDHinge joint .

Before importing the model under USARSim we applied the textures to the
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Fig. 2. Robovie-M model created with 3DStudio.

Fig. 3. 3DStudio model: Hierarchic scheme of the Robovie-M.
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model. The simulator allows to choose among different ”suits” (called skins) with
which loading the model. Nevertheless, the grey skin that is seen in Fig. 4 is a part
of the default textures provided with the Unreal Editor.

4.1. Physical parameters

The calibration of the physics parameters of the simulation is the most tricky task.
In fact, wrong parameters result in a simulation with little realism. However, the
realism is not the only issue that has to be considered. Also the the simulation
efficiency has to be taken into account. Each single part can be characterized by*:

e KMass: Its mass.

o KinertiaTensor: The inertia tensor that indicates how such a mass is dis-
tributed within the space.

e KFriction: A friction coefficient used to model the Coulomb’s friction. The
force needed to move an object will be given by the multiplication of its
weight with this coefficient.

e KRestitution: A elasticity’s coefficient, used to determine the resilience of
bodies after a bump. The module of the velocity of an object after a collision
with another object will be calculated multipling the module of the velocity
before the impact with this coefficient.

The masses of the single parts have been obtained by measuring them as ex-
plained before. The calculation of the inertia tensor and of the center of mass (COG)
was made by the physical engine Karma * of USARSim using the collision primi-
tives. With except for the head, for all the other parts it was been sufficient a simple
box as a collision primitive. We verified the COGs calculated by Karma with the
ones of the single parts calculated with 3DStudio, the error (never greater than
1uu) has been considered acceptable.

In Fig. 4 there have been represented the collision primitives used for the
Robovie-M, while in purple it can be seen the centre of mass of the part.

The friction coefficient has been chosen experimentally by tuning the simulation
on the reality. We performed some tests to determine the appropriate friction coef-
ficient. The outer body parts have 0.5 friction, the foot has 0.8 with the carpet on
the floor and the rest of parts have a 0 KFriction coefficient.

The elasticity coefficient has been set to zero for all the parts, because of the
very little elasticity of the aluminum that composes the robot.

The properties of the KDHinge joints have been derived from the servomotors’
specifics (tab. 1):

e MotorTorque: It is the torque moment of the joint given by torque*g/100
(where torque is the servomotor’s torque in kg*cm and g¢ is the gravity

aWe will use the USARSim’s notation in oder to describe the physical parameters of the robot’s
model.
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Fig. 4. 3D Model: Collision primitives.

acceleration given in m/s?). This was set to 6.4.

e MotorSpeed: It is the angular speed of the joint, expressed in rad/s. This
was set to 4.46

e HingePropGap: It is the error parameter used to make the joint fixed to
the set angle . Tt is expressed in UnrealUnit (uu) and the conversion is:
One degree = 182 uu. This was set to 3600.

o KAngularDamping: It is a parameter, similar to the KFriction one, which
indicates a slew contrary to the rotation, with an angular moment that
is proportional to the angular speed. It is just a kind of friction for the
”activation” of the joint. This has been set to zero.

While the two first values can be obtained from the servomotors’ specifics di-
rectly, the others have been calculated experimentally by performing comparative
tests between the real robot and the virtual robot varying these parameters. How-
ever, a USARSim’s limitation is that it is not possible to define the parameters for

the joints singularly, so there have been set unique values for all the joints (defined
in USAR.ini file).

5. Validation of the USARSim simulator

First, we analyzed USARSim qualitatively assessing the simulation of the humanoid
robot. The physical engine of Unreal Tournament Karma ?, has an internal engine
that solves a set of linear equations for each simulation’s step. Karma is a library
of the USARSim’s MathEngine. Karma uses the Lagrange’s multiplying method to
model the rigid bodies. Within this model, the effect of the joints is modeled by
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forces that act to maintain the joint. To calculate these forces it is solved a set
of linear equations using the linear prediction method (LPC). Kea is the solver of
these equations. It calculates, at the end of each time-step, as the forces are applied
to satisfy the joints. Kea, solves the differential equations with a certain degree
of approximation that may be different every time. So the result may be different
every time.

5.1. Setting the simulator’s parameters

Since Unreal Engine 2 and Unreal Script are configurable and finely tunable, we
made some experiments and comparisons in order to define the best values with
which to set them in order to create a realistic simulation (for instance one can
set the parameters for friction and gravity). It is clear that without a precise sim-
ulation, an error in the initial phases of the robot’s movements will propagate and
will increase during the simulation, affecting the final results negatively. For this
reason, before performing any experiment, we visually compared the real robot’s
behavior with the simulated one in order to define the best values of the needed
parameters. We considered that the most important ones, and consequently the
ones that a researcher who would like to reproduce our work has to know, are the
PenetrationScale and the ContactSoftness. Marco Zaratti explained them in 7.

PenetrationScale [default: 1.0]. We set this value as: 5.

ContactSoftness [default: 0.01] (karma units). We set this value as: 0.001.

