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Abstract— Omnidirectional cameras are versatile sensors that
are able to provide a full 360-degree view of the environment.
When combined with inertial sensing, omnidirectional vision
offers a potentially robust navigation solution. However, to
correctly fuse the data from an omnidirectional camera and
an inertial measurement unit (IMU) into a single navigation
frame, the 6-DOF transform between the sensors must be
accurately known. In this paper we describe an algorithm,
based on the unscented Kalman filter, for self-calibration of
the transform between an omnidirectional camera and an
IMU. We show that the IMU biases, the local gravity vector,
and the metric scene structure can also be recovered from
camera and IMU measurements. Further, our approach does
not require any additional hardware or prior knowledge about
the environment in which a robot is operating. We present
results from calibration experiments with an omnidirectional
camera and a low-cost IMU, which demonstrate accurate self-
calibration of the 6-DOF sensor-to-sensor transform.

I. INTRODUCTION

Vision is a rich sensing modality that is useful for a wide
variety of robot navigation tasks. In systems which employ
standard refractive camera lenses, however, the camera’s
limited field of view can be a weakness — there may be
a complete loss of tracked features or objects when the
camera rotates or translates quickly. One solution is to use an
omnidirectional lens, effectively trading resolution for a 360-
degree field of view. In order to image such a large azimuth
range, omnidirectional lenses are often catadioptric, i.e., they
incorporate both reflective and refractive elements [1], [2].

Although omnidirectional cameras have the advantage of
a wide field of view, they can be more prone to problems
caused by motion blur and resolution limitations. Addi-
tionally, absolute depth and scale information cannot be
recovered using measurements from a single camera alone.
Obtaining this depth information, which is required for
metric mapping and in some cases for path planning, requires
another sensor, such as an inertial measurement unit (IMU).
Recent work has shown that visual and inertial sensors can
be used effectively in combination to estimate egomotion [3],
[4]. However, the six degrees-of-freedom (6-DOF) transform
between the camera and the IMU must be accurately known
for measurements to be properly fused in the navigation
frame. Calibration of this transform is usually a difficult
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process, which requires additional equipment and which
must be repeated whenever the sensors are repositioned.

Instead of manual calibration, a more efficient and con-
venient approach is to self-calibrate the sensor-to-sensor
transform. Self-calibration refers to the process of using
(noisy) measurements from the sensor themselves to improve
estimates of the related system parameters. In this paper,
we extend our previous work on camera-IMU calibration
[5] to omnidirectional sensors and demonstrate true self-
calibration, i.e., calibration without the use of a known
calibration object. We formulate calibration as a filtering
problem, and show that is it possible to estimate the 6-DOF
camera-IMU transform, the time-varying IMU biases, the
local gravity vector and the scene structure at the same time.
That is, we simultaneously calibrate, localize the camera-
IMU platform and build a map of the environment (i.e.,
perform SLAM). We emphasize that, unlike in monocular
camera-only systems, we are able to recover the scene scale.

The remainder of the paper is organized as follows. We
review prior work in Section II. In Sections IIl and IV,
we describe our system model and our filtering algorithm,
respectively. We then give an overview of our calibration
experiments in Section V, and present results from those ex-
periments in Section VI. Finally, we offer some conclusions
and directions for future work in Section VIIL.

II. RELATED WORK

There is a very large body of literature on vision for
robotics applications, which includes the use of omnidirec-
tional sensors. We focus specifically on visual-inertial sensor
calibration in this section. For example, Lobo and Dias [6]
describes a camera-IMU calibration procedure in which the
relative orientation and relative translation of the sensors
are determined independently. The procedure requires a
pendulum unit and a turntable, making it impractical for
larger robot platforms.

More closely related to our work is the approach developed
by Hol et al. [7] for calibrating the relative transform
between a spherical camera and an IMU. A similar algorithm
was proposed by Mirzaei and Roumeliotis [8] for standard
perspective camera systems. These algorithms operate by
tracking corner points on a planar calibration target and
fusing the image measurements with IMU data.

Jones, Vedaldi and Soatto present an observability analysis
in [9] which shows that the camera-IMU relative pose,
gravity vector and scene structure can be recovered from
camera and IMU measurements only. However, their work
assumes that the IMU biases are static over the calibration
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Fig. 1. Relationship between the world {WW}, IMU {I}, and omnidirec-
tional camera {C'} reference frames. The goal of the calibration procedure
is to determine the transform (p5,qS) between the camera and IMU,
using accelerometer and gyroscope data and camera images of static point
landmarks (red stars) in the immediate environment.

interval — for the low-cost inertial sensors that we consider
in this paper, drift in the biases can be significant even over
short periods of time.

