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Abstract: This paper presents a probabilistic algorithm Kcollaborative distributed sensors for mobile robot

localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile

robot in an any-time fashion. During robot localization given a known environment, probabilistic method is

employed to synchronize robot's belief whenever pne environmental sensog detects robot. We present an
g oraled ia*_\&. Cadrown et .

implementation that uses color sauitenmental cameradfor robot detection. All the parameters of each

environmental camera are unknow

cameras‘calibrated, theg joint detection modelg/are trained usi ensor data according to cameras’
—~
parameters. As a result, the uce its uncertainty in response to the detectioly effectively.

Lbarines Boperim en& obtained with the red| robot in an indoor office environment, illustrates that drastic

ce and can be calibrated independently by robot online. Once

based its own sensors.



environments. However. if robot can be detected by the environgnental sensors, there is the opportunity to do better.

When an environmental sensor determines the location of robpt, robot can refine its internal belief based on the
sensor’s estinaie. hence improves its localization accuracy. Th ability to exchange information between robot and
environmental sensors during localization is particularly attracfive in the context of global localization. where each
sight of robot can reduce the uncertainty in the estimated locatiop dramatically.

This paper proposes an efficient probabilistic approach tp collaborative distributed sensors for mobile robot
localization. Our approach is based on Markov localization [4-] ), a family of probabilistic approaches that have been
applied with great practical success 1o robot lomﬂmtio [5.9.19]. In contrast o previous research.
which relied on grid-based or coarse-grained topological representations. of a robot’s state space, our app roach adopis a
sampling-based representation [11], which is capable of approximating a wide range of beligffanctions in real-time.
To transfer information across different platforms. probabilis tid Joi
abilities of environmental sensors to recognize robot. When one environmental sensor detects the robot, the joint
detection model is used to synchronize the robot’s belief. thereby reducing the uncertainty of robot during localization.
To accommodate the noise and ambiguity arising in real-world domains, joint de cti:)n em;?:ls are probabilistic,
capturing the reliability and accuracy of robot detection. (‘JE"T&L‘H

While our approach is applicable to any sensor capable of (occasionally) detecling robol. we present an

t detection modeK are employed to model the

implementation that uses color entirossmenial cameras for robot detection. The locgtion and pammeters of all
environmental cameins | wn and need to be calibmted by robot online. Once the cameras’ parameters.
the global localization oﬁg::d robot is attained according to the joint probabilistic detection model. The parameters
of the corresponding joini probabilistic detection model are leamed using a maximum likelihood estimator,
Experimental results, carried out with two emvrommeEN@D cameras in an indoor envimonment, illustrate the
appropriateness ofthe approach.

In what follows. we will first describe the necessary statistical mechanisms for distributed sensors localization.
followed by a description of our sampling-based and Monte Carlo localization technique in Section 3. In Section 3 we
also present our method based on environmental cameras to detect mobile robot. Experimental results are provided in
Section 4. Finally, we finish this paper with a discussion of the advantages and limitations of the current approach.

2.01 Theory of Distributed Sensors Localization

Let us begin with 2 mathematical derivation of our approach to robot localization combining with distributed
environmental sensors. In the remainder we assume that the robot is given a model of the environment (e.g., a map
[18]). and thai it is given sensors that enable it to relate its own position to this model (e.g.. range finders). All of these
senses are typically confounded by noise. Throughout this paper. we adopt a probabilistic approach to localization.
Probabilistic methods have been applied with remarkable success fo ro lization only using its onboard sensors
[3.12]. where they have been demonstrated 10 solve problems like global localization and localization in dense crowds.

2.1. Data

Let M be the number of environmental sensors. and let d denote the data gathered by the robot. Obviously.
is asequence ofthree different types of information:

{1) Odometry measuiemets. The robot continuously monitors its wheel encoders (déad-reckoning) and generates.
in regular intervals, odometric measurements. These measurements, which will be denoted bya . specify the
relative change of position according to the wheel encoders.