5.2. Comparison between a RR’s walk and a VR’s walk

In addition to the visual confrontation, USARSim can return time and spatial coor-
dinates of the simulated objects. We choose to analyze the real and virtual robots’
walked distance and we rescaled the time spent by the virtual robot. We analyzed
and to compared the coordinates of the center of gravity (COG) of the robot in
the frames of reference of the world. We generated a motion sequence to make 8
steps along a straight line. This motion has been written on the RR and on the VR
and we repeated this motion 10 times (both for the RR and the VR). Again, we
compared the time and the coordinates of the robot in the real and in the simulated
world. We placed the RR on the floor, in our laboratory. Then we started the RR
from a fixed starting point and we made a video with a digital camera, which allows
a time reference. The ground-truth position of the RR was given by a flexible ruler
placed along its trajectory. We let the robot walking straight.

We took the time necessary to complete the 8-step walking task by the real
robot. During the experiment, we evaluated the position of the robot every 25
seconds, in order to plot the behavior of the robot, in terms of speed, trajectory,
and distance run as functions of the time. This was achieved thanks to the flexible
ruler placed along the robot walking direction. Then, we loaded the VR in the Unreal
environment, and we did the same thing. USARSim gives the values of the speed,
time, and position of the COG of the robot every thread cycle. USARSim uses a
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"heavy” graphical engine. This latter consumes several processor’s and memory’s
resources, causing slow down during the simulation. This surely affects the time
spent by the VR in performing its 8-step walking task. We simulated the tests
without running any other application, so giving the most resources to the computer
as possible. We used an Apple PowerBook G4 with 768 MB of RAM memory, nVidia
GeForce FX Go5200 64 MB of VR, and a G4 1.5 GHz PowerPc processor, with the
OS X 10.4 operative system.

Then we compared the data of the RR with these of the VR. These graphs have
been obtained by averaging the results of our 10 testing walks of the RR and our
10 testing walks of the VR.

We made the VR and the RR walking along a straight direction, which is rep-
resented in these graphs as the x-coordinate. The plot in Fig. 5.2 represents the
average of ten cases during which the two robots are walking along a straight direc-
tion (x-axis). Then, the plot in Fig. 5.2 shows the quadratic error, intended as the
difference of the y-values of the trajectory coordinates. The y-values represent the
values of the deviations of the robots’ trajectories from the given (imposed, repre-
sented by the x-axes) direction, along its orthogonal axes. In each case the error
has been calculated as the difference between the VR values and the RR values,
respectively.

Fig. 5. VR’s vs RR’s walking progression

5.3. Examination of the fluidity of the 3D representation of the
environment

As an additional experiment, we tested the performance of the USARSim in terms
of frames per second. Since using more than one robot is necessary specific in order
to use the simulator to test virtual soccer games in which there are presented more
than one robot. Using more than one robot, the computational complexity of the
simulation increases, than the performances decreases, in terms of scenes fluidity
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and speed. We tested the performance of USARSim using frame speed (fps) frames
per second. USARSim directly return this information to the user. In addition, it
allows also to store it in a file log, with the other information (robot’s speed, time,
etc.). Two tests have been performed: One with one VR and the other with two
VRs. In each test the robots were still fixed during the first 7 s, and they moved
after that.

The plot in Fig. 5.3 shows the rendering of USARSim during, firstly a one
VR simulation (blue line), and then a two-robot simulation (red line). The physics
performance has been obtained redirecting the visualization to a map’s corner. With
this expedient, it has been possible not to have to visualize polygons and textures,
which need to be rendered. The plot in Fig. 5.3 shows the physics performance
of the simulator. As in the previous plot we simulated a one-VR and a two-VRs
condition, with the robots in a fixed position (again before the 7 s) and during a
moving condition (again after the 7 s).

Fig. 6. USARSim performance

5.4. Performance of a penalty kick

In this test, the robot has to perform 8 steps and after that to kick a ball placed
on the penalty kick spot in a regular RoboCup field. We placed the real robot in
the laboratory and tested three different kick penalty situations. As in the previous
experiment, we placed a flexible ruler along the RR walking direction, in order
to obtain the exact values of position, in terms of x and y coordinates. Then,
we tested the time required to perform this task. We made different movies with
a digital camera, to document these tests. At the link ”http://www.dei.unipd.it/
“emg/downloads/penaltyComparison.wmuv” there is the movie, representing the RR
and the VR, during the performing of the same kick penalty. In Fig. 5.4 there is
shown an example of the egocentric view of the robot during a walk: Here there is
the robot in a single frame, while performing the penalty kick, from an egocentric
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view. In Fig. 5.4 there is shown an analogous scene, but viewed from an exocentric
(external) view.

Fig. 7. The different views allowed by USARSim. The scenes represent different frames during the
VR’s performance of a kick penalty

Microsoft Robotics Studio
Microsoft Robotics Studio model of Robovie-M

Validation of the Microsoft Robotics Studio simulator
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