Importantly, our technique does not require any additional
apparatus in the general case (although a planar calibration
target can be used, if one is available), and explicitly models
uncertainty in the gravity vector and in the gyroscope and
accelerometer biases.

III. CALIBRATION APPROACH

We begin by describing our system model below, and then
briefly discuss its observability properties in Section III-B.
The calibration problem involves three separate reference
frames:

1) the camera frame {C'}, with its origin at the effective
optical center of the omnidirectional camera and with
the z axis aligned with the optical axis of the lens,

2) the IMU frame {I}, with its origin at the center of the
IMU body, in which linear accelerations and angular
rates are resolved, and

3) the world frame {W}, which serves as an absolute
reference for both the camera and the IMU.

The relationship between these frames is illustrated in Figure
1. We treat the world frame as an inertial frame, and choose
the origin of this frame to coincide with the initial camera
position.

A. System Model

We use an unscented Kalman filter (UKF) to simultane-
ously estimate the pose of the IMU in the world frame,
the IMU biases, the gravity vector, and the position and
orientation of the omnidirectional camera with respect to the
IMU. The 26 x 1 sensor portion of the state vector is

x,(t) = [(er®))" ()" (v ()"

(by(E)” (ba(t)T (&")T (pL)T owﬂfl)

where p}” is the position of the IMU in the world frame,
@, is the (unit quaternion) orientation of the IMU frame
relative to the world frame, v' is the linear velocity of
the IMU in the world frame, b, and b, are the gyroscope
and accelerometer biases, respectively, and g is the gravity
vector in the world frame. The remaining entries, p/, and
Gl are static parameters which define the position and the
(unit quaternion) orientation of the camera frame relative to
the IMU frame.

During self-calibration, we also estimate the positions of a
series of point landmarks in the environment. The complete
state vector is

T 1T T 7T

x(t) = [<I(t) 5] %, = [0F) ]

2)
where x,,, is the map portion of the state vector. Each entry
in x,,, is a 3 x 1 vector, pfiV, that defines the position of
landmark ¢ in the world frame, ¢+ = 1,...,n. The complete
state vector has size (26 + 3n) x 1.

In our experiments, we have found it sufficient to use
Cartesian coordinates to specify landmark positions. We
initialize each landmark at a nominal depth and with a large
variance along the camera ray axis, at the camera position
where the landmark is first observed. If the true landmark
depths vary significantly, it may be more appropriate to use
an inverse-depth parameterization [10].

Note also that, because the world frame is defined with
respect to the initial camera pose, the relationship between
the frame and the local gravity vector can be arbitrary, i.e., it
will depend entirely on how the camera is initially oriented.
This is one reason why we estimate the gravity vector in the
world frame during calibration.

(p)”

1) Process Model: Our filter process model uses the
IMU linear acceleration and angular velocity measurements
as control inputs [11]. We model the IMU gyroscope and
accelerometer biases as Gaussian random walk processes
driven by the white, zero-mean noise vectors ng, and
ng,. The gyroscope and accelerometer measurements are
corrupted by zero-mean, white Gaussian noise, defined by
the vectors ng and n,, respectively. The evolution of the
system state in continuous time is described by

1
py =v" vV =a" a7 = §Q(w1)(j}” 3)
bg = Ngy ba = Ngw gw = 03x1 4
Pe =031 4. =04 (5)

The term 2(w’) above is the 4 x 4 quaternion kinematical
matrix, which relates the time rate of change of the orien-
tation quaternion to the IMU angular velocity. Vectors a™
and w’ are the linear acceleration of the IMU in the world
frame and the angular velocity of the IMU in the IMU frame,
respectively. These quantities are related to the measured
IMU angular velocity, w,,, and linear acceleration, a,,, by

wm =w’ + b, +1n4 (6)
a, = C'(7;") (@ —g") +ba + n, ©)
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where C(q}) is the direction cosine (rotation) matrix that
describes the orientation of the IMU frame with respect to the
world frame. We propagate the state forward in time using
fourth-order Runge-Kutta integration of (3) to (5) above.