(2) Environment measurements. The robot also queries its sensors (e.g. range finders) in regular time intervals.
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Bc}:rﬁ(ﬂr] =!} of being at location / afler incorporating 0, is obmined by multiplying the perceptal model
P(o, il =.f) with the prior brief Bef‘(:?(l,f_'} =[)_

This observation suggests the following incremental update equation (we omit the time index 7 and the state variable

L for brevity):
Bel"” (1)« aP(o|l) Bel (1) (3)

The conditional probability P(u[!) is called the environment perception model of robot and describes the likelihood of
perceiving o given that the robot is at position /. In Markov localization, it is assumed to be given and constant over
time. For proximity sensors such as ultrasound sensors or laser range-finders, the probability P(o]!) can be
approximated by P(olo, ), which is the probability ofobserving o conditioned on the expected measurement o,at
location /. The expected measurement. a distance in this case, is easily computed from the map using ray tracing.
Figure 1 shows this perception model for laser range-finders. Here the x -axis is the distance o, expected given the
world model. und fhe p-axis is the distance measured o by the sensor. The function is a mixture of a Gaussian
(centered arovnd the correct distance ¢, ), a Geometric distribution (modeling overly short readings) and a Dirc
distribution (modeling max-range readings) [22]. It integrates the accuracy of the sensor with the likelihood of

receiving a “random” measurement (e.g.. due to obstacles not modeled in the map [9]).

(2) Odometry: Now suppose the lastitemin o, is an odomerry measurement, denoted a,. Using the Theorem of

Total Probability and exploiting the Markov property, we obtain
Be{{"r? [E!) =(;]:P(£;!} =;ld’]
= i‘} = J'J = ,) =
f’_’{fr a2 =1\ (L)) =1 \a)af B
=[P =t|a. B2 =0 ) P10, =1\ ) ar
= [P(10 =il 12, =1)Bet) (1 =1)ar
Which suggests the incremental update equation:
el (1) [P(l|a,1')Bel” (')l (5)
Here P (." ia, I’} is called the motion model of robot.
These equations together form the basis of Markov localization. an incremental probabilistic algorithm for
estimating robot positions. Markov localization relies on knowledge of P(Olf) and P(”a,!’). The former
conditional typically requires a model (map) of the environment. As noticed above, Markov localization has been

applied with great practical snccess to mobile robot localization. However, it is only applicable to robot localization

based on its own sensors, and cannot take advantage of environmental sensors’ detection measurements.
2.3. Distributed Sensors Markov Localization

The key idea of distributed sensors localization is to integrate measurements taken at different platforms, so that
robot can benefit from data gathered from itself as well as environmental sensors.

To derive how to integrate detections into the robot’s belief, let us assume that robot is detected by environmental
sensorm and a detection variable is denoted :;("'l. It provides information about the location of the the robot relative
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(2) Environment me asure ments are incorporated by re-weighting the sample set. which is analogous to Bayes rule
in Markov localization [8]. More specifically, let (I, P )be a sample. Then
p e aP(o f!)
Where ¢ is asensor measurement and is a normalization constant that enforces Z:! p,; = 1. The incorporation
of sensor readings is typically performed in two phases. one in which p is multiplied by P(o |1) . and one in

which the various p -values are normalized. An algorithm to pe form this re-sampling process efﬁcwml\r in 1[__
O(K )time is.giveni Twilis "¢ v "'(A jus
(K )time isgivenin [16]. T oL M‘A(UE, 0 S

In practice{we have found it useful ( add a small number of umform]y distributed. random samples aﬂer each yn}
estimation step [11]. Formally. these samples can be understood as a modified motion model that allows, with very vge d" .
small likelihood, arbitrary jumps in the environment. The random samples are needed to overcome local minima: Since
MCL uses finite sample sets, it may happen that no sample is generated close to the correct robot position. This may be we g&\/ﬁ
the case when the robot loses track of its position. In such cases, MCL would be unable to re-localize the robot. By ﬁy.;vd b
adding a small number of random samples, however, MCL can effectively re-localize the robot as documented ~
describad m | 11].

Another modification to the basic approach is based on the observation that the best sample set sizes can vary
drastically [17]. During global localization. a robot may be completely ignorant as to where it is; hence. it’s belief
uniformly covers its full three-dimensional state space. During position tracking, on the other hand, the uncertainty is

typically small. MCL determines the sample set size on-the-fly: It lyp-ically uses many samples during global

localization or if the positon of the robot is lost, and only a small number of samples is used during position trac Lm"

(see [11] for details). wb\e'(& lS D%MQJ7
wn E

3.2. Distributed Sensors MCL { 6? ?l"-bé&

e e L
When one environmental sensor detects the robot. both sample sets are synchronized using\the detection model. l
according to the npdaie equation o\&at’ / .

Bl (1) ¢~Bel™ (1) [P{ £ =1| 17 =.#"\ B™ (1)l (8)

Notice that this equation requires the multiplication of two densities. The crucial component is the probabilistic
detection mode P(L[r n’|f['"‘ ¥ r“"‘) which describes the conditional probability that robot is at location /.
given that sensor m is at possR!h location /" and perceives robot with measurement ™) From a mathematical
point of view, our appioach is sufficiently general to accommodate a wide range of sensors for robot detection,

assuming that the conditional density P([:‘ﬂ Lm},r(m) is adjusted accordingly. However. for seressmenisd

. . T - . ' A ?HI ‘ .
camera it is not necessary {o build the probabilistic detection mode P(ﬂ J= ™ = r.r" ) and the environmental

camera localization model Bef{'"\'(!') respectively. As a substimte. joint detection model G 0?0 ™~
IP(L"“:!'IL“'"z}",r'—"’])Ber’w(l’)dfl is constructed directly according to the eavicosmentrt cameras’ l/

o

€

parameters. Before acquiring the gloha! location of the detected robot, the cameras(parameters need to be calibmied
1

7
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In our method, all parameters of the environmental cameras are unknown in advance and their visual fields are

not overlaid each other So. in order to apply them to localize the robot. each cameras’ parameters need to be calibrated

3.2.1. Automated cnzra calibration
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location of robot is known. \'Jhem:ver[ environmental camera takes Iirmge which is analyzed as to whether robot is

in its visual field. it is o exploit the fact that the locations of robot are known during training. Then. the image is
analyzed, and for detected robot global location is computed according to the calibrated parameters of the
environmental camera  above. This data is  sufficient to  train the joint  detection
model [P(L7 =1|L" =1, /") Bel™ (Il

The Gaussian distribution shown in Figure 4 models the error in the estimation of robot’s location. Here the

X -axis represents the emor of x direction in the world coordinates. and the y -axis the '\‘dirtx:n'on error. This
Gaussian has been obtained through maximum likelihood estimation [21] based on the training data. As 1s easy 1o be
seen, the Gaussian is zero-centered along both dimcnsi(m;. and it assigns low likelihood to large errors. The correlation
between both components of the error are approximately zero, suggesting that both errors might be independent.
Assuming independence between the two errors, we found both the mean error of the estimation to be 15cm.
Additionally, because the environmential camera can not detect the robot’s orientation, the distribution of robot’s
heading angle employs uni form distribution in a range [-7 7).
To obtain the training data, the “true™ location was not determined manually; instead. MCL was applied for
position estimation (with a known starting position and very large sample sets). Empirical results in [17] suggest lima *—
MCL is sufficiently accurate for tracking a robot with only a few centimeters error. The robots’ positions, while
1 8 moving at speeds like 30 cmi/sec through our environment, were synchronized and then further analyzed geometrically
to determine whether (and where) robots are in the visual fields of environmental cameras. As a result, data collection

“is extremely easy as it does not require any manual labeling; however, the error in MCL leads to a shightly less
confined joint detection model than one would obtain with manually labeled data (assuming that the accuracy of
manual position estimation exceeds that of MCL).