2) Measurement Model: As the sensor platform moves,
the camera captures images of tracked landmarks in the
environment, over a full 360 degrees of azimuth. We use the
omnidirectional camera model described in [12], and cali-
brate the camera intrinsic parameters prior to our mapping
or navigation experiments. Measurement z; is the projection
of landmark [;, at position pfi = [xz Yi zi]T in the camera
frame, onto the image plane

z;
pl = |vi| =C"(al)C(}) (» —p}) — C'(@l)p.
_Zi_
] » x xi/ %
== . r o= e
/
ZZ + 7717 yz ,P yl/zl (8)
R 1 1

where [ul Ui] r is the vector of observed image coordinates,
P is the 3 x 3 camera intrinsic matrix, and 77, is a Gaussian
measurement noise vector with covariance matrix R; =
02 I5y2. The projection function is modeled as a fourth-order
polynomial, plus an affine transform that maps between the
camera CCD and the (virtual) image plane.

When several landmarks are visible in one image, we stack
the individual measurements to form a single measurement
vector z = [z] ... z]] " and the associated block-
diagonal covariance matrix R = diag (R4 R,,). This
vector is processed by the filtering algorithm in a single step.

B. Observability of Self-Calibration

In order to calibrate the sensor-to-sensor transform be-
tween the camera and the IMU, the relevant system states
must be observable. That is, we must be able recover the
state values from the measured system outputs, the control
inputs, and a finite number of their time derivatives [13].
Prior work on the observability of camera-IMU relative pose
calibration includes [8] and [9].

The general problem of estimating both camera motion
and scene structure has been studied extensively in robotics
and in computer vision. Chiuso et al. [14] shows that monoc-
ular structure-from-motion is observable up to an unknown
similarity transform from image measurements alone. If we
choose the initial camera position as the origin of our world
frame, and fix' the initial camera orientation (relative to
three or more noncollinear points on the image plane), then
following [9], [14], scene structure is observable up to an
unknown scale.

We prove as our main result in [15] that, if we are willing
to lock down the initial camera orientation, it is possible
to observe the relative pose of the camera and the IMU,

IThat is, we treat the initial camera orientation as fixed relative to the
directions to three or more world points. These directions are considered as
absolute and are not estimated in our filter.

the gyroscope and accelerometer biases, the gravity vector
and the local scene structure. Our analysis is based on a
differential geometric characterization of observability and
relies a matrix rank test originally introduced by Hermann
and Krener [16]. The result holds as long as the IMU
measures two nonzero angular rotation rates and two nonzero
linear accelerations (i.e., along at least two axes).

IV. UNSCENTED FILTERING

Measurements from the camera and the IMU are fused
in an unscented Kalman filter to estimate the system state,
including the calibration parameters. The UKF is a Bayesian
filtering algorithm which propagates and updates the state
vector using a set of deterministically-selected sample points
called sigma points [17]. These points, which lie on the
covariance contours in state space, capture the mean and
covariance of the state distribution. The filter applies the
unscented transform to the sigma points, propagating each
point through the (nonlinear) process and measurement
models, and then computes the weighted averages of the
transformed points to determine the posterior state mean
and state covariance. This is a form of statistical local
linearization, which produces more accurate estimates than
the analytic local linearization employed by the extended
Kalman filter (EKF).

We use the continuous-discrete formulation of the UKEF,
where the sigma points are propagated forward by integra-
tion, while measurement updates occur at discrete time steps.
Our filter employs the scaled form of the unscented transform
[18], which uses a scaling term to control the spread of the
sigma points around the mean. Process noise is incorporated
by augmenting the state vector and state covariance matrix
with a noise component [17].

The standard UKF algorithm computes the predicted state
vector as the weighted barycenteric mean of the sigma
points. For unit quaternions, however, the barycenter of the
transformed sigma points will often not represent the correct
mean. In particular, the weighted average of several unit

Fig. 2. Pioneer 2-AT mobile robot, equipped for calibration experiments.
The NetVision 360 omnidirectional camera lens is visible in the upper right.
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quaternions may not be a unit quaternion. There are several
ways to enforce the quaternion unit norm constraint within
the UKF [19]. We follow the method described in [20] and
reparameterize the state vector to incorporate a multiplica-
tive, three-parameter orientation error state vector, separate
from the unit quaternions ¢;" and ¢ .. This approach, called
the USQUE (UnScented QUaternion Estimator) filter in
[20], uses a multiplicative local error quaternion and a
three-component vector of modified Rodrigues parameters
(MRPs), derived from the error quaternion. The MRP vector
is an unconstrained rotation representation, which is singular
at 27r. Throughout the calibration procedure, the filter main-
tains an estimate of the full 26 x 1 sensor state vector and
a 24 x 24 error state covariance matrix. For the orientation
quaternions ¢} and ¢/, we store the covariance matrices for
the MRP error state representations. We can then recover the
appropriate quaternion for each sigma point from the mean
quaternion and the MRP error covariance matrix.

A. Filter Initialization

At the start of calibration, we compute an initial estimate
of the sensor state vector. We use the initial camera position
as the origin of the world frame, and set the initial camera
orientation arbitrarily.”> The initial camera pose has zero
uncertainty in this case, since it corresponds to the base
reference frame.

We also require an initial estimate of the pose of the
camera relative to the IMU. For the work described here,
we use hand measurements of the relative pose — however
this information may in many cases be available from CAD
drawings or other sources. Using the estimate of the relative
pose of the camera with respect to the IMU, we can then
compute an initial estimate of the IMU pose in the world
frame

p;’ =-C(a¢) CT(qe) be ©)

i = e @l (10)
We compute the covariance matrix for the IMU pose using
the Jacobians of (9) and (10), after converting to the MRP
orientation representation.

We also estimate the initial map state (landmark positions
in the world frame). Typically, approximately 40 to 50
landmarks are selected as static references for calibration.
At present, we do not add new landmarks when the camera
moves (since we expect to perform calibration in a limited
area to obtain faster convergence). As noted in Section III-A,
we parameterize the landmark positions in the state vector
using Cartesian coordinates, and initialize the positions using
a nominal depth value, along the associated camera ray axes.
The covariance matrix for each landmark is computed by
propagating the image plane uncertainty (1 to 2 pixels) and a
large initial variance along the camera ray into 3-D, yielding
a covariance ellipsoid in the world frame.

2We usually choose an initial orientation that results in the z axis of
the IMU pointing downwards, approximately aligned with the local gravity
vector.

As a last step, we select three or four highly salient
and widely disbursed landmarks (90 degrees to 120 degrees
apart, if possible) as anchors, to fix the orientation of the
world frame. The covariance ellipsoids for these points are
initialized using very small image plane uncertainties. This
effectively locks down the initial camera pose and ensures
that the full system state is observable.

B. Feature Detection and Matching

We attempt to select a set of well-localized point features
as landmarks, using a feature selection algorithm such as
SIFT [21]. Feature matching between camera frames is
performed by comparing the descriptors for all points that lie
within a bounded image region. The size of the search region
is determined from the integrated IMU measurements during
the interval between camera image updates. For the exper-
iments presented here, we used an empirically-determined
threshold on the Euclidean distance between SIFT feature
descriptors as a validation gate for matching.

V. EXPERIMENTS

We performed a series of experiments to quantify the
accuracy and performance of calibration algorithm. Although
we have tested self-calibration in a variety of unstructured
environments, in this paper we restrict ourselves to describ-
ing an experimental trial in our laboratory, where landmarks
were positioned between one and three meters away from
the camera. Further details on the sensor platform and our
experimental procedure are given below.

A. Hardware Platform

We use a black and white Flea FireWire camera from
Point Grey Research (640 x 480 pixel resolution), coupled
to a NetVision 360 omnidirectional lens manufactured by
Remote Reality (shown in Figure 2). Images are captured at
a rate of 15 Hz. Our IMU is a Microstrain 3DM-GX3 unit,
which provides three-axis angular rate and linear acceleration
measurements at 100 Hz. Axis scale and non-orthogonality
effects are compensated for internally by the IMU. Both
sensors are attached to a rigid 40 cm-long aluminum beam.

For our omnidirectional calibration experiments, the sen-
sor beam was attached to a Directed Perception PTU-D46
pan-tilt unit that was mounted on a Pioneer 2-AT mobile
robot. The use of a pan-tilt unit made it possible to excite
two degrees of rotational and two degrees of translational
freedom while the robot moved on a planar surface (i.e., a
flat floor).

B. Experimental Procedure

At the start of each calibration experiment, we initialized
the IMU biases by keeping the sensor beam stationary
for approximately 10 seconds. After this settling time, we
enabled the pan-tilt unit, which followed an oscillating roll
trajectory (at constant angular velocity), between the angles
of 15°and -15°. We then commanded the Pioneer follow a
circular path with a radius of approximately 1 m. Image
processing and filtering were performed offline.
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TABLE I
SELF-CALIBRATION RESULTS. THE INITIAL HAND-MEASURED (HM) ESTIMATE OF THE CAMERA-IMU TRANSFORM (&, y, 2 TRANSLATION AND
ROLL, PITCH, YAW ORIENTATION) AND THE FINAL SELF-CALIBRATED ESTIMATE ARE LISTED, ALONG WITH THEIR RESPECTIVE 30 ERROR BOUNDS.