4. Experimentz! Results

In this seciion we present experiments conducted with real robot. The mobile robot used is Pioneer3 DX, which is
equipped with a laser sensor. The central question driving our experiments was: 1o what extent can cooperative
distributed sensors localization improve the localization quality, when compared to_ conventional robot

self-localization.

Figure 5(a) shows the setup of our experiments along with a part of the occupa grid®map used for position

estimation and two cameras are placed on the wall applied to detect and localize the robot. Figure 5(a) also shows the

path from point A to C taken by Pioneer3 DX with laser sensor. whic was in the processof global localization. Figure
5(b) represents the uncertain belief of the robot at point A fromsecrate fore 1t passes point B(shown in Figure 5(c})).

the robot is still highly uncertain about its exact location only dependidg on its onboard laser sensor. The key event,
illustrating the utility of cooperation in localization. is a detection event - specjﬁmlly. the environmental camera | '
detects the robot as it moves through its visual field (see Figure 6). Usink the joint detection model described in
Section 3 . the robot integrates it into its current belief. The effect of this irkegration on robot’s belief is shown in
Figure 5(d). As this figure illustrates. this single incident almost completely resplves the uncertainty in robot’s belief
and shortens the time ofrobot global localization effectively.

We conducted ten experiments of this kind and compared the performance to Yonventional MCL for robot which
ignores environmental cameras’ detections. To measure the performance to locdlization we determined the true
locations of the robot by measuring the starting position of each run and performing position tracking off-line using

he estimation error is measured

b o o shicebesl

MCL. For each run, we then computed the estimation error at the reference positions.
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Taﬁle 1

fer each location / de /*initialize the belief*/
Bel” (1)« P(L) =1)

endfor

forever do
if the robot receives new sensory inputs o, do
for each location / do / *apply the perception model*/
Bel" (1)« aP(oll) Bel" (1)

end for
e ndif

if the robot receives new odometry readings a, do

for each location / do / *apply the perception model*/
Bel" (1)« [P(l]a.l')Bel" (I')dr

end jor
e ndif
if the robot is detected by the m -th environmental sensor do
for each location / do ! *apply the detection model®/

Bel" (1) « Bel" (1) jP(L(;‘ =!|L{-"" = r,r“"’) Bel™ (I')dl

end for
e ndif
end forever

Table 1: Distnbuted sensors Marko v localization algorithm for robot
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by the average distance of all samples from fhe reference position. The results are summarized in Figure 7. The graph

plots the estimation error ( ) -axis) as a func§ion of ime ( x -axis), averaged over the ten experiments. along with their
95%confidence intervals (bars). As can be sgen in the figure. the quality of position estinmiion increases much faster

when using environmental camera detection] Please note that the detection event typically took place 60-80 seconds
after the siart of an experiment. Obviously. this experiment is specifically well-suited to demonsirate the advantage of

detections in robot global localization. Of course, the performance of our approach in_more complex siwations,

especially highlv symmetrical environments, 1s more attractable to solve robot’s global localization. T“I{.S sc“ wece.
o T R [ ‘
5..)Conclusion V5 thy S*FNJ ?‘“‘ 'j ywr ?" e, 700 Skbuld fe-aB{\T

In this paper we presented an approach to collaborative distributed sensors for mobile robot localization that uses wew/
a sample-based representation of the state space of a robot. resulting in an extremely efficient and robust technique ﬁmr%“;“-}
global position estimation. Here we use environmental cameras whose parameters is unknown in advance to determine l|

e : . : 2 to chow
robot’s localization. In order to apply environmental cameras to localize the rohot, all parameters of each |
L4

known and can navigate by its onboard laser sensor. Once calibrated, the environmental cameras can detect robot +l“

environmenial camera are calibrated independently by robot online. During calibration, the robot global localization is

during robot localization. During localization, detections are used to introduce additional probabilistic constraints. To 'S*
combine detection event of environmental camera, the robot’s belief can reduce its uncertuinty in response to the P iy,
detection.