Pz £ 30 (cm) py £ 30 (cm) pz £ 30 (cm) ‘ Roll &+ 30 (°) Pitch + 30 (°) Yaw + 30 (°)
HM 0.00 £ 18.00 -15.00 £ 30.00 0.00 £ 18.00 0.00 £ 15.00 0.00 £ 15.00 0.00 £ 15.00
SC 534 £ 0.74 -14.13 + 0.40 3.15 £ 0.61 -11.79 £ 0.14 -2.39 4+ 0.10 -0.38 + 0.16

The camera-IMU transform parameters were initialized
using hand measurements of the relative position and orien-
tation of the sensors. We assumed that each image measure-
ment was corrupted by independent, white Gaussian noise
with a standard deviation of 2.0 pixels along both image
axes. The intrinsic parameters of the camera were calibrated
using the Omnidirectional Camera Calibration Toolbox for
MATLAB [12].

Self-calibration requires us to first anchor the orientation
of the world reference frame by fixing the directions to three
or more points on the image plane. We chose to fix the
directions to four widely distributed SIFT features in the
first camera image. The initial covariance matrices for these
landmarks were computed using very small image plane
uncertainties, after averaging the image coordinates over 450
frames (30 seconds) to reduce noise. This averaging was
performed while the sensor beam was stationary, before the
start of an experimental trial. We selected an initial depth
of 2.0 m for all of the landmarks, along the corresponding
camera ray, with a standard deviation of 0.6 m.

VI. RESULTS AND DISCUSSION

We analyzed the performance of the self-calibration al-
gorithm using a dataset consisting of 14,905 IMU mea-
surements (i.e., angular rates and linear accelerations) and
2,232 camera images, acquired over 150 seconds. A total
of 44 SIFT features were tracked, with an average of 13.6
features visible per frame. The maximum rotation rate of the
IMU was 75.3°/s, and the maximum linear acceleration (after
accounting for gravity) was 11.6 m/s2. Table I lists the initial
hand-measured (HM) camera-IMU relative pose estimate and
the final self-calibrated (SC) relative pose estimate. Plots for
the time-evolution of the corresponding system states are
shown in Figure 4.

Since ground truth measurements of the relative pose
parameters were difficult to obtain, we instead evaluated the
pixel reprojection errors for the hand-measured and self-
calibrated relative pose estimates; the results are shown in
Figure 5. We computed these residuals by running the UKF
using the respective parameters listed in Table I, without
estimating the parameters in the filter. To further emphasize
the improvement produced by calibration, we also reduced
the camera frame rate to 1.875 Hz (i.e., we processed every
eighth image). For our hand-measured estimate, the RMS
residual error was 12.29 pixels over all of the images; for the
self-calibrated estimate, the RMS residual was 3.89 pixels.
Note that the overall RMS residual for self-calibration is
significantly lower (by more than a factor of three) than for

the hand-measured value, indicating that the calibration is
accurate. These results agree with earlier simulation studies.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a relative pose self-calibration algo-
rithm for omnidirectional visual and inertial sensors. As part
of the calibration process we also localize the camera-IMU
platform and build a sparse metric map of the environment.
Our results show that it is possible to accurately calibrate
the 6-DOF transform between the sensors without the need
for a known calibration object. This is a step towards
building power-on-and-go robotic systems that are able to
self-calibrate during normal operation.

As part of our future work, we are exploring the possibility
of self-calibrating the camera intrinsic parameters along with
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Fig. 4. (a) Evolution of the IMU-to-camera translation estimate over the
calibration time interval (along the x, y and z axes of the IMU frame, from
top to bottom) for the self-calibration procedure. (b) Evolution of the IMU-
to-camera orientation estimate (for the roll, pitch and yaw angles that define
the orientation of the camera frame relative to the IMU frame, from top to
bottom) for the self-calibration procedure.
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Fig. 3.

(a)t=48s

(b) t =69.6 s

()t =1237s

Images from the self-calibration data set, at times t =4.8 s, ¢ = 69.6 s and ¢ = 123.7 s from left to right, respectively. The measured image locations

of the identified landmarks are shown as red crosses, and the predicted locations are shown as blue circles. Green circles identify anchor landmarks, which
we used to fix the orientation of the world frame. The planar calibration target was used only to determine the initial and final positions of the camera.

the relative sensor pose. This would enable full camera-IMU
self-calibration, and allow the sensors to operate together for
significant durations without any manual recalibration.
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