As a result. our approach makes it possible to collect sensor information at different platforms including robot
iself Experimental results demonstrate that our approach yields significantly better localization results than
conventional MCL localization only based on mobot’s own sensors.

Addiunonally, the current approach possesses a limitation that warrants future resezich. The limitation is as
follows: In our current system, only “positive” detections are processed. Not secing robot is alse informanve, even
though not as informative as positive detections. Incorporating such negative detections is genemally possible in the
context of our sttistical framework (using the inverse weighing scheme). However. such an extension would

drastically increase the compuiational overhead. and it is unclear as to whether the effects on the localization accuracy

Jjustify the additional computation and communication.
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at first. Assuming that the system is E_ways ready for usiugm calibration instruments (such as
patterns and measuring devices) may more or less hinder portability. Our okjective is to introduce a selfcalibration
concept|20] into the system and take the mobile robot as a calibration instrument Because the visual fields of all
cameras are noto i ’s calibration is independent.
‘Tl‘u'-g ts During the calibmtion. the robot location is knowpdWhen the robot moves depending cu iaser and odometrv in

& Ue’ RY visual field of any environmental camera, the camera does detect the robot and gaihers the relative datu beiween the

Skao

255V

V.a_ robot global location and detected image pixels. The sample space of relative data is designed 0 satisfy a condition
¢ that the distance between two neighbor global locations ofrelative data is more than 0. 2m. Once the number of relative

130
ordecs

Plesse

: ‘dat sums up to a threshold which is set as 200 in this r, camera calibmtion can be conducted.|Because the mobile
Ts Pre : i Uy laim

3 robotalways moves ina plane, the coplanar camera calibration method of Tsai’s is adopted here [13].
adpt
\0 Cb\iﬂ.ﬂd 1stinct point of the robot’s errordit is cumulative and increase over time or repeated measurements. Morzover., the
‘\MC_ Wt“\ random motion mput of the Yobot, which may take too much time. is not suitable for our method. For all these reasons.

In addition, unlike ordinary calibmtion devices, the mobile robot is much less accurate when moving As the most

‘_ robot’s motion during calibfgtion process should be designed to avoid serious calibraion error and to mest the
ke g accuracy demands of calibrati

“&Qﬁt\wd in Figure 3. wh&f 9{9 yw 'h,m ?

r B | _\ o7
w oue 3.2.2. Detection

. l To determine the location of the robot. our approach combines visual information obtained from environmental

. In our method, the robot in the cameras’ visual field moves as a zig. which is shown

cameras. Camera images are used to detect mobile robot and determine the relauve position of the detccted robot. The
\/\W?. ? . 1wo roxgin Figure 3 shows examples of camera i mages recorded in a room. Each image shou’s}%imt, marked by a
¢’ unigue, colored marker to facilitate its recognition. Even though the robot is only shown with a fixed orientation in tH{sC
{  figure§ the marker can be detected regardless of the mbot’s orientation.
To find robots in a camera image. our approach first filters the image by employmg local color histograms and
decision trees tuned to the colors of the marker. Threshold is then employed to searck for the marker’s characteristic

color transition. If found. this implies that the robot is present in the image. The small black points. superimposed on
each marker in the images in Figure 3. illustrate the center of the marker as identified b tmslrihmed en\'imn_l;:enlal
camera)Currently. images are analyzed at a rate of 10Hz BT Vi TR

Once a robot has been detected, the current environmental camera is analyzed for the location of the robot in

image coordinates. Then it is done by transforming the detection pixels in image coordinates to positions in world

very important. especially because the mobile robot might shift and rotate simultaneously when it sef” In our
framework. sensor synchronization is fully controllable because all data is tagged with timestamps.

3.2.3. Joint Detection Model

|r!|"

! denotes a detection event by the m7 -th environmental camera. which comprises location of the detected robot in
image coordinates. The vanable L") describes the location of the detected robot, and L™ ra}ngés over locations of
the m-th environmental camera: As described above, we will restriet our considerations to “positive” detections. 1.e..
cases where n“:nvimmmntaj camera did-detect a robot. Negative detection events (a environmental camera does nor
see a robot) are beyond the scope of this ]Emper and will be ignored.

The joint detection model is trained using data. More specifically, during training we assume that the exact
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to environmental sensor m . Then

Be’,:ﬂ (t,b =x,) = P{f,'l =f|d,)P(I£" =I!r;“)

(6)
=P(1) =1ld,) [P0 =1t =1 " (&7 =117\l
Which suggests the incremental update equation:
Bel" (1) =Bl (1) [P =1|£™ =1, A" Bel™ () alr (7)

Here IP(L':" =™ =, r{"))Bel(“)(f')df'descrihes environmental sensor’s belief about the detected robot's

position.
Table | summarizes robot Markov localization algorithm combining distributed se¢nsors. The time index ¢ and the
state variable L is omitted whenever possible.

3. Implementation of Distributed Sensors Localization

The previous section left open how the belief about the robot position is represented. It general. the space of all
sensors and robot position is continnous-valued and no parametric model is known that would accuraiely model

arbitrary beligfsia obotic domains. However, practical considerations make it impossible to model arbirary

Sing digital computers.

3.1. Monte Carlo Localilzation

The vital idea here is to approximate belief functions using a Monte Carlo method. More specifically. our
approach is an extension of Monte Carlo localizaion (MCL). which was see@B#y proposed in [11. 14]. MCL is a
version of Markov localization that relies on sample-based representations and the sampling/imporiance re-sampling
algorithm for belief propagation [15]. MCL represents the posterior beliefs Bel" (L!.'::)by a sel of K weighted
random samples. or particles. denoted § ={s'. |f = lK} A sample set constitutes a discrete distribution and samples
inMCL are of the type

s,=(l.p,)

Where [, = (.‘c‘..y,.e,. )denotes a robot position. and p, 20 is a numerical weighiing factor, analogous 1o a d iscrete
probability. For consistency, we assume Z,ﬂ p;=1. In the remainder we will omit the subscript / whenever
possible.

In analogy with the general Markov localization approach outlined in Section 2. MCL proceeds in two phases:

(1) Robot motion. When a robot moves, MCL generates K new samples that approxinmie the tobot’s position after
the motion command. Each sample is generated by randomly drawing a sample fom the previously computed
sample set. with likelihood determined by their p -values. Let /’denote the position of this sample. The new
sample’s /[ is then generated by generating a single. random sample from P(!Ji',a) , using the odometry
measurement ¢ . The p -value of the new sample is K™ Figure 2 shows the effect of this sampling technique
for a single robot, starting at an initial known position and executing actions as indicated by the dash line. As
can be seen there, the sample sets approximate distributions with increasing uncertainty. representing the gradual
loss of position information due to slippage and drifi.
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which generates measurements denoted by o . The measurements o establish the necessary reference between the
robot’s local coordinate frame and the environment's frame of reference. In our experiments below. o will be
laser range scans.

(3) Detections. Additionally, robot queries distributed environmental sensors for the presence or absence of itself.
The resulting measurements will be denoted byr. Robot detection might be accomplished through different
sensors than environment measurements. In our experiments, we use environmental cameras (color camera
embedded in the environment) for robot detection.

2.2. Markov Localization |\~ SGEAAD %4 06“' {' VQQ’{ HMSL; P’u% - ““Q_

Before turning to ﬂ'f? topic of this paper—collabomtve distributed sensors localimtion—iet us first review a
common approach to robot localization only based on its own resource. which our approach is built upon: Markov
localiztion. Markov localization uses only dead reckoning measurements @ and environment measurements o | il
ignores detections 7 . In the absence of detections. information gathered a1 different platforms cannot be iniegrated.

The key idea of Markov localization is that the robot maintains a beliefover its position. The beliefofrobot at time
/ will be denoted by Bef:.’) (L"]) . Here L is a three-dimensional random variable composed of the robot’s
X - ¥ position and its heading direction 8. Accordingly, Bel'"’ (l.f-r-1 = I) denotes the beliefof the robotofbeing ata
specific location /. Initially. at time #=0, Bei,()')(l.(’)) reflects the initial knowledge of the robot. In the most
general case, which is being considered in the experiments below. the initial position of robot is unknown.
hence Be!ﬁ,"j (LM ) is initialized by a uniform distribution.

Attime 1. the belief Bel!” (L"))is the posterior with respect to all data collected up  time 7

Beg"‘(L"")=P(1;"} ld,) (1)

where d, denotes the data collected by the robot up to time 7. By assumption. fhic most recent sensor measurement

in d, is eitheran environment or an odometry measurement. Both cases ate treated differently. so let’s consider the

former first:

(1) Sensing the environment: Suppose the last item in ¢, is an environment measurement. denoted o, . Using the
Markov assumption (and exploiting that the robot position does not change when the environment is senscdj. we
obtain for any location /:

Bel:'r]| (Lm =f)= P(L‘;r.' = fld,)
Plo |t =td,,)P(L0 =1|d,,)

2 P(o,|d,,)

Plo, |t =1)P(L) =1]d,,)
i P((J., |d,_,)
L‘;"' =1)P(L,r} =”"m)

=|(31'P(0r

- a'P(or | = 1)P(L}’_} =lld,,)
=aP(o|L = 1)Bell) (L =1)

Where ¢ is a normalizer that does not depend on the robot position /. Notice that the posterior brief
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Abstract

This paper presents a probabilistic algorithm to collaboraive distributed sensors for mobile robot localization. Our gpproach uses a
sample-based version of Marko v localization, capable oflocalizing mobile robotin an any-time fashion. During robot localization given a
known environment, probabilistic method is employed to sync hronize robot’s be lief whene ver one e nvironmental sensor detects robot We
present an imple mentation that uses color environmental c amems for robot detection. All the parameters of each environmental camera =t
unknown in advance and can be calibrated independently by robot online. Once cameras’ calibrated, the joint detection models are wained
using sensor data according to cameras” parameters. As a result, the robot’s belief can reduce its uncertainty in response to the detection
effectively. A further expeniment, obtained with the real robot in an indoor office environment, illustrates that drastic improvements m

localization speed and accuracy when compared to conventional robot localization only based its o wn sensors.
Keywords: Collaborative distributed sensors localization; Environmental camera, Joint detection model

1.7 Introduction k‘-Uf k Mc"'\': 4 '3.5 Mkﬂ\ﬂ

Mobile_robot locglization is the problem of estimating a fobot’s pose (location. orientation) relative 1o its

environment. The logalization problem is a key problem in mobile robotics. There are two classes of loc.ﬁlzanon
problem. position acking and global localization. In position racking, a robot knows its mz:dl position | ] ] and UI'I]\-'

needs to ity in the odome g If the initial position is not known or'fhe robot is kidnapped to

somewhere. the problem i global localization, i.e.. the mobile robothas to estimate i1s global position through a
—mﬁlénmm recent years, a flurry of publications on localization documcnslhe importance of the
problem. Occasionally, it has been-referred to as “the 'most fundamental problem to pmvidag a mobile robot with
autonomous capabilities”™ [3]. __h__ﬁ' L.A- s SRS
Wﬂual!y all existing worﬁadd:essﬁ’!oca] izationYonly using senso rs/ onboard-fMmobile robot,

robot navigaton, the robot cannot always de§rmine its unique situation only by local sensing information since the

owever, in

sensor is prone to errors and a shight change ¢f the robot’s simation deterioraies the sensing results. Along with the

rapid development of ‘computer networks anfl multimedia technology, research on how to make an ‘intelligent’

environment g rons makes sense. especially in home environment. In this case.

{—O ‘arjows-Sensors are embedded into the environment (environmental sensors), and communication between the robot

suipég’ _ : ; g w : %
o ¢ robot by Wnd -end vl 15 a valid approach that might yield reasonable results in many
lo Gh,%.;lmat }mn g u AN i ‘1 :